CHAPTER 4

PULSE WIDTH MODULATION SCHEMES IN THREE-LEVEL

VOLTAGE SOURCE INVERTERS

4.1 Introduction

Semiconductor switch ratings have limited the application of power converters
rated in the tens to hundreds of megawatts. Large inverters operating at these power
levels in the medium voltage range (2-13 kV) have traditionally been the domains of gate
turn off (GTO) thyristors. However, their switching speed is severely limited compared to
the IGBT’s so that the carrier frequency of a GTO inverter is generally only a few
hundred hertz. High switching frequencies can be achieved by replacing each of the
slower switches so that each individual IGBT shares the dc link voltage with others in the
string during its off state. The devices are operated in saturation region of operation. This
is because there exists higher losses in active region operation of these devices.

Multilevel power conversion technology is a very rapidly growing area of power
electronics with good potential for further development. The applications involved in
synthesis of a quality power, medium to high voltage range include motor drives, power
distribution, power quality, and power conditioning applications.

Desirable Characteristics of Three Phase Three Level PWM VSI
e Wide linearity of operation.

e Minimum switching losses.
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¢ Minimum voltage and current harmonics.
e Controlled neutral point voltage and current to ensure stiff capacitor voltages.

e To obtain steps in the output voltage.

4.2 Model of Three-Level Diode Clamped Inverter

A three-level diode clamped inverter is shown in Figure 4.1. In this circuit, the
dc bus voltage is split into three levels by two series-connected bulk capacitors, C; and
C,. The middle point of the two capacitors “2” can be defined as the neutral point. The
output voltage has three states: V4./2, 0, -V4/2. The devices are switched in combinations
to obtain these levels in the voltage waveform. The switching combination of the top two
devices 1s termed as His (Siip, S2ip), the middle two devices as Hip (Saip, Siin), and the
bottom two devices as Hi; (Siin, S2in) (i=a, b, ¢). When the two top devices are switched
on the converter switches to the +Vg4./2, when the middle two devices are turned on, the
converter switches to the zero voltage, and when the bottom two devices are switched on,
the converter switches to —Vq4./2. The pole representation and output waveform of the
three-level inverter is shown in Figure 4.1 (II). The turn-on and turn-off sequences of any
of the switching devices of the inverter are represented by existence functions (His, Hi,
Hi;), which have a value of unity when it is turned on and becomes zero when it is turned
off. The three-phase voltage equations for star-connected, balanced three-phase loads are
expressed in terms of the existence functions and input DC voltages. The operation of the

converter is explained in section 3.1.
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Figure 4.1: (I) Schematic of Three-Level Voltage Source Inverter (II) Representation of

three-level inverter using the concept of poles.
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The output phase voltage of the inverter is given by

Vo =H V3o + H )V + H V), 4.1)
Voo = H Vg + H )V + Hy V) (4.2)
Voo =H Vg + H Vg + H V. 4.3)

The switches are assumed ideal as is common in preliminary functional
analysis of switching power converters. These assumptions include: (a) negligible
forward voltage drop of the switch throws in their on-state; (b) sufficient on-state current
carrying capacity and of-state voltage blocking capacity commensurate and compatible
with the voltage and current ratings of the system; and (c) negligible transition periods
between turn on and turn off of the switch throws that permit repetitive high frequency
switching. The voltages at the throw terminals of the switch are assumed stiff such that
their variations during a switching period can be neglected. Similarly, the switch currents
are assumed stiff such that their variations over a switching period can be neglected.
These assumptions essentially allow the focus to be on the power transfer process and the
functional features. In practical power converters, filter elements appropriately applied at
the input and output ports of the system would ensure that these assumptions are valid. In
order to maintain continuity of the three phase currents connected to the poles, at least
one of the throws connected to any given pole of the switch has to be closed.
Furthermore, each current port may be connected to only one voltage terminal at any
given instant of time. Otherwise, two stiff voltages will be short-circuited together,
resulting in uncontrolled currents through the switch throws. As a result, no more than
one combination of switches is on at any given instant of time. Hence the following

conditions are to be followed when switching the devices of a multilevel converter.
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Ha3+Ha2+Hal:1 (44)

H,+H,+H, =1 4.5)

H.,+H,+H,A =1 (4.6)
From Eq. (4.4),

H,=1-H,-H,. (4.7)

Substituting the condition in Eq. (4.7) in (4.1), gives

Ve, =HV,—H,V,+V,. (4.8)
Similarly for the other phases,

v, =H, V., —H, V.,+Vy (4.9)

v,=HV,—-H/V.,+V, (4.10)
where V, is the voltage between the neutral of the supply and the common point of the
two capacitors. This is known as the neutral voltage, which is floating, and can assume
any voltage and becomes the control variable and used for controlling the neutral point
voltage.

The node currents of the inverter are given by Eqgs. (4.11 - 4.13). Consider the node

3; the node current is available when the top devices of each leg are switched on, which

provides the path for the current; i.e., when the top two devices in phase “a” are turned

on, current I, passes through these devices and similarly for the other phases b and c.

I, =H i, +H,i, +H_i, (4.11)
l,=H_,i, +H,,i +H_,i, (4.12)
I, =H,i,+H,i +H,i,. (4.13)
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Writing the Kirchoff’s Current Law (KCL) equation at node 3 gives the differential
equation of the capacitor voltage V. and KCL equation at node 1 gives differential
equation for capacitor voltage V..

CpV,=-1,+H i, +H,i, +H_,i,. (4.14)
CopV., =—I, +H i, + Hyi, + H ). (4.15)
Multilevel converters can be modulated using the following two methods:

e Direct digital technique SVPWM.

e Carrier-based (triangular comparison) technique.

The direct digital technique involves utilization of space vector approach wherein
the duty cycles for the switching inverter are calculated. The gating signals are
presequenced and stored as lookup table for the available switching states of a multilevel
inverter. Carrier-based PWM utilizes the per cycle volt-second balance to synthesize the
desired output voltage waveform.

Consider the carrier-based sine-triangle pulse width modulation; the different
types of the carrier-based techniques are available and mentioned in the literature review.
In the previous carrier-based PWM schemes, it uses (N-1) triangular carrier waveforms
and single modulation signal to obtain the switching pulses. Different carrier-based

techniques are explained in Chapter 3.

4.3 Carrier-Based Sine-Triangle Pulse Width Modulation

In the proposed carrier-based PWM scheme, the switching function for each

device is determined such that the devices are switched independently. In the PWM
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scheme, single carrier waveform and N modulation signals are used. The concept of

sharing functions is introduced in this section.

4.3.1 Three-Level Inverter

The output voltages of the three level inverter is defined by the following equations

Vo =H Vo + H )V + H V), (4.16)
Voo = H Vg + Hy)Vyy + Hy V) (4.17)
Voo =H Vg + H Vo + H V. (4.18)

The switching constraints to be followed in order to avoid the shorting of the dc

bus voltage source are

Ha3+Ha2+Hal:1 (419)
H,+H,+H, =1 (4.20)
H.,+H,+H,A =1. (4.21)

There are six equations (4.16) through (4.21) and 9 unknowns (Ha3, Hp3, Hes...Her).
The set of equations has an indeterminate solution. Hence an optimization technique is
used to find the solution of the equations. This solution is for the minimization of the sum
of the squares of the switching functions. Equivalently, this is the maximization of the

inverter output-input voltage gain

ZKlHaﬁz +K2Ha22 +K3Ha12 +K4Hb32 +I<5]{I722 +K6Hb12 +K7Hc32 +K8H022 +I<9]{cl2
- Objective Function (4.22)

where K ;-9 are sharing functions.
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The above objective function has to be minimized subject to the six constraint
equations mentioned above.

Writing the six equations in the matrix form,

Ha3
r T r T Haz
Ve | [Vs V2 i 00 0 0 0 0]
v, 0 0 0 WV, VvV, V., 0 0 0 H“l
v, o0 0 0 0 0 ¥V, ¥V, V| "”

_ H,, (4.23)

1 1 1. 1.0 0 0 0 0 0

Hbl
1 0 0 0 I 1 1 0 0 0

HC3
1 00 0 0 0 0 1 1 1
- h - B ch

_Hcl_

In view of this indeterminacy, there are an infinite number of solutions, which are
obtained by various optimizing performance functions defined in terms of the modulation
functions. For a set of linear indeterminate equations expressed as AX =Y, a solution
which minimizes the sum of squares of the variable X is obtained using the Moore-
Penrose inverse [84].

From the matrix properties if A is a matrix of rank (r x n) then the product form

T T
A A has the dimension (n x n) while the product AA has dimension of (r x r). If r > n,

T T T
then A A could be nonsingular but AA is a singular matrix. Similarly if r <n, AA can

T
be a nonsingular matrix but A A is a singular matrix. The solution of under-determined

case in which the dimension of the matrix A (r X n) where r < n has the matrix A
particularly simple transformation is used when rescaling a vector. For example, the
original n-vector is X;, while the desired n-vector is X,. The vector is rescaled with the

diagonal matrix D, whose nonzero elements are the necessary conversion factors:
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X, =D X;. (4.24)
By definition, D' exists, so D is “one-to-one” and “onto,” allowing X, to be uniquely
determined from X, and vice versa.
Expressing the r-vector Y as a function of Xo,
Y=AD"'X,
= A Xo. (4.25)
Suppose that r < n, and the inverse relationship between X, and Y is desired. The right
pseudoinverse solution is
X, =AY
=A (A2 A)Y. (4.26)
This is the minimum norm solution for X,. The corresponding X; solution can be found
by substitution. Substituting Eq. (4.26) to Eq. (4.25), noting that D =D" and D' = (D™)"
=D7T
X;=D" X,
=D'ANY
=D'D'ATA, D'D'AHYY
=Z'A"A 2 A Y

where the diagonal matrix Z

Lo 0. o
Kl
0 0 .. o0
Z= =
0 0 00 ——
K3N
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The optimized solution of the matrix (4.19) is given by
X=ZA"[AZA"]Y. (4.27)

where Z is given by

Kl
o - 0o 0o 0o 0 0 0 o0
KZ
0 0 - 0o 0 0 0 0 0
KS
0 0 0 —— 0 0 0 0 0
K,
0 0 0 0 —— 0 0 0 0
KS
0 0 0 0 0 — 0o o0 0
K6
0 0 0 0 0 0 —— o0 o
K7
0 0 0 0 0 0 0 —— o
KS

o 0 0 0 0 0 0 0 —-

K9

In the present case consider

K =K, =K,
K, =K, =K,
K, =K, =K,

In the above mentioned assumption, say K; = K4 = Ky, it states that the sharing
function corresponding to the top devices in all the three phases is equal and
correspondingly the remaining assumptions are for the other devices.

Hence the solution to the objective function gives the expressions for the

switching functions.
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_ Vo V3K +V VK, —v Vo Ky —v VK = ViV, Ky =V VK, +V22K3 + V12K2

Ha3 A

H . = VoV 2K + v, V3K, = v, V3K —v, VK, ViV, Ky =V VLK, "‘V32K3 +V12K1
a2 — A

H = VoV Ky +v, K = v, V3K, —v, VLK - VK, =V, VK, +V32K2 + VIZKZ
al A

H. = VoV 3K + v ViK, = vy oV, Ky —v VI K, = ViV, Ky = VIVK, + V22K3 +V12K2
b3 = A

2 2

H. = ViV oK + v V3K = v VK = v, VK = ViV K =V VLK + VK + VK,

b2 = A
2 2

H. = ViV Ky + v,V K = v V3K = v oV, K = ViV K, =V VK + VK, + 1V, K,
b= A

H . = Vo V3K + v, V3K, —v VLK —v VK, VIV, K -V V5K, +V22K3 + V12K2
c3 A

H . = VoV oKy +v o ViK, = v V3K —v VK = ViV, K =V VLK, +V32K3 +V12K1
c2 A

H = VoV Ky +v VK =v, VK, —v VK ViV K, =V, VK, + V32K2 +V12K2
cl — A

(4.27-4.35)
where

A=V.K, +V, K, +V,’K +V,’K, +V.’K, +V’K, = 2V,K V, = 2V,K.V, —=2V,K V.

Under balanced conditions the steady state values of the node voltages are

v
V,=—L
2
V,=0
-V,
V==~
2

Hence by substituting the above steady state values and assuming all the sharing

functions to be equal to be unity in Egs. (4.27 - 4.35)
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2 2 2
ﬁzagi+§ fgf}£?+§ Hd:§%2+% (4.36)
d d d
1 1 1
Hazzg Hbz_g chzg (4.37)
2 2 2
Hm:—§%2+§ HM:—§%2+§ Hd:—§%9+§. (4.38)
d d d

The pattern of switching for the switching devices used in converter is periodic;
therefore the analysis of the switching functions is simple by using the Fourier series.
Thus the switching pulses can be represented as sum of dc component and fundamental

component either sine or cosine varying term. It can be assumed as

Hﬁ:§@+Mﬁ) (4.39)
Hﬂ:%@+Mﬁ) (4.40)
HM=§0+M¢) (4.41)

where M ,,M ,,M, are called the modulation signals, which can be cosine or sine

a3>Mazs
term. These signals represent the fundamental component of the switching pulses. When
this fundamental component is compared with the high frequency carrier waveform
produces the same pattern of the pulses.

By comparing Egs. (4.39 — 4.41) with Eqgs. (4.36 — 4.38), the modulation signals
are obtained as

2 )
M, =220 M =0, M, =

4.42
a3 Vd Vd ( )

The modulation signals for the top and the bottom devices are exactly in opposite

in phase and this can be seen in Figure 4.2.
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The node currents of the inverter are given by

I, =H i, +H,;i, + H i, (4.43)
1, =H_ i, +H,,i +H,_,i, (4.44)
I, =H_,i,+H,i +H,,i,. (4.45)

Writing the KCL equation at node 3 gives the differential equation of the capacitor
voltage V., and KCL equation at node 1 gives differential equation for capacitor voltage
V.

CpV,=-1, +H_i, +H,i +H__i, (4.46)

CypV,, =1, +H i, +H,i,+H,ki,) (4.47)

Figure 4.2 shows the carrier-based PWM technique where three modulation signals
are compared with the carrier waveform.

Single Carrier based PWM technique
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Figure 4.2: Single carrier and multiple modulation signal PWM technique for a three-

level inverter.
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Figure 4.3: Simulation results of three-level inverter using the single carrier-based
technique (I) (a), (b), (¢) Three-phase voltages (II) three-phase currents

Using the modulation signals that are obtained using Eq. (4.42), the carrier-based

PWM is implemented. Figure 4.3 illustrates the simulation results for a three-level

inverter, which is modulated using the single carrier-based PWM technique. Figure 4.3

(D (a), (b), (c) shows the three-phase voltages generated. Figure 4.3 (II) gives the three-

phase currents generated when the voltages are impressed across a balanced three-phase

load.
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4.3.2 Four-Level Inverter

The output voltages of the four-level inverter is defined by the following equations.

vao = Ha4V40 + Ha3V30 + HaZVZO + Hall/lo (448)
Voo = H Vg + Hy Vg + Hy)Vyy + Hy Vg (4.49)
Voo =H Vg + H V3o +H Voo +H V) (4.50)

The switching constraints to be followed in order to avoid the shorting of the dc

bus voltage source are

H,+H,+H,+H,=1 (4.51)

H,+H,+H,+H, =1 (4.52)

H,+H,+H,+H, =1. (4.53)
There are six equations and 12 unknowns (Has, Hps, Hes ... Hep), the set of

equations has an indeterminate solution. The optimization technique used in case of
three-level is extended to four-level to obtain the solution, which minimizes the sum of
the squares of the switching functions. Equivalently, this is the maximization of the

inverter output-input voltage gain

2

K1H¢142 +K2Ha32 +K3H022 +K4H012 +K5Hb42 +K6Hh32 +K7Hh22 +K8Hb12 +K9Hc4

2

2 2 2
+K10H03 +K11Hc2 + K12Hcl

- Objective Function. (4.54)
Hence the above objective function has to be minimized subject to six constraint

equations mentioned above.
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Writing the six equations in the matrix form,

v 1 v, v, v, ¥,/ 0 0 0 0 0
v 110 0 0 0w, v, v, v, 0
v.] 1o 0 0 0o 0 0 0 0 ¥,
17 l1 111 0 0 0 0 0
1l]lo 0o 0 0 1 1 1 1 0
1] 1o 0o 0 0 0 0 0 0 1

-0 O N o o

- o o N o o

- o o N o ©
TR R R R TRRE X

Q
S

i) Y
S w

Q
—_
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>
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3 o
[98) B

o
[\S]

=

o

Under balanced conditions the steady state values of the node voltages are

,
Vo=t
V
v, =
)
V==t
-V
V="t
2

The above matrix is in the form of Y = A X.
The optimized solution of the above matrix is given by
X=ZA"[AZA"l'Y

where Z is given by
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[e)
[e)
[e)
[en)
[e)
[e)
[e)
[e)
[e)
(e)
[e)

L 9 0 0 0o 0 0o 0 0o 0 o
K2
0 0 -— 0o 0 0 0 0 0 0 0 0
K3
0 0 0 — 0 0 0 0 0 0 0 0
K4
0 0 0 0 - 0 0o 0 0 0 0 o0
KS
0 0 0 0 0 — 0 0 0 0 0 0
K()
0 0 0 0 0 0 —— 0 0 0 0 0
K7
0 0 0 0 0 0 0 — 0o 0 0 o0
KS
0 0 0 0 0 0 0 0 — 0 0 o0
K9
0 0 0 0 0 0 0 0 0 — 0 o0
KIO
0 0 0 0 0 0 0 0 0 0 —— o0
Kll

0 0 0 0 0 0 0 0 0 0 0 -
K12

Assuming the following,

K, =K, =K,

By substituting the above assumption and solving the matrix gives the expressions
for the modulation signals [A.1]. The steady state modulation signals are obtained by
substituting the steady-state values of the node voltages and sharing function to be unity

in [A.1],

65



Ve , 1 o3 1 g, =Yoo b 456

“T 4y 4 "y s “T 4y 4
w1 H, =2, L o =to 1 (4.57)
4, 4 4, 4 4, 4
H, :—:Awl H,=—n 1 H,=—2o L 455
v, 4 4, 4 4, 4
PR H, =Y L ==V L 4 s0)
4, 4 4, 4 v, 4

Similarly representing the switching pulses as sum of dc component and fundamental

component either sine or cosine varying term.

H, = %(1 +M,,) (4.60)
H,, :i(l+Ma3) (4.61)
H, = %(1 +M,,) (4.62)
H, = %(1 +M,) (4.63)

Comparing the switching functions in Egs. (4.56 —4.59) and Egs. (4.60 — 4.63)

YL I VIR VI VAt LT (4.64)
Vd Vd

Figure 4.4 shows the single carrier and multiple modulation signal technique for a
four-level inverter. The relation between the modulation signals is that two modulation
signals (Has, Ha3) are in phase and (Ha,, Haj) are in phase and these two combinations are

exactly opposite in phase.
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Four Level Single Carrier based PWM technique
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Figure 4.4: Single Carrier and Multiple Modulation Signal PWM Technique for a Four-
Level Inverter.

The node currents of the inverter are given by

l,=H_,i,+H,,i, +H_i (4.65)
I, =H i, +H,i, +H_i, (4.66)
l,=H_,i +H,,i +H_i, (4.67)
I, =H,i, +H,i +H,i.. (4.68)

Writing the KCL equation at node 4 gives the differential equation of the capacitor
voltage V., KCL equation at node 3 gives differential equation for capacitor voltage V.,,

and KCL equation at node 2 gives differential equation for capacitor voltage V..
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Clchl = Idc - Ha4ia - Hb4ib - Hc4ic (469)
Cszcz = (]dc - Ha4ia - Hb4ib - Hc4ic - Ha3ia - HbSib - Hc3ic ) (4-70)

C3ch3 = (Idc - Ha4ia - Hb4ib - Hc4ic - HaSia

4.3.3 Five-Level Inverter

_HbSib _Hc3ic _HaZia _HbZib -H
4.71)

i

c2%¢

The output voltages of the five-level inverter are defined by the following

equations.
vau = HaSVSO + Ha4V4O + Ha3V30 + HaZVZO + Hull/l() (472)
vbo :HbSVSO +Hb4V4O +Hb3l/30 +Hb2V20 +Hbll/lo (473)
vca = HCSVSO + Hc4V40 + Hc3V3O + HCZVZO + HCII/IO . (474)

The switching constraints to be followed in order to avoid the shorting of the dc

bus voltage source are
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H +H, ,+H ,+H,+H, =1 (4.75)
H +H, 6 +H,+H,+H, =1 (4.76)
H.+H,+H ,+H,+H, =1. (4.77)
There are six equations and fifteen unknowns (H,s, Hcs, Hps ... Hcp); the set of
equations has an indeterminate solution. Optimization technique is used to obtain the

solution, which minimizes the sum of the squares of the switching functions.

Equivalently, this is the maximization of the inverter output-input voltage gain

I<11—I(152 +[<2[—[a42 +K3Ha32 +I<4I—1a22 +K5Ha12 +I<6[—[bS2 +K7Hb42 +K8Hb32 +K9Hb22}
2 2 2 2 2 2
+K|0Hh] +K11H05 +K12Hc4 +K13Hc3 +K14H02 +K15Hcl :
- Objective Function. (4.78)

z

Under balanced conditions the steady state values of the node voltages are

V5=V—2d; V4=%; Vi=0; V2=—V7:’; Vl=_;/d-
Representing Eqs. (4.72 —4.77) in the matrix form as follows.
R
Ha4
Ha3
Ha2
v, Vs V, Vv, V, #/ 6 0 0 0 0 0 0 0 0o o] Ha
vl o 0 0 0 0w, v, v v,y ¥ o 0 0 o offhs
Vo | [0 0 0 0 0 0 0 0 00V5V4V3V2VIZZ’4
1111110000000000HZ
ryjo 00 0 0 1 1 1 1 1.0 0 0 0 0)p
 ry o0 0 0 0 0 0 0 0 0 1 1 1 1 1jpg,
Hc4
Hc3
Hc2
_Hcl_

The above matrix is in the form of Y = A X.
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The optimized solution of the above matrix is given by

X=ZA"[AZA"l'Y

where Z is given by

o _W|~

o

0

1
K,
0

)

o o o o0 o0 0
1
— 0 0 0 0 O
K,
1
O — 0 0 0 O
K,
OOLOOO
K
1
0o 0 0 — 0 O
Ky
|
o o o o0 — O
K;
1
o o o o0 0 —
Ky

o
=
o
=
S
S
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Assuming the following,

K =K,=K,
K,=K,=K,
K, =K, =K,
K,=K,=K,
K, =K, =K.

By substituting the above assumption and solving the matrix gives the expressions
for the modulation signals [A.2]. Substituting the above steady state values and assuming

all the sharing functions to be equal to be unity, the modulation signals are obtained as

4 4 4
a5=ﬂ+l HlﬁzﬂjLl H05=ﬂ+l (4.79)
sV, s sV, s sV, 5
2 2 2
=D 1 Hy =2 L Hoy =D 1 (4.80)
sV, s sV, s sV, 5
1 1 1
Ha3:§ Hb3_g Hb3_g (481)
2 2 2
H,=—Dw L H, =2 1 H, =2, L 4
sV, s sV, s sV, 5
4 4 4
Hy =D 1 Hy = 1 H, =D L 483
sV, s sV, s sV, s

The modulation signals are obtained by comparing the switching pulses with the

Fourier series approximation,

Hﬁ=§ﬁ+Mﬁ) (4.84)
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1g4=§a+ﬂgg (4.85)

Hﬁ=%ﬁ+M¢) (4.86)
Hﬂ:%@+Mﬁ) (4.87)
HM=%@+MM) (4.88)

By comparing the switching functions in Eqs. (4.79 —4.83) with Egs. (4.84 —4.88), the
modulation signals are obtained as

4 2 2
My="000 M =200 M =0, M, = - M, = e (4.89)
Vd Vd

The above equation gives the modulation signals for phase “a.” Similarly the
modulation signals for the other phase can be obtained. In case of five level inverter, the
modulation signal of the top two devices are in phase and exactly opposite in phase with

the bottom two devices. The signal corresponding to the neutral point is zero.

4.3.4 Generalization of the Modulation Scheme for N-level Inverters

Consider a general N level multilevel inverter, in which the inverter has N-1 dc-
link voltages, N node current Iy, In.i,..., [1, and 3N switching functions for all the three
phase Han, Hano1,...,Ha1 and similarly for the other phases.

The output phase voltages of the inverter are given by

72



Voo =H Vo + Hoy Vo +oot H Vg

vbo = HbNVNO +HbN—1VN—10 +“'+Hbll/10

Voo =H Vo + Hoy Vi o+t H V.

To avoid the shorting of the leg the following constraint has to be followed

H,+H, +.+H,=1
H,y+H,, +.+H, =1

H,y+H, +.+H,=1.

Egs. (4.62 — 4.67) are solved using the optimization technique explained above.

The optimized solution of the equations is given by

X=ZA"[AZA"]'Y

where
L 0 O 0
Kl
0 L 0 0
Z= =
0 0O 0 O !
L Ky |

The following assumption has to be made

Kl :KN+1 :K2N+l
Kz :KN+2 :K2N+2
K3 :KN+3 :K2N+3

KN =K2N =K3N'
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By substituting all the sharing functions to be unity, the switching functions are

obtained as

HaN:%"FL HbN:—(N_l)VbO +i HCN:(N_I)VCU +i
NVd N NVd N NVd N
Hale%—i_% Hlez%ﬁ‘% Hchz%ﬁ'%
d d d
Hm:_(N_l)Vao _}_i Hblz_(N_l)vbo _,’_i HC]:_(N_I)VCO _I_i.
NV, N NV, N NV, N

The above equations give the generalized switching functions for a N-level
inverter.
Assuming the switching function for a N-level case as

1 1 1
H , = N(1+MuN), H, = N(l +M,,)... H, = N(l +M,). (4.96)

aN

By comparing the switching function with Eq. (4.96), the modulation are obtained as

MaN — (N_l)vao
Vd
_ (N_3)Vao
aN-1 — Vd

Mal — _(N_l)vao .
Vd

The above equations represent the generalized form of the modulation signals for a N-

level converter.
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Sum of the switching functions
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4
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0.5 1 1 i
0.05 0.055 0.06 0.065 0.07 0.075 0.08
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Sum of the switching
4.5 T T T T T T T T T
] | ’_ i ] ’_ i il i
35 1
3
25}
2 = 3 -
15 i - II
1+
0.5}
0 = — et e —_— et
1 L L L 1 L

-0.5 . -
0.04 0.042 0.044 0.048 0.048 0.05 0.052 0.054 0.056 0.058 0.06
Time

Figure 4.6: Sum of the switching functions (I) Three-level inverter (II) Four-level
inverter.

Figure 4.6 (I) and (II) shows the sum of the switching functions produced using
the single carrier and multiple modulation signals. As seen from the figure, the sum of the
switching functions is not equal to 1; i.e., there is more than one device that is on at a
time, which eventually shorts the input dc capacitors. The shorting of the devices is
inherent and can only be avoided using logic. Hence this is a major drawback of the

scheme.
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There some limitations in the scheme proposed:
e There is shorting between the devices of the leg; i.e., the input side capacitors are
getting shorted which is not acceptable.
e Every time the voltage switches from zero to the node voltage it is connected and

hence the entire voltage is impressed across the devices and hence high rating

devices have to be used.

4.4 Equivalence of Two-Triangle Method and Single Triangle Method

The main drawback of the single carrier-based method was the shorting problem;
to overcome this problem, the conventional (N-1) carrier waveforms and single
modulation signal is used. In this section, the equivalence of the single carrier and
multiple carrier-based PWM technique is presented.

The output voltage of a three-level inverter is given by

Hand - Hachz = VaO + Voz (4.97)
HyV,—HyV, =V +Vy (4.98)
Hc3Vcl - HclVCZ = VcO + VOZ . (499)

Transforming the above equation to synchronous reference frame by using transformation

matrix 7'(6), where

76



cos(d) cos(d— 2?7[) cos(6 + 2?”)

TO) = % sin(@) sin(@ — 277[) sin(@ + 2%)

1 1
2 2 2

0= J-a)edt +6,; 0, - Initial reference angle.

The qd equations are obtained as

qu =V,H -V ,H

ql
Vde =V.,H;—V,H,
Voe = V(~,1H03 - chHm + Voz

where

H_,=—|H_,cos(0)+H,,cos(6— 27”) + H ; cos(0 + 2%)}

H, =—|H,sin(@)+H,,sin(0 - 2?7[) +H ;sin(6 + 27”)}

1
Hy, =§[Ha3 +H,, +Hc'3]'

Similarly

H, =—|H,cos(0)+H, cos(d— 2%) +H , cos(0 + 2%)}

H, = % H ,sin(0)+ H,, sin(6 - 2?7[) +H _, sin(0+ 2?7[)}

1
Hy, zg[Hal +H, +H01]-

Consider Egs. (4.101) and (4.102), the LHS can be modified as
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(4.102)

(4.103)

(4.104)

(4.105)

(4.106)

(4.107)
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Voo, =VaH=VoH, (4.110)

V,o, =V, H, -V, ,H,. (4.111)
Assuming

H,=aH, ;H,=-pH, (4.112)

Hy=aH,;H,=-pfH, (4.113)

a, [ are control variables.

Substituting the above condition in Eqgs. (4.110) and (4.111), and solving for Hy and Hyq

v, O'q'
H=——+ (4.114)
a Vcl +ﬁ Vc2
V.o,
= (4.115)
a I/cl +ﬂ VcZ
Substituting Egs. (4.114) and (4.115) in Egs. (4.112) and (4.113)
aV, o, -BV, o,
H, R S H, =M (4.116)
a Vcl +ﬂ VcZ a Vcl +IB Vc2
aV, o, -BV, o,
;= < _ PV (4.117)

Y . a1 Hy=———"

aV,+pV, aV,+pV,
To obtain the modulation signals in abc reference frame, the qd modulation signals

are transformed using the inverse transformation matrix 7' (@) back to the abc reference

frame, where

cos(6) sin(#) 1
T7'(6) = cos(e—%”) sin(e—%”) 1. (4.118)

cos(f + 277[) sin(6 + 277[) 1
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The modulation signals are obtained as

H

a3l

Hb3_

c3

al

b

- aVcl + ﬂVCZ

aVcl + ﬂVCZ L

aVcl + ﬂVCZ L

CaV,+ By,

aVcl + ﬂVCZ L

i 2 : 27|
n=———|0, cos(0+—”)+0'd sm(0+—”)
aV,+pV., | 3 3

[O'q cos(@)+o, sin(t9)]+ H,,

o, cos(6 — 277[) + 0, sin(f - 2%)

o, cos(6 + 2?7[) + 0, sin(0 + 27”)

[O'q cos(0)+o, sin(é?)]+ H,,

o, cos(0 — ZT”) + 0, sin(6 — 27”)

Ha2 :l_Hal _Ha3

HbZ

H,=1-H
Assuming

——— an
aVcl + IBVCZ

zl_Hbl -H,,

-H_.

~ BV,

dYy=——""-"5"
aVcl +ﬂVc2

(4.119)

(4.120)

(4.121)

(4.122)

(4.123)

(4.124)

(4.125)
(4.126)

(4.127)

(4.128)

where X and Y are the modulation indices of the signals in Egs. (4.119) and (4.122).

In case of two triangle carrier-based technique, «, f decides the peaks of the two

carriers and the sum of the two control variables must be equal to two; i.e., o+ f=2.

The upper carrier waveform ranges from [1 — (1 - a)] and the lower carrier waveform
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ranges from [(1 —a)- (-1)]. Effectively the magnitudes of the carrier waveforms will be
a and [, respectively.
By varying the control variables «, £, the modulation index can be controlled in case

of multiple modulation signals and in case of multiple carrier waveforms; the peaks of the
carrier waveforms can be controlled. Figure 4.7 shows the comparison between the two

schemes.

Four Level Single Carrier based PWM technique Two -Triangle and One modulation signal

Single o=~
Carrier,

Ha4: Ha3a s
Ha2’ Hal-

-1

S(M 0042 0044 0.048 0.048 0.05 0052 0054 0056 0058 0.06 01 01002 01004 010068 01008 0101 01012 01014 0.1016 01018 - 1
Tirme

Figure 4.7: Comparison between the Single carrier and multiple carrier waveform PWM

methods (I) Single carrier-based PWM (II) Multiple Carrier-based PWM.

Table 4.1: Comparison of single carrier and multiple carrier-based PWM.

X Y

a=1,8=1 1 -1

a=0,8=2 0 -2

a=2,=0 2 0
a=08/4=12 0.8 -1.2
a=12,=038 1.2 -0.8
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Table 4. 1 illustrates the relation between the carrier waveform peaks and the

modulation signal peaks. Considera =1, f =1; substituting these values in Eq. (4.128),

the modulation indices can be calculated. It can be seen from table 4.1 that the indices are
1 and —1. This is equivalent to the peaks of the triangles in the multiple carrier-based

PWM. Similarly for different values of «, the relation is obtained. It is clear that by

varying the modulation signals is equivalent to varying the peaks of the triangle

waveforms.

4.5 Space Vector Modulation

4.5.1 Generation of the PWM Switching Signals

It is the task of the modulator to decide which position the switches should
assume (switching state), and the duration needed (turn-on time) in order to synthesize
the reference voltage vector. In other words, it is the task of the modulator to approximate
the reference vector, computed by the controller, using the PWM for several switching
vectors. The general space vector can be extended to the multilevel converters; however,
the large number of states offered by multilevel converters can impose massive
computational overhead if not carefully optimized.

“0” represents that the converter is connected to the negative node voltage, “1”

represents that it is connected to the neutral point, and “2” connects the converter to the
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positive node voltage. With a three-phase three-level voltage source inverter there are 27
feasible switching modes. Obeying KVL and KCL the generated states are enumerated in
Table 4.2. The inverter has 24 active states and three null states. A null state is defined as
a state that does not contribute to the generation of the reference voltage. In this state the
converter is connected to the same node in all the three phases. By controlling the duty
cycles of devices in these zero states, the capacitors can be charged and discharged

without contributing to the actual voltage.
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Table 4.2 Switching states in a Three-phase Three-Level Voltage source inverter

83



84



The next step in the modulation scheme is to find the equivalent voltages
generated in each state. The voltages generated are expressed in the stationary reference
frame. The qdo voltages of all the switching modes, also given in Table 4.3, are

expressed in complex variable form as

v = %(v +av,, +a’v,,) (4.129)

qds

o

14 :%(van +v,, +V,,) (4.130)

where a =e’*,¢ =120°.

The voltage space vectors of a three-phase converter are always located in the
plane, and that is how they are represented in Figure 4.8. The space vector is comprised
of 24 sectors of which the sector numbered from 1 — 6 are inner hexagon sectors and
sector from 7 — 24 are outer hexagon. In general for a N-level converter, the space vector
diagram has (N° — N) sectors. The number of hexagons increases as the number of levels

increase. For a N-level converter, there are (N-1) hexagons.
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Table 4.3: The corresponding stationary reference frame qdo voltages of three-phase three-level voltage source inverter.

Mode

q-axis voltage

d-axis voltage

Zero sequence

voltage

Mode

J-axis voltage

1-axis voltage

Zero sequence

voltage

L2 U N 7 7 A O B I B PR N 7 B 7 B N ) 0
6 6 3 3 2 3 2 3 6 3 6

v, _Q _ v, 0 0 v, Q _V, 0 Vv, ~ Q ~ v, 0

243 V3l 243 243 | B 243 243 NERNE)

Ve 0 Vo | Va 0 Vi 0 Yo | o (Ve [V | Ve
6 6 3 6 6 6 3 6 3 2

I:I—--- Redundant states [(2,15), (4,17), (5,18), (10,23), (11,24), (13,26)] are the pairs of states that redundant i.e., these each

redundant state generates the same magnitude of the voltage but have different value of zero sequence voltage.
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020 120 220

022 200

002 102 202

Figure 4.8: Space Vector Diagram of Three-phase three-level voltage source inverter.
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As seen from Figure 4.8, the space vector has two hexagons, inner and outer
hexagons, formed by 19 vectors. These 19 vectors are combined to form the 24-sector
space vector. Naming the switching states with the numbers is much more general
(applicable for any level) in which 2, 1, 0, where 2 means that the converter is connected
to the positive voltage node, 1 represents the neutral point, and 0 connects to the negative
node voltage. Out of the 19 vectors, the vectors corresponding to the inner sectors 1 — 6
are called the small vectors. Also in the inner hexagon there are some redundant vectors
at the corners and these redundant vectors synthesize the same reference voltage but they
have different zero sequence voltage. Also the currents in these states will be in the
opposite directions and hence careful division of time intervals between these states can
control the neutral current and the neutral point voltage. The vectors corresponding to the
sectors from 7 — 12 are called the medium vectors. During the switching of these vectors
the current has only one direction depending on the neutral point voltage. Hence the only
vectors, which generate the neutral current, are the medium vectors. Vectors
corresponding to the sectors 13 — 24 are known as the large vectors. These vectors do not

contribute to the neutral current.

A reference signal qu*can be defined from the space vector using the vectors.

Assuming that T is sufficiently small qu*can be considered approximately constant

during this interval, and it is this vector which generates the fundamental behavior of the
load.

The continuous space vector modulation technique is based on the fact that every

vector qu* inside the hexagon can be expressed as a weighted average combination of the

vectors of the triangle in which the reference vector lies. Therefore, in each cycle
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imposing the desired reference vector may be achieved by switching between these
states. The nearest three vectors [NTV] concept is being used to divide the time between
the states; i.c., the nearest three vectors that are close to the reference vector are
determined and the turn on times of the states of the devices are determined depending on

the control.
From Figure 4.8 assuming qu* to be lying in sector k, the vectors are named a, b,

c. In order to obtain optimum harmonic performance and minimize the switching losses,
the state sequence is arranged such that switching only one inverter leg performs the
transition from one state to the next. The central part of the space vector modulation
strategy is the computation of switching times of the sectors for each modulation cycle.
In the direct digital PWM method, the complex plane stationary reference frame qd
output voltage vector of the three-phase voltage source inverter is used to calculate the
turn-on times of the switches required to synthesize the reference voltage. In general, the
three-phase balanced voltages expressed in the stationary reference frame, situated in the
appropriate sector in Figure 4.8 are approximated by the time average over a sampling
period of the three vectors. If the normalized times (with respect to modulator sampling
time or converter switching period, Ts) of three vectors termed as Vgda, Vb, Vgde
corresponds to time signals t,, ty, and t., respectively, then the q and d components of the

* .
reference voltage V¢  are approximated as

qu* =V + Vs =Vaala + Vsl + Vel (4.131)

qda”a gdc”c
and the devices have to switch according to the following constraint

t,+t,+t,=1. (4.132)
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Separating the real and imaginary terms in Egs. (4.131)

qu = (Vqtl - ch) ta + (qu - ch) tb + ch

Vi = (Vda _Vdc) Z, +(de _Vdc) t+ V-

Expressing the above equations in the matrix form

Vdd Vda - Vdc de - Vdc t b Vdc

By solving the above matrix for ¢_,z,

t, = V% Vdd - qu Vdc - ch Vdd ; qu ch - qu de + V‘W Vd" (4.133)

tb _ Vda qu - Vda ch - VdC qu + Vdc an B Vdd an + Vdd ch (4 134)

\%

where

V=Vl = ViVe ViV =VaisVya ¥ VasVoe +VaeV.

da’ qc dc” qa*

Consider for sector 1:

100 -ve
211 +ve
1 {0,0,%
[0.00]
222 +ve 110 -ve [ooi"
111 Zero 221 +ve 2], )

000 -ve

Figure 4.9: Sector 1 of the space vector diagram.
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The voltages for the three vectors that correspond to sector 1 are

v, =tey, =i
qa 6 >" da 2\/5

Vd
qu:?;Vda_O
Ve =0V, =0.

Hence by substituting the above known terms in Egs. (4.133)-(4.134), the turn on times

of the devices is obtained as

0.5
t, = V_[3qu - \/ngd ]

d
\/ngd
= V—d.

Hence in the similar way in each sector the turns on times of the devices are
calculated and are enlisted in Table 4.4. These timings are in terms of the reference qd
voltages.

Thus the mentioned procedure is used for microprocessor or DSP-based
implementation of the space vector PWM [33-40]. The state diagram corresponding to
each sector is drawn and the pattern has to be loaded into the DSP to turn on the devices.
Figure 4.9 shows the state diagram for sector 1. In space vector the states have to be
sequenced to obtain minimum switching but this sequencing is not necessary in the

carrier-based PWM technique. The technique is explained in the following section.
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Table 4.4 Device-switching times expressed in terms of qd reference voltage.

Sector t, tp
1 .
E [3qu - \/ngd ] \/ngd
V, v,
2 0.5 0.5
SV, 33 =, 3
d d
. AW “D sy )
V V, “
d
4 .
E [-3 qu + \/ngd ] - —\/ngd
V, v,
5 0.5 0.5
- V_[3qu + \/ngd ] - V_[3qu - \/ngd ]
d d
° E LNV
V 99
v, d
7 231, W, VW 243,
Vd Vd Vd
8 3 2 231
e LI =3V, + A3V, -
Vd Vd d
9 NG) NE)
V_[\/quq + 3Vdd ] - V_[\/quq + Vdd ]
d d
10
—ﬁ[\/?qu ~37,] 27
Vd Vd
11 6V B3
q9
- W3, V]
Vy V, " “
12 3 3
2N, + V] — 23, +3V,]
Vd Vd
13
B 0.5x% \/g [\/quq _3,] 2\/§Vdd
Vd Vd
14 \/g 0.5x% \/§
V_[\/quq - Vdd ] - V [\/quq - 3Vdd ]
d d
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Table 4.4:Continued

Sector t, ty
15 3, NG
V. = W3, V]
d
16 J3 37,
S ] A
d
17 \/5 0.5x \/5
- V_[\/quq + Vdd ] % [\/Equ + 3Vdd ]
d d
18 233V 0.5x+/3
% _ ;‘/_ [V3V,, +3V,]
d d
19
0.5; \/g [\/quq ~ WVl - —2\/5Vdd
d d
20 \/E 0.5x% \/§
- V_[\/quq - Vdd ] v [\/quq - 3Vdd ]
d d
21 3, 3
q9
— W, -1,
Vd Vd qq dd
22 J3 3,
_ V_[\/EVW +V,] —V;"’
d
23 0.5x \/§ \/5
V [\/quq + 3Vdd] V_[\/quq + Vdd ]
d d
24 231 0.5x/3
- ; [N3V,, +3V,,]
d d

State diagram:

Figure 4.10 shows the state diagram corresponding to sector 1. Consider sector 1 A,

from Figure 4.8; the available vectors are U, (100 (-), 211 (+)), U, (110(-), 221 (+)), U,
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(222(+), 111(0), 000(-)). The variable « is used to divide the time interval t. between the

positive (222) and zero vector (000) or the negative (111) and the zero vector (000). The

vectors corresponding to 1A are U, (221), U, (211), and U.( 000, 111). The time for which

the devices corresponding to sector 1A are turned on is shown in Table 4.5 as the existence

functions.

Table 4.5: Existence functions for all the devices corresponding to sector 1.

Ha Hay Has Hyi Hp, Hy; Hey Heo Hes
IA| 0 | t+tetPte| ot Bte | atctt,+ty| O totPte | Ottty 0
1B 0 tp+Pte | atetts 0 taottetPte | ate Bt | atettatt, | O
|
| Lector 1 A: : I I | sechor 18 | |
| | , , e | | [ [
| - — ] | | |
| | ' [ [ [
. ) . l | | [ |
| — | ! |
|
i, P | |
[ | ' [ |
s i : : : HHI I |
I I : X I | I
H,, I T 1 ! | : —l_
l [ | ' H,| I I
| | : — | |
il : . Lo | | | |
| ! ' | - | I I I
N |
. i, |
| |
"y : |
[ |
//“‘! | | | | H“:
| l ! ! oy ; : | |
| 1 ' ; ' i [ I | |
— L — <_|_>ar‘ ﬂ,‘<_| L - [ - > Ol - ol e s

II

Figure 4.10: State diagram corresponding to (I) sector 1 A, (II) sector 1 B.
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4.5.2 Carrier-based Implementation of Space Vector Modulation SVPWM

In the carrier-based implementation of the space vector modulation, the
equivalent modulation signals are determined for the timing expression using the space
vector principle such that when the modulation signal is compared with the carrier
waveform turns on the device for the same amount of time. Hence in a way the sine-
triangle and the space vector modulation are exactly equivalent in every way [76-77]. In
the carrier- based implementation, the Phase Disposition (PD) technique is used. Figure
4.7 shows the reference and the carrier waveform arrangements required to achieve this
form of modulation for three-level inverter. In Figure 4.1 the important criteria to satisfy
KVL and KCL is

H,+H,+H,=1
H,+H,+H, =1

H,+H,+H, =1

L 1 L | 1 | L J
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Time

Figure 4.11: Carrier-based PWM using the phase disposition technique.
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where H ; are switching functions and are defined as when compared with two triangles

equally displaced.

V... >Triangle—1 &

> Triangle—2; H, =1; otherwise H, =0

V.. <Triangle—1 &

> Triangle —-2; H, =1; otherwise H, =0
V4o <Triangle—1 &
<Triangle—2; H, =1; otherwise H, =0
The phase voltage equations for star-connected, balanced three-phase loads
expressed in terms of the existence functions and input nodal voltage V,,,V,,,V,, 1s given
by Egs. (4.1 - 4.3). The quantities v, ,v,, ,v, are the output voltages of the inverter with
respect to the neutral point of the two capacitors. V,, is the neutral voltage which is

floating between the neutral of the load and the neutral point of the two capacitors. This

voltage may assume any value and hence becomes a part of the control.

4.5.3 Determination of the qdo Voltages of the Switching Modes

The stationary reference frame qdo voltages of the switching modes, also given in

Table 4.2 are expressed as

f,=30f -1, 1) (4.135)
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fa =ﬁ(fb—fc) (4.136)

1
fo=3at £+ 1) (4.137)
In the present case f , fy, fyare v ,v, ,v,, .
For example for the state 1 from Table 4.1, the qdo voltages are determined as follows.

Since the converter in state 1 is being connected to the negative voltage for all the three

phases, the output voltages are

vao = 0
Vo =0
V., =V,

Hence the qdo voltages are given by

1
v, =§(2V0 —V,=V,)=0

1
Vy :_(VO_VO):O

V3

14 14
; Vi =-0; V,=——*.
2

Under balanced conditions, V, = ?d,

Hence in the similar way, the qd voltages of the other valid states are calculated.

4.5.4 Determination of the Device Switching Times Expressed in Terms of Line-Line

Reference Voltage

The device timings that are calculated in section 4.2 are in terms of the qd

voltages. The next step in the carrier-based PWM implementation is expressing the
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timing expression in terms of the reference line-line voltages. Hence the timing

expressions, which are in terms of the qd voltages, are transformed to abc reference

frame.
The stationary reference frame inverse transformation is given as
fll =fq +f()
S B
S -7 de + 1,
S B
fe __7+7fd +f,-
Now
fa—fb=fab=fq+fo+%+§fd—fo=$(3fq+\/§fd) (4.138)
fa—fc=fac=fq+fo+%—§fd—fo=$(fq—\/§fd) (4.139)
o =S =T =—%—gfd+fo+%—§fd—fv =31, (4.140)

Consider sector 6:

The devices in qd reference voltage are obtained in the above section as

- % [3V,, -3V, 1=V, -From Eq. (4.133)

d
t,=—-"-=V,. - From Eq. (4.134)

Hence using the above transformation, the timing expressions can be expressed in terms

of the line-line voltages. The timings in terms of the line-line voltages are tabulated in

Table 4.6.
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Table 4.6 Device-switching times expressed in terms of reference line-line voltage.

Sector

ta ac ab ch ca vﬂ Vbc 2Vcb 4vab B 2vcb —[V +v
cb ab
Vd Vd Vd Vd Vd Vd Vd Vd Vd
tb vc ca a v c vac a 2vca 2v a
- b b b _[Vac Ve .
Vd Vd Vd Vd Vd Vd d Vd Vd
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Sector

ta vbc + vac Zvac Zvab vcb 2vab vab + vcb [vab + vcb ] B [Vac + vbc ]
Vd Vd d Vd Vd Vd Vd

tb 2vcb [vac Vcb ] Zvca vaa + Vcb vaa 2Vcb 2vbc
Vd Vd Vd Vd Vd Vd Vd

Sector
ta 2vca 2Vca + vbc 2vba B [Vab + vcb ] 2vbc
Vd Vd Vd Vd Vd
tb vac + Vbc 2vac 2vab + vbc 2vab vab + vcb
Vd Vd Vd Vd Vd
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Table 4.6 Device-switching times expressed in terms of reference line-line voltage.

t,

tp

)
Q
<
Q
>
Q
>
Q
Q
<
>
N
>
S

~ND)

fsecor I 3 W 14+ W 15 e W |
vbc + vac Zvac Zvab vcb 2vab vab + vcb
Vd Vd d Vd Vd
2Vcb B [vac B Vcb ] 2vca zvba + Vcb 2vba
Vd Vd d Vd Vd
2Vca 2vca + vbc 2vba - [Vab + vcb ] 2vb‘
Vd Vd Vd Vd Vd
v, +V,. 2v,. 2v, +v,. 2v, v, +
Vd Vd Vd Vd Vd
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