
CHAPTER 4 
 

PULSE WIDTH MODULATION SCHEMES IN THREE-LEVEL 

VOLTAGE SOURCE INVERTERS 

 

4.1 Introduction 

 

 Semiconductor switch ratings have limited the application of power converters 

rated in the tens to hundreds of megawatts. Large inverters operating at these power 

levels in the medium voltage range (2-13 kV) have traditionally been the domains of gate 

turn off (GTO) thyristors. However, their switching speed is severely limited compared to 

the IGBT’s so that the carrier frequency of a GTO inverter is generally only a few 

hundred hertz. High switching frequencies can be achieved by replacing each of the 

slower switches so that each individual IGBT shares the dc link voltage with others in the 

string during its off state. The devices are operated in saturation region of operation. This 

is because there exists higher losses in active region operation of these devices.   

Multilevel power conversion technology is a very rapidly growing area of power 

electronics with good potential for further development. The applications involved in 

synthesis of a quality power, medium to high voltage range include motor drives, power 

distribution, power quality, and power conditioning applications. 

Desirable Characteristics of Three Phase Three Level PWM VSI 

• Wide linearity of operation.  

• Minimum switching losses. 
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• Minimum voltage and current harmonics. 

• Controlled neutral point voltage and current to ensure stiff capacitor voltages. 

• To obtain steps in the output voltage. 

 

 

4.2 Model of Three-Level Diode Clamped Inverter 

 
 
 

   A three-level diode clamped inverter is shown in Figure 4.1. In this circuit, the 

dc bus voltage is split into three levels by two series-connected bulk capacitors, C1 and 

C2. The middle point of the two capacitors “2” can be defined as the neutral point. The 

output voltage has three states: Vdc/2, 0, -Vdc/2. The devices are switched in combinations 

to obtain these levels in the voltage waveform. The switching combination of the top two 

devices is termed as Hi3 (S1ip, S2ip), the middle two devices as Hi2 (S2ip, S1in), and the 

bottom two devices as Hi1 (S1in, S2in) (i=a, b, c). When the two top devices are switched 

on the converter switches to the +Vdc/2, when the middle two devices are turned on, the 

converter switches to the zero voltage, and when the bottom two devices are switched on, 

the converter switches to –Vdc/2. The pole representation and output waveform of the 

three-level inverter is shown in Figure 4.1 (II). The turn-on and turn-off sequences of any 

of the switching devices of the inverter are represented by existence functions (Hi3, Hi2, 

Hi1), which have a value of unity when it is turned on and becomes zero when it is turned 

off. The three-phase voltage equations for star-connected, balanced three-phase loads are 

expressed in terms of the existence functions and input DC voltages. The operation of the 

converter is explained in section 3.1.  
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Figure 4.1: (I) Schematic of Three-Level Voltage Source Inverter (II) Representation of 

three-level inverter using the concept of poles. 
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The output phase voltage of the inverter is given by 

101202303 VHVHVHv aaaao ++=

101202303 VHVHVH bbbbo

      (4.1) 

   v ++=

101202303 VHVHVH cccco

      (4.2) 

   v ++= .      (4.3) 

 The switches are assumed ideal as is common in preliminary functional 

analysis of switching power converters. These assumptions include: (a) negligible 

forward voltage drop of the switch throws in their on-state; (b) sufficient on-state current 

carrying capacity and of-state voltage blocking capacity commensurate and compatible 

with the voltage and current ratings of the system; and (c) negligible transition periods 

between turn on and turn off of the switch throws that permit repetitive high frequency 

switching. The voltages at the throw terminals of the switch are assumed stiff such that 

their variations during a switching period can be neglected. Similarly, the switch currents 

are assumed stiff such that their variations over a switching period can be neglected. 

These assumptions essentially allow the focus to be on the power transfer process and the 

functional features. In practical power converters, filter elements appropriately applied at 

the input and output ports of the system would ensure that these assumptions are valid. In 

order to maintain continuity of the three phase currents connected to the poles, at least 

one of the throws connected to any given pole of the switch has to be closed. 

Furthermore, each current port may be connected to only one voltage terminal at any 

given instant of time. Otherwise, two stiff voltages will be short-circuited together, 

resulting in uncontrolled currents through the switch throws. As a result, no more than 

one combination of switches is on at any given instant of time. Hence the following 

conditions are to be followed when switching the devices of a multilevel converter. 
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 1123 =++ aaa HHH

1123

       (4.4) 

  =++ bbb HHH

1123

       (4.5) 

  =++ ccc HHH        (4.6) 

From Eq. (4.4), 

312 1 aaa HHH −−= .       (4.7) 

Substituting the condition in Eq. (4.7) in (4.1), gives 

202113 VVHVHv cacaao +−= .      (4.8) 

Similarly for the other phases,    

202113 VVHVHv cbcbbo +−=       (4.9) 

202113 VVHVHv ccccco +−=       (4.10) 

where V20 is the voltage between the neutral of the supply and the common point of the 

two capacitors. This is known as the neutral voltage, which is floating, and can assume 

any voltage and becomes the control variable and used for controlling the neutral point 

voltage.  

The node currents of the inverter are given by Eqs. (4.11 - 4.13). Consider the node 

3; the node current is available when the top devices of each leg are switched on, which 

provides the path for the current; i.e., when the top two devices in phase “a” are turned 

on, current Ia passes through these devices and similarly for the other phases b and c. 

ccbbaa iHiHiHI 3333 ++=        (4.11) 

ccbbaa iHiHiHI 2222 ++=        (4.12) 

ccbbaa iHiHiHI 1111 ++= .       (4.13) 
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Writing the Kirchoff’s Current Law (KCL) equation at node 3 gives the differential 

equation of the capacitor voltage Vc1 and KCL equation at node 1 gives differential 

equation for capacitor voltage Vc2. 

ccbbaadcc iHiHiHIpVC 33311 +++−= .     (4.14) 

( ccbbaadcc iHiHiHIpVC 11122 )+++−= .     (4.15)     

Multilevel converters can be modulated using the following two methods: 

• Direct digital technique SVPWM. 

• Carrier-based (triangular comparison) technique. 

The direct digital technique involves utilization of space vector approach wherein 

the duty cycles for the switching inverter are calculated. The gating signals are 

presequenced and stored as lookup table for the available switching states of a multilevel 

inverter. Carrier-based PWM utilizes the per cycle volt-second balance to synthesize the 

desired output voltage waveform. 

Consider the carrier-based sine-triangle pulse width modulation; the different 

types of the carrier-based techniques are available and mentioned in the literature review. 

In the previous carrier-based PWM schemes, it uses (N-1) triangular carrier waveforms 

and single modulation signal to obtain the switching pulses. Different carrier-based 

techniques are explained in Chapter 3. 

 

4.3 Carrier-Based Sine-Triangle Pulse Width Modulation 

 

 In the proposed carrier-based PWM scheme, the switching function for each 

device is determined such that the devices are switched independently. In the PWM 
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scheme, single carrier waveform and N modulation signals are used. The concept of 

sharing functions is introduced in this section. 

 

4.3.1 Three-Level Inverter 
 
 
 

The output voltages of the three level inverter is defined by the following equations 

101202303 VHVHVHv aaaao ++=

101202303 VHVHVHv bbbbo

      (4.16)  

++=       (4.17)  

101202303 VHVHVHv cccco ++= .      (4.18) 

  The switching constraints to be followed in order to avoid the shorting of the dc 

bus voltage source are 

1123 =++ aaa HHH        (4.19)  

1123 =++ bbb HHH

1123 =++ ccc HHH

        (4.20)    

.       (4.21) 

There are six equations (4.16) through (4.21) and 9 unknowns (Ha3, Hb3, Hc3…Hc1). 

The set of equations has an indeterminate solution. Hence an optimization technique is 

used to find the solution of the equations. This solution is for the minimization of the sum 

of the squares of the switching functions. Equivalently, this is the maximization of the 

inverter output-input voltage gain 

∑ ++++++++ 2
19

2
28

2
37

2
16

2
25

2
34

2
13

2
22

2
31 cccbbbaaa HKHKHKHKHKHKHKHKHK

 - Objective Function        (4.22) 

where K1-9 are sharing functions. 
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The above objective function has to be minimized subject to the six constraint 

equations mentioned above. 

Writing the six equations in the matrix form,  
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In view of this indeterminacy, there are an infinite number of solutions, which are 

obtained by various optimizing performance functions defined in terms of the modulation 

functions. For a set of linear indeterminate equations expressed as AX = Y, a solution 

which minimizes the sum of squares of the variable X is obtained using the Moore-

Penrose inverse [84].  

From the matrix properties if A is a matrix of rank (r x n) then the product form 

A
T
A has the dimension (n x n) while the product AA

T 
has dimension of (r x r). If r > n, 

then A
T
A could be nonsingular but AA

T 
is a singular matrix. Similarly if r < n, AA

T 
can 

be a nonsingular matrix but A
T
A is a singular matrix. The solution of under-determined 

case in which the dimension of the matrix A (r x n) where r < n has the matrix  A 

particularly simple transformation is used when rescaling a vector. For example, the 

original n-vector is X1, while the desired n-vector is X2. The vector is rescaled with the 

diagonal matrix D, whose nonzero elements are the necessary conversion factors: 
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   X2 = D X1.       (4.24) 

By definition, D-1 exists, so D is “one-to-one” and “onto,” allowing X1 to be uniquely 

determined from X2, and vice versa. 

 Expressing the r-vector Y as a function of X2, 

   Y = A1 D-1 X2 

       = A2 X2.       (4.25) 

Suppose that r < n, and the inverse relationship between X2 and Y is desired. The right 

pseudoinverse solution is 

   X2 = A2
R Y 

     = A2
T (A2 A2

T)-1 Y.      (4.26) 

This is the minimum norm solution for X2. The corresponding X1 solution can be found 

by substitution. Substituting Eq. (4.26) to Eq. (4.25), noting that D = DT and D-1 = (D-1)T 

= D-T 

   X1
 = D-1 X2 

        = D-1 A2
R Y 

        = D-1[D-1 A1
T (A1 D-1 D-1 A1

T)-1] Y 

        =Z-1A1
T(A1 Z-1 A1

T)-1 Y 

where the diagonal matrix Z  
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The optimized solution of the matrix (4.19) is given by 

X = Z AT [A Z AT] –1 Y.       (4.27) 

where Z is given by 
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In the above mentioned assumption, say K1 = K4 = K7, it states that the sharing 

function corresponding to the top devices in all the three phases is equal and 

correspondingly the remaining assumptions are for the other devices. 

Hence the solution to the objective function gives the expressions for the 

switching functions. 
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where  
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Under balanced conditions the steady state values of the node voltages are 
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Hence by substituting the above steady state values and assuming all the sharing 

functions to be equal to be unity in Eqs. (4.27 - 4.35) 

 59



3
1

3
2 0

3 +=
d

a
a V

v
H  

3
1

3
2 0

3 +=
d

b
b V

v
H  

3
1

3
2 0

3 +=
d

c
c V

v
H    (4.36) 

3
1

2 =aH   
3
1

2 =bH   
3
1

2 =cH     (4.37) 

3
1

3
2 0

1 +−=
d

a
a V

v
H  

3
1

3
2 0

1 +−=
d

b
b V

v
H  

3
1

3
2 0

1 +−=
d

c
c V

v
H .   (4.38) 

 The pattern of switching for the switching devices used in converter is periodic; 

therefore the analysis of the switching functions is simple by using the Fourier series. 

Thus the switching pulses can be represented as sum of dc component and fundamental 

component either sine or cosine varying term. It can be assumed as 

( 33 1
3
1

aa MH += )         (4.39) 

( 22 1
3
1

aa MH += )         (4.40) 

( 11 1
3
1

aa MH += )         (4.41) 

where , ,  are called the modulation signals, which can be cosine or sine 

term. These signals represent the fundamental component of the switching pulses. When 

this fundamental component is compared with the high frequency carrier waveform 

produces the same pattern of the pulses. 

3aM 2aM 1aM

By comparing Eqs. (4.39 – 4.41) with Eqs. (4.36 – 4.38), the modulation signals 

are obtained as 

d

a
a V

v
M 0

3
2

=  , , 02 =aM
d

a
a V

v
M 0

3
2−

= .      (4.42) 

 The modulation signals for the top and the bottom devices are exactly in opposite 

in phase and this can be seen in Figure 4.2. 
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The node currents of the inverter are given by 

ccbbaa iHiHiHI 3333 ++=        (4.43) 

ccbbaa iHiHiHI 2222 ++=        (4.44) 

ccbbaa iHiHiHI 1111 ++= .       (4.45) 

Writing the KCL equation at node 3 gives the differential equation of the capacitor 

voltage Vc1 and KCL equation at node 1 gives differential equation for capacitor voltage 

Vc2. 

ccbbaadcc iHiHiHIpVC 33311 +++−=      (4.46) 

( ccbbaadcc iHiHiHIpVC 11122 )+++−=     (4.47) 

Figure 4.2 shows the carrier-based PWM technique where three modulation signals 

are compared with the carrier waveform. 

 

 

Figure 4.2: Single carrier and multiple modulation signal PWM technique for a three-

level inverter. 
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Figure 4.3: Simulation results of three-level inverter using the single carrier-based 

technique (I) (a), (b), (c) Three-phase voltages (II) three-phase currents 

 Using the modulation signals that are obtained using Eq. (4.42), the carrier-based 

PWM is implemented. Figure 4.3 illustrates the simulation results for a three-level 

inverter, which is modulated using the single carrier-based PWM technique. Figure 4.3 

(I) (a), (b), (c) shows the three-phase voltages generated. Figure 4.3 (II) gives the three-

phase currents generated when the voltages are impressed across a balanced three-phase 

load. 
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4.3.2 Four-Level Inverter 
 

 

The output voltages of the four-level inverter is defined by the following equations. 

101202303404 VHVHVHVHv aaaaao +++=

101202303404 VHVHVHVH bbbbbo

     (4.48) 

   v +++=      (4.49) 

101202303404 VHVHVHVHv ccccco +++=      (4.50)  

  The switching constraints to be followed in order to avoid the shorting of the dc 

bus voltage source are 

11234 =+++ aaaa HHHH

11234

       (4.51)        

=+++ bbbb HHHH

11234

       (4.52) 

=+++ cccc HHHH .       (4.53) 

There are six equations and 12 unknowns (Ha4, Hb4, Hc4 … Hc1), the set of 

equations has an indeterminate solution. The optimization technique used in case of 

three-level is extended to four-level to obtain the solution, which minimizes the sum of 

the squares of the switching functions. Equivalently, this is the maximization of the 

inverter output-input voltage gain 
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- Objective Function.        (4.54) 

Hence the above objective function has to be minimized subject to six constraint 

equations mentioned above. 
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Writing the six equations in the matrix form,  
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Under balanced conditions the steady state values of the node voltages are 
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The above matrix is in the form of Y = A X. 

The optimized solution of the above matrix is given by 

X = Z AT [A Z AT] –1 Y 

where Z is given by 
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Assuming the following, 
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By substituting the above assumption and solving the matrix gives the expressions 

for the modulation signals [A.1]. The steady state modulation signals are obtained by 

substituting the steady-state values of the node voltages and sharing function to be unity 

in [A.1],  
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Similarly representing the switching pulses as sum of dc component and fundamental 

component either sine or cosine varying term.  
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4
1

aa MH += )         (4.60) 

( 33 1
4
1

aa MH += )         (4.61) 

( 22 1
4
1

aa MH += )         (4.62) 

 ( 11 1
4
1

aa MH += )        (4.63) 

Comparing the switching functions in Eqs. (4.56 – 4.59) and Eqs. (4.60 – 4.63) 

d

a
a V

v
M 0

4
3

=  , 
d

a
a V

v
M 0

3 = , 
d

a
a V

v
M 0

2 −= , 
d

a
a V

v
M 0

1
3−

= .    (4.64) 

Figure 4.4 shows the single carrier and multiple modulation signal technique for a 

four-level inverter. The relation between the modulation signals is that two modulation 

signals (Ha4, Ha3) are in phase and (Ha2, Ha1) are in phase and these two combinations are 

exactly opposite in phase. 
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Figure 4.4: Single Carrier and Multiple Modulation Signal PWM Technique for a Four-

Level Inverter. 

The node currents of the inverter are given by 

ccbbaa iHiHiHI 4444 ++=        (4.65) 

ccbbaa iHiHiHI 3333 ++=        (4.66) 

ccbbaa iHiHiHI 2222 ++=        (4.67) 

ccbbaa iHiHiHI 1111 ++= .       (4.68) 

Writing the KCL equation at node 4 gives the differential equation of the capacitor 

voltage Vc1, KCL equation at node 3 gives differential equation for capacitor voltage Vc2, 

and KCL equation at node 2 gives differential equation for capacitor voltage Vc1. 
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Figure 4.5: Schematic of a Four Level Inverter. 

ccbbaadcc iHiHiHIpVC 44411 −−−=       (4.69) 

( )ccbbaaccbbaadcc iHiHiHiHiHiHIpVC 33344422 −−−−−−=   (4.70) 

( )ccbbaaccbbaaccbbaadcc iHiHiHiHiHiHiHiHiHIpVC 22233344433 −−−−−−−−−=
           (4.71) 

 

4.3.3 Five-Level Inverter 
 

 

 The output voltages of the five-level inverter are defined by the following 

equations. 

101202303404505 VHVHVHVHVHv aaaaaao ++++=

101202303404505 VHVHVHVHVH bbbbbbo

    (4.72) 

   v ++++=     (4.73) 

101202303404505 VHVHVHVHVHv cccccco ++++= .    (4.74)  

  The switching constraints to be followed in order to avoid the shorting of the dc 

bus voltage source are 
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112345 =++++ aaaaa HHHHH

112345

      (4.75)        

=++++ bbbbb HHHHH

112345

      (4.76) 

=++++ ccccc HHHHH .      (4.77) 

There are six equations and fifteen unknowns (Ha5, Hc5, Hb5 … Hc1); the set of 

equations has an indeterminate solution. Optimization technique is used to obtain the 

solution, which minimizes the sum of the squares of the switching functions. 

Equivalently, this is the maximization of the inverter output-input voltage gain 

∑ 










++++++

++++++++

.2
115

2
214
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313
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412
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2
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2
24
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33

2
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2
51

cccccb

bbbbaaaaa

HKHKHKHKHKHK

HKHKHKHKHKHKHKHKHK

 - Objective Function.       (4.78) 

Under balanced conditions the steady state values of the node voltages are 

2
;

4
;0;

4
;

2 12345
dddd V

V
V

VV
V

V
V

V
−

=−==== . 

Representing Eqs. (4.72 – 4.77) in the matrix form as follows. 
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The above matrix is in the form of Y = A X. 
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The optimized solution of the above matrix is given by 

X = Z AT [A Z AT] –1 Y 

where Z is given by 
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Assuming the following, 

.15105

1494

1383

1272

1161

KKK

KKK
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KKK

KKK

==

==

==

==

==

 

By substituting the above assumption and solving the matrix gives the expressions 

for the modulation signals [A.2]. Substituting the above steady state values and assuming 

all the sharing functions to be equal to be unity, the modulation signals are obtained as 

 
5
1

5
4 0

5 +=
d

a
a V

v
H   
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1

5
4 0

5 +=
d
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b V
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H   

5
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H  (4.79) 
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5
2 0
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d

a
a V

v
H   
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d
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5
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5
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3 =bH    
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3 =bH   (4.81) 
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2 0
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d
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2 0
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d

b
b V

v
H   
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4 0

1 +−=
d

b
b V

v
H                    

5
1

5
4 0

1 +−=
d

c
c V

v
H . (4.83) 

 The modulation signals are obtained by comparing the switching pulses with the 

Fourier series approximation, 

 ( 55 1
5
1

aa MH += )        (4.84) 
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( 44 1
5
1

aa MH += )         (4.85) 

( 33 1
5
1

aa MH += )         (4.86) 

( 22 1
5
1

aa MH += )         (4.87) 

 ( 11 1
5
1

aa MH += ).       (4.88) 

By comparing the switching functions in Eqs. (4.79 – 4.83) with Eqs. (4.84 – 4.88), the 

modulation signals are obtained as 

d

a
a V

v
M 0

5
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=  , 
d

a
a V

v
M 0

4
2

= , 03 =aM , 
d

a
a V
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M 0
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−= , 
d

a
a V

v
M 0

1
4−

= .  (4.89) 

 The above equation gives the modulation signals for phase “a.” Similarly the 

modulation signals for the other phase can be obtained. In case of five level inverter, the 

modulation signal of the top two devices are in phase and exactly opposite in phase with 

the bottom two devices. The signal corresponding to the neutral point is zero. 

 

 

4.3.4 Generalization of the Modulation Scheme for N-level Inverters 
 

 

Consider a general N level multilevel inverter, in which the inverter has N-1 dc-

link voltages, N node current IN, IN-1,…, I1, and 3N switching functions for all the three 

phase HaN, HaN-1,…,Ha1 and similarly for the other phases. 

 The output phase voltages of the inverter are given by 
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 v 1011010 ... VHVHVH aNaNNaNao +++= −−

1011010 ... VHVHVHv bNbNNbNbo

     (4.90) 

    +++= −−

1011010 ... VHVHVHv cNcNNcNco

     (4.91) 

    +++= −− .     (4.92) 

To avoid the shorting of the leg the following constraint has to be followed 

 1... 11 =+++ − aaNaN HHH

1... 11

      (4.93) 

  =+++ − bbNbN HHH

1... 11

      (4.94) 

  =+++ − ccNcN HHH .      (4.95) 

Eqs. (4.62 – 4.67) are solved using the optimization technique explained above. 

The optimized solution of the equations is given by 

 X = Z AT [ A Z AT ] –1 Y 

where 
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The following assumption has to be made 
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 By substituting all the sharing functions to be unity, the switching functions are 

obtained as 

( )
NNV

vN
H

d
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 The above equations give the generalized switching functions for a N-level 

inverter. 

Assuming the switching function for a N-level case as 

( )aNaN M
N

H += 11 , ( )11 11
−− += aNaN M

N
H … ( 11 11

aa M
N

H += ) .   (4.96) 

By comparing the switching function with Eq. (4.96), the modulation are obtained as 

( )
d

ao
aN V

vN
M

1−
=  

( )
d

ao
aN V

vN
M

3
1

−
=−  

. 

( )
d
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a V

vN
M

1
1

−−
= . 

The above equations represent the generalized form of the modulation signals for a N-

level converter. 
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I 

 

II 

Figure 4.6: Sum of the switching functions (I) Three-level inverter (II) Four-level 

inverter. 

Figure 4.6 (I) and (II) shows the sum of the switching functions produced using 

the single carrier and multiple modulation signals. As seen from the figure, the sum of the 

switching functions is not equal to 1; i.e., there is more than one device that is on at a 

time, which eventually shorts the input dc capacitors. The shorting of the devices is 

inherent and can only be avoided using logic. Hence this is a major drawback of the 

scheme. 
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There some limitations in the scheme proposed: 

• There is shorting between the devices of the leg; i.e., the input side capacitors are 

getting shorted which is not acceptable. 

• Every time the voltage switches from zero to the node voltage it is connected and 

hence the entire voltage is impressed across the devices and hence high rating 

devices have to be used. 

 

 

4.4 Equivalence of Two-Triangle Method and Single Triangle Method 

 

 
 The main drawback of the single carrier-based method was the shorting problem; 

to overcome this problem, the conventional (N-1) carrier waveforms and single 

modulation signal is used. In this section, the equivalence of the single carrier and 

multiple carrier-based PWM technique is presented. 

The output voltage of a three-level inverter is given by 

0202113 VVVHVH acaca +=−       (4.97) 
 

0202113 VVVHVH bcbcb +=−       (4.98) 
 

0202113 VVVHVH ccccc +=− .      (4.99) 
 
Transforming the above equation to synchronous reference frame by using transformation 

matrix )(θT , where  
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
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








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2)( πθπθθ

πθπθθ

θT      (4.100) 

0θωθ += ∫ dte ; 0θ - Initial reference angle. 

The qd equations are obtained as 

1231 qcqc
e
q HVHVV −=         (4.101) 

1231 dcdc
e
d HVHVV −=         (4.102) 

020120310 VHVHVV cc
e +−=        (4.103) 
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3
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3
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3
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3333
πθπθθ cbaq HHHH    (4.104) 





 ++−+= )

3
2sin()

3
2sin()sin(
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[ 33303 3
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Similarly 





 ++−+= )

3
2cos()

3
2cos()cos(
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1111
πθπθθ cbaq HHHH    (4.107) 
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3
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πθπθθ cbad HHHH    (4.108) 
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Consider Eqs. (4.101) and (4.102), the LHS can be modified as 
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1231
'

qcqcqd HVHVV −=σ        (4.110) 

 V .       (4.111) 1231
'

dcdcdd HVHV −=σ

Assuming 

qq HH α=3  ; qq HH β−=1        (4.112) 

dd HH α=3  ; dd HH β−=1        (4.113) 

βα ,  are control variables. 

Substituting the above condition in Eqs. (4.110) and (4.111), and solving for Hq and Hd 
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V
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+
= .        (4.115) 

Substituting Eqs. (4.114) and (4.115) in Eqs. (4.112) and (4.113) 

21

'

3
cc

qd
q VV

V
H

βα

σα

+
=  

21

'

1
cc

qd
q VV

V
H

βα

σβ

+

−
=      (4.116) 

21

'

3
cc

dd
d VV

V
H

βα

σα

+
=  

21

'

1
cc

dd
d VV

V
H

βα

σβ

+

−
= .     (4.117) 

To obtain the modulation signals in abc reference frame, the qd modulation signals 

are transformed using the inverse transformation matrix T  back to the abc reference 

frame, where 
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The modulation signals are obtained as 
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cc
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a H

VV
V

H ++
+

= θσθσ
βα

α ]      (4.119) 
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312 1 aaa HHH −−=         (4.125) 

312 1 bbb HHH −−=         (4.126) 

312 1 ccc HHH −−= .        (4.127) 

Assuming 

21 cc

d

VV
V

X
βα

α
+

=  and 
21 cc

d

VV
V
βα

Y
β
+

−
=       (4.128) 

where X and Y are the modulation indices of the signals in Eqs. (4.119) and (4.122). 

In case of two triangle carrier-based technique, βα , decides the peaks of the two 

carriers and the sum of the two control variables must be equal to two; i.e., 2=+ βα . 

The upper carrier waveform ranges from [1 – ( )α−1 ] and the lower carrier waveform 
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ranges from [ ( )α−1 - (-1)]. Effect e 

α  and β , respectively. 

By varying the control variable

of multiple modulation signals and

carrier waveforms can be controll

schemes. 
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Table 4. 1 illustrates the relation between the carrier waveform peaks and the 

modulation signal peaks. Consider 1,1 == βα ; substituting these values in Eq. (4.128), 

the modulation indices can be calculated. It can be seen from table 4.1 that the indices are 

1 and –1. This is equivalent to the peaks of the triangles in the multiple carrier-based 

PWM. Similarly for different values of βα ,  the relation is obtained. It is clear that by 

varying the modulation signals is equivalent to varying the peaks of the triangle 

waveforms.  

 

 

4.5 Space Vector Modulation 

 

4.5.1 Generation of the PWM Switching Signals 

 

 

 It is the task of the modulator to decide which position the switches should 

assume (switching state), and the duration needed (turn-on time) in order to synthesize 

the reference voltage vector. In other words, it is the task of the modulator to approximate 

the reference vector, computed by the controller, using the PWM for several switching 

vectors. The general space vector can be extended to the multilevel converters; however, 

the large number of states offered by multilevel converters can impose massive 

computational overhead if not carefully optimized. 

 “0” represents that the converter is connected to the negative node voltage, “1” 

represents that it is connected to the neutral point, and “2” connects the converter to the 
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positive node voltage. With a three-phase three-level voltage source inverter there are 27 

feasible switching modes. Obeying KVL and KCL the generated states are enumerated in 

Table 4.2. The inverter has 24 active states and three null states. A null state is defined as 

a state that does not contribute to the generation of the reference voltage. In this state the 

converter is connected to the same node in all the three phases. By controlling the duty 

cycles of devices in these zero states, the capacitors can be charged and discharged 

without contributing to the actual voltage. 
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Table 4.2 Switching states in a Three-phase Three-Level Voltage source inverter 

 

 

Mode 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Phase 
– A 

0 -
[ ]0aH  

0-
 [ ]0aH

0-
 [ ]0aH
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[ ]2cH  

0-
[ ]0cH  

1-
[ ]1cH  

Mode 15 16 17 18 19 20 21 22 23 24 25 26 27 

Phase 
– A 

1-
 [ ]1aH

1-
 [ ]1aH

1-
[ ]1aH  

1-
[ ]1aH  

2-
[ ]2aH

2-
[ ]2aH

2-
[ ]2aH

2-
 [ ]2aH

2-
[ ]2aH

2-
[ ]2aH

2-
[ ]2aH

2-
[ ]2aH

2-
[ ]2aH

Phase 
– B 

1-
 [ ]1bH

2-
 [ ]2bH

2-
[ ]2bH

2-
[ ]2bH

0-
[ ]0bH

0-
[ ]0bH

0-
[ ]0bH

1-
 [ ]1bH

1-
[ ]1bH  

1-
[ ]1bH  

2-
[ ]2bH

2-
[ ]2bH

2-
[ ]2bH

Phase 
– C 

2-
 [ ]2cH

0-
 [ ]0cH

1-
[ ]1cH  

2-
[ ]2cH

0-
[ ]0cH

1-
[ ]1cH  

2-
[ ]2cH

0-
 [ ]0cH

1-
[ ]1cH  

2-
[ ]2cH

0-
[ ]0cH

1-
[ ]1cH  

2-
[ ]2cH
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  The next step in the modulation scheme is to find the equivalent voltages 

generated in each state. The voltages generated are expressed in the stationary reference 

frame. The qdo voltages of all the switching modes, also given in Table 4.3, are 

expressed in complex variable form as  

( cnbnanqds vaavvv 2

3
2

++= )        (4.129) 

( cnbnano vvvV ++=
3
1 )         (4.130) 

where . 0120, == ζζjea

 The voltage space vectors of a three-phase converter are always located in the 

plane, and that is how they are represented in Figure 4.8.  The space vector is comprised 

of 24 sectors of which the sector numbered from 1 – 6 are inner hexagon sectors and 

sector from 7 – 24 are outer hexagon. In general for a N-level converter, the space vector 

diagram has (N3 – N) sectors. The number of hexagons increases as the number of levels 

increase. For a N-level converter, there are (N-1) hexagons. 
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Table 4.3: The corresponding stationary reference frame qdo voltages of three-phase three-level voltage source inverter. 

 
Mode 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

q-axis voltage 

qV  

0 
6
dV−  

0 
6
dV−  

3
dV−  

3
2 dV  

2
dV  

3
dV  

2
dV  

3
dV  

6
dV  

3
dV  

6
dV  

0 

d-axis voltage 

dV  

0 
32
dV  

3
dV−  

 

0 0 
32
dV  

3
dV  

 

0 
32
dV  

3
dV−  

 

0 

Zero sequence 

voltage  0V

0 
6
dV  

0 
6
dV  

3
dV  

6
dV−  

0 
6
dV  

0 
6
dV  

3
dV  

6
dV   

2
dV  

32
dV−

32
dV−

32
dV−

3
dV

 ---- Redundant states [(2,15), (4,17), (5,18), (10,23), (11,24), (13,26)] are the pairs of states that redundant i.e., these each 

Mode 1 2 3 4 5 6 7 8 9 10 11 12 13 

q-axis voltage 

qV  

0 
6
dV−  

32
dV−

6
dV−  

3
dV−  

2
dV−  

3
dV−  

2
dV−  

3
2 dV−  

3
dV  

6
dV  

0 
6
dV  

d-axis voltage 

dV  

0 
32
dV  

3
dV  

32
dV−

0 
32
dV  

3
dV  

32
dV−

0 0 
32
dV  

3
dV  

32
dV−  

Zero sequence 

voltage  0V 2
dV−  

3
dV−  

6
dV−  

3
dV−  

6
dV−  

0 
6
dV−  

0 
6
dV  

3
dV−  

6
dV−  

0 
6
dV−  
redundant state generates the same magnitude of the voltage but have different value of zero sequence voltage. 
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Figure 4.8: Space Vector Diagram of Three-phase three-level voltage source inverter. 
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As seen from Figure 4.8, the space vector has two hexagons, inner and outer 

hexagons, formed by 19 vectors. These 19 vectors are combined to form the 24-sector 

space vector. Naming the switching states with the numbers is much more general 

(applicable for any level) in which 2, 1, 0, where 2 means that the converter is connected 

to the positive voltage node, 1 represents the neutral point, and 0 connects to the negative 

node voltage. Out of the 19 vectors, the vectors corresponding to the inner sectors 1 – 6 

are called the small vectors. Also in the inner hexagon there are some redundant vectors 

at the corners and these redundant vectors synthesize the same reference voltage but they 

have different zero sequence voltage. Also the currents in these states will be in the 

opposite directions and hence careful division of time intervals between these states can 

control the neutral current and the neutral point voltage. The vectors corresponding to the 

sectors from 7 – 12 are called the medium vectors. During the switching of these vectors 

the current has only one direction depending on the neutral point voltage. Hence the only 

vectors, which generate the neutral current, are the medium vectors. Vectors 

corresponding to the sectors 13 – 24 are known as the large vectors. These vectors do not 

contribute to the neutral current. 

A reference signal V can be defined from the space vector using the vectors. 

Assuming that T

*
qd

s is sufficiently small V can be considered approximately constant 

during this interval, and it is this vector which generates the fundamental behavior of the 

load. 

*
qd

 The continuous space vector modulation technique is based on the fact that every 

vector V inside the hexagon can be expressed as a weighted average combination of the 

vectors of the triangle in which the reference vector lies. Therefore, in each cycle 

*
qd
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imposing the desired reference vector may be achieved by switching between these 

states. The nearest three vectors [NTV] concept is being used to divide the time between 

the states; i.e., the nearest three vectors that are close to the reference vector are 

determined and the turn on times of the states of the devices are determined depending on 

the control. 

 From Figure 4.8 assuming V to be lying in sector k, the vectors are named a, b, 

c. In order to obtain optimum harmonic performance and minimize the switching losses, 

the state sequence is arranged such that switching only one inverter leg performs the 

transition from one state to the next. The central part of the space vector modulation 

strategy is the computation of switching times of the sectors for each modulation cycle. 

In the direct digital PWM method, the complex plane stationary reference frame qd 

output voltage vector of the three-phase voltage source inverter is used to calculate the 

turn-on times of the switches required to synthesize the reference voltage. In general, the 

three-phase balanced voltages expressed in the stationary reference frame, situated in the 

appropriate sector in Figure 4.8 are approximated by the time average over a sampling 

period of the three vectors. If the normalized times (with respect to modulator sampling 

time or converter switching period, T

*
qd

s) of three vectors termed as Vqda, Vqdb, Vqdc 

corresponds to time signals ta, tb, and tc, respectively, then the q and d components of the 

reference voltage Vqd * are approximated as  

cqdcbqdbaqdaddqqqd tVtVtVjVVV ++=+=*      (4.131) 

and the devices have to switch according to the following constraint 

1=++ cba ttt .        (4.132) 
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Separating the real and imaginary terms in Eqs. (4.131)  

( ) ( ) qcbqcqbaqcqaqq VtVVtVVV +−+−=  

( ) ( ) dcbdcdbadcdadd VtVVtVVV +−+−= . 

Expressing the above equations in the matrix form  









+
















−−
−−

=








dc

qc

b

a

dcdbdcda

qcqbqcqa

dd

qq

V
V

t
t

VVVV
VVVV

V
V

. 

By solving the above matrix for t ba t,  

∇

+−+−−
= dcqqdbqqqcqbddqcdcqbddqb

a

VVVVVVVVVVVV
t    (4.133) 

∇

+−+−−
= qcddqaddqadcqqdcqcdaqqda

b

VVVVVVVVVVVV
t    (4.134) 

where 

qadcqcdbqadbqbdcqcdaqbda VVVVVVVVVVVV ++−−−=∇ . 

 

Consider for sector 1: 

1

222 +ve
111 Zero
000 -ve

100  -ve
211 +ve

110 -ve
221 +ve

            

a

bc





 −







3
,0,

3

6
,0,

3

dd

dd

VV

VV

















 −

3
,

32
,

3

6
,

32
,

6

ddd

ddd

VVV

VVV

[ ]






 −








2
,0,0

0,0,0
2

,0,0

d

d

V

V

1

 

 

Figure 4.9: Sector 1 of the space vector diagram. 
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The voltages for the three vectors that correspond to sector 1 are 

.0;0

0;
3

32
;

6

==

==

==

dcqc

da
d

qb

d
da

d
qa

VV

V
V

V

V
V

V
V

 

Hence by substituting the above known terms in Eqs. (4.133)-(4.134), the turn on times 

of the devices is obtained as  

.
3

]33[5.0

d

dd
b

ddqq
d

a

V
V

t

VV
V

t

=

−=

 

 Hence in the similar way in each sector the turns on times of the devices are 

calculated and are enlisted in Table 4.4. These timings are in terms of the reference qd 

voltages.  

 Thus the mentioned procedure is used for microprocessor or DSP-based 

implementation of the space vector PWM [33-40]. The state diagram corresponding to 

each sector is drawn and the pattern has to be loaded into the DSP to turn on the devices. 

Figure 4.9 shows the state diagram for sector 1. In space vector the states have to be 

sequenced to obtain minimum switching but this sequencing is not necessary in the 

carrier-based PWM technique. The technique is explained in the following section. 

 

 

 

 90



Table 4.4 Device-switching times expressed in terms of qd reference voltage. 

 
Sector ta tb 

1 
]33[5.0

ddqq
d

VV
V

−  
d

dd

V
V3

 

2 
]33[5.0

ddqq
d

VV
V

+  ]33[5.0
ddqq

d

VV
V

+−−  

3 

d

dd

V
V3

−  ]33[5.0
ddqq

d

VV
V

+−  

4 
]33[5.0

ddqq
d

VV
V

+−  
d

dd

V
V3

−  

5 
]33[5.0

ddqq
d

VV
V

+−  ]33[5.0
ddqq

d

VV
V

−−  

6 

d

dd

V
V3

 ]33[5.0
ddqq

d

VV
V

+  

7 

d

dd

V
V32

 
d

dd

d

ddqq

V
V

V
VV 3233

−
−

 

8 
]3[3

ddqq
d

VV
V

−−  
d

dd
ddqq

d V
V

VV
V

32
]33[2
−+  

9 
]33[3

ddqq
d

VV
V

+  ]3[3
ddqq

d

VV
V

+−  

10 
]33[3

ddqq
d

VV
V

−−  
d

dd

V
V32

−  

11 

d

qq

V
V6

−  ]3[3
ddqq

d

VV
V

−  

12 
]3[3

ddqq
d

VV
V

+  ]33[3
ddqq

d

VV
V

+−  

13 
]33[35.0

ddqq
d

VV
V

−
×

−  
d

dd

V
V32  

14 
]3[3

ddqq
d

VV
V

−  ]33[35.0
ddqq

d

VV
V

−
×

−  
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Table 4.4:Continued 

 
Sector ta tb 

15 

d

qq

V
V3

 ]3[3
ddqq

d

VV
V

−−  

16 
]3[3

ddqq
d

VV
V

+  
d

qq

V
V3

−  

17 
]3[3

ddqq
d

VV
V

+−  ]33[35.0
ddqq

d

VV
V

+
×  

18 

d

dd

V
V32

 ]33[35.0
ddqq

d

VV
V

+
×

−  

19 
]33[35.0

ddqq
d

VV
V

−
×

−  
d

dd

V
V32

−  

20 
]3[3

ddqq
d

VV
V

−−  ]33[35.0
ddqq

d

VV
V

−
×  

21 

d

qq

V
V3

−  ]3[3
ddqq

d

VV
V

−  

22 
]3[3

ddqq
d

VV
V

+−  
d

qq

V
V3

 

23 
]33[35.0

ddqq
d

VV
V

+
×

−  ]3[3
ddqq

d

VV
V

+  

24 

d

dd

V
V32

−  ]33[35.0
ddqq

d

VV
V

+
×  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
State diagram: 

 Figure 4.10 shows the state diagram corresponding to sector 1. Consider sector 1 A, 

from Figure 4.8; the available vectors are Ub (100 (-), 211 (+)), Ua (110(-), 221 (+)), Uc 
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(222(+), 111(0), 000(-)). The variable α is used to divide the time interval tc between the 

positive (222) and zero vector (000) or the negative (111) and the zero vector (000). The 

vectors corresponding to 1A are Ua (221), Ua (211), and Uc( 000, 111). The time for which  

the devices corresponding to sector 1A are turned on is shown in Table 4.5 as the existence 

functions. 

Table 4.5: Existence functions for all the devices corresponding to sector 1.  

 Ha1 Ha2 Ha3 Hb1 Hb2 Hb3 Hc1 Hc2 Hc3 

1A 0 ta+tb+βtc αtc βtc αtc+ta+tb 0 tb+βtc αtc+ta 0 

1B 0 tb+βtc αtc+ta 0 ta+tb+βtc α tc βtc αtc+ta+tb 0 

 

at bt ctα ctβ

1aH

2aH

3aH

1bH

2bH

3bH

1cH

2cH

3cH

at bt ctα ctβ

3cH

2cH

1cH

3bH

2bH

1bH

3aH

2aH

1aH

Sector 1 A Sector 1 B

 
I II 

  
Figure 4.10: State diagram corresponding to (I) sector 1 A, (II) sector 1 B. 
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4.5.2 Carrier-based Implementation of Space Vector Modulation SVPWM 
 
 
 

In the carrier-based implementation of the space vector modulation, the 

equivalent modulation signals are determined for the timing expression using the space 

vector principle such that when the modulation signal is compared with the carrier 

waveform turns on the device for the same amount of time. Hence in a way the sine-

triangle and the space vector modulation are exactly equivalent in every way [76-77]. In 

the carrier- based implementation, the Phase Disposition (PD) technique is used. Figure 

4.7 shows the reference and the carrier waveform arrangements required to achieve this 

form of modulation for three-level inverter. In Figure 4.1 the important criteria to satisfy 

KVL and KCL is  

1123 =++ aaa HHH

1123 =++ bbb HHH

        

           

1123 =++ ccc HHH   

  

Figure 4.11: Carrier-based PWM using the phase disposition technique. 
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where are switching functions and are defined as when compared with two triangles 

equally displaced.  

ijH

0;1;2

&1

33 ==−>

−>

ii

abc

HotherwiseHTriangle

TriangleV
 

0;1;2

&1

22 ==−>

−<

ii

abc

HotherwiseHTriangle

TriangleV
 

0;1;2

&1

11 ==−<

−<

ii

abc

HotherwiseHTriangle

TriangleV
 

The phase voltage equations for star-connected, balanced three-phase loads 

expressed in terms of the existence functions and input nodal voltage V  is given 

by Eqs. (4.1 - 4.3). The quantities are the output voltages of the inverter with 

respect to the neutral point of the two capacitors. V  is the neutral voltage which is 

floating between the neutral of the load and the neutral point of the two capacitors. This 

voltage may assume any value and hence becomes a part of the control. 

102030 ,, VV

coboao vvv ,,

20

 

4.5.3 Determination of the qdo Voltages of the Switching Modes 
 
 
 
 The stationary reference frame qdo voltages of the switching modes, also given in 

Table 4.2 are expressed as 

( cbaq ffff −−= 2
3
1 )        (4.135) 
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( cbd fff −=
3

1 )         (4.136) 

( cbao ffff ++=
3
1 ) .        (4.137) 

In the present case fq , fd, fo are  coboao vvv ,, .

For example for the state 1 from Table 4.1, the qdo voltages are determined as follows. 

Since the converter in state 1 is being connected to the negative voltage for all the three 

phases, the output voltages are 

.0

0

0

Vv
Vv
Vv

co

bo

ao

=
=
=

 

Hence the qdo voltages are given by 

( )

( )

( ) .
23

1

0
3

1

02
3
1

0000

00

000

d
o

d

q

V
VVVVV

VVV

VVVV

−==++=

=−=

=−−=

 

Under balanced conditions, 
2

;0;
2 012

dd V
VV

V
−=−==V . 

 Hence in the similar way, the qd voltages of the other valid states are calculated. 

 

4.5.4 Determination of the Device Switching Times Expressed in Terms of Line-Line 

Reference Voltage 

 
 
 The device timings that are calculated in section 4.2 are in terms of the qd 

voltages. The next step in the carrier-based PWM implementation is expressing the 
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timing expression in terms of the reference line-line voltages. Hence the timing 

expressions, which are in terms of the qd voltages, are transformed to abc reference 

frame. 

 The stationary reference frame inverse transformation is given as  

oqa fff +=  

od
q

b ff
f

f +−−=
2
3

2
 

od
q

c ff
f

f ++−=
2
3

2
. 

Now 

( dq
d

od
q

oqabba ff
V

ff
f

fffff 335.0
2
3

2
+=−+++==− )   (4.138) 

( dq
d

od
q

oqacca ff
V

ff
f

fffff 35.0
2
3

2
−=−−++==− )   (4.139) 

dod
q

od
q

bccb Vff
f

ff
f

fff 3
2
3

22
3

2
−=−−++−−==− .   (4.140) 

Consider sector 6: 

 The devices in qd reference voltage are obtained in the above section as 

acddqq
d

a VVV
V

t =−= ]33[5.0  - From Eq. (4.133) 

cb
d

dd
b V

V
V

t ==
3

.  - From Eq. (4.134) 

Hence using the above transformation, the timing expressions can be expressed in terms 

of the line-line voltages. The timings in terms of the line-line voltages are tabulated in 

Table 4.6. 
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Table 4.6 Device-switching times expressed in terms of reference line-line voltage. 

Sector 1 2 3 4 5 6 7 8 9 

ta 

d

ac

V
v

 
d

ab

V
v

 
d

cb

V
v

 
d

ca

V
v

 
d

ba

V
v

 
d

bc

V
v

 
d

cb

V
v2

 

  
tb 

d

cb

V
v

 
d

ca

V
v

 
d

ba

V
v

 
d

bc

V
v

 
d

ac

V
v

 
d

ab

V
v

 

 
d

ca

V
v2

 
d

ba

V
v2

 [2
cbac

d

vv
V

−

[2
abcb

d

vv
V

+
d

cbab

V
vv 24 −

 98



 
 
 

Sector 13 14 15 16 17 18 19 

ta 

d

acbc

V
vv +

 
d

ac

V
v2

 
d

cbab

V
vv −2

 
d

ab

V
v2

 
d

cbab

V
vv +

 
d

cbab

V
vv ][ +−

 
d

bcac

V
vv ][ +−

 

tb 

d

cb

V
v2  

d

cbac

V
vv ][ −−

 
d

ca

V
v2

 
d

cbba

V
vv +2

 
d

ba

V
v2

 
d

cb

V
v2

 
d

bc

V
v2

 

 
 

Sector 20 21 22 23 24 

ta 

d

ca

V
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d

bcca

V
vv +2

 
d

ba

V
v2

 
d

cbab

V
vv ][ +−

 
d
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V
v2

 

tb 

d
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V
vv +

 
d

ac

V
v2

 
d

bcab

V
vv +2

 
d

ab

V
v2

 
d

cbab

V
vv +

 

 

 

 98
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Table 4.6 Device-switching times expressed in terms of reference line-line voltage. 
 

 

Sector 1 2 3 4 5 6 7 8 
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d

ca

V
v

 
d

ba

V
v
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V
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V
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v
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v
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V
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d
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V
v 2

 
Sector 13 14 15 16 17 18 19 

ta   
d

cbab

V
vv −2

 
d

ab

V
v2
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cbab

V
v ]v[ +−

 

tb   
d

ca

V
v2

 
d

ba

V
v cbv+2

  
dV
v2 cb  

d

acbc

V
vv +

d

ac

V
v2

d
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V
vv +

d
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V
v[ +−

d
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V
vv ][ −−

d
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V
v2

d
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V
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V
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Sector 20 21 22 23 24 

ta   
d

bav
V
2

  

tb 

d

bcac

V
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d

ac

V
v2

 
d
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V
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d
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d
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