CHAPTER 5

SENSORLESS CONTROLLER DESIGN FOR THE NINE-PHASE IPM

5.1 Introduction

In this chapter a controller is designed for the nine-phase IPM machine. The controller is
designed based on the main component of the machine circuit. After modelling the nine phase
converter the controller is designed using the minimum copper loss strategy. The current regulators
are also designed using the regular dynamic equations of the machine in the rotor reference frame.
To implement the precise control to the machine the rotor position is needed, therefore the position
estimation method is presented in the following sections of this chapter. The position estimation
presented in this chapter, is based on the high frequency injection method. In this method a high
frequency voltage is injected to a non-torque producing channel of the machine and the position
of the rotor is extracted from the high frequency currents due to the high frequency voltages. The
general form of the high frequency currents is obtained using the harmonic balance technique and
the essential signal processing method is presented to extract the position data from the currents.
The presentation of the new position estimation method based on the high frequency voltage
injection in the non-torque producing channel of the machine in stationary reference frame is the
novel part of this chapter. The controller is simulated and tested using the full order model of the
machine that was generated in the chapter 3. After confirming the performance of the controller
and estimator with MATLAB simulation the controller and estimator are discretized and translated
to C++ language to be implemented in DSP. Finally, the performance of the method is verified
with experimental results. The steady state analyses of the machine are also presented in this
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chapter in which the nine phase machine capability is obtained for different operation modes using

FEMM.

5.2 Controller Design

In this section a speed controller is designed for the nine-phase IPM machine. The

controller is based on minimum copper loss strategy. After deriving the equations of the nine-

phase inverter in the rotor reference frame the controller equations are derived for the fundamental

components of the machine.

5.2.1 Converter Model

The nine-phase converter is shown in the Figure 5.1.
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Figure 5.1: The nine phase inverter.

The switches of each leg of the inverter are complementary therefore:
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Sap S =1
Spp+Sp =1
Sep+ S =1
Sgp+ Sgn =1
Sep + Sen =1 (5.1)
Sp+S,=1
Sgp+ S =1
Spp+ Spp =1
Sip +5;, =1

Where: ‘Sxp’ and ‘Sxn” are the switching functions of the top and bottom switches of leg

‘x” of the inverter. Also output voltages of the inverter can be expressed as:

\Y/ c \ c v ¢
Vo = : (Sap —San) Voo =_d(sdp —Sa) Voo =i(sgp _Sgn)
2 2 2
V c \Y c \4 c
Vo = ; (pr _Sbn) Veo ZTd(Sep _Sen) Vio :%(Shp _Shn)v (5.2)
\Y c \Z c v c
Veo = ; (Scp -Sa) Ve =7d(sfp —Sn) Voo :%(Sip ~Sin)
V4 =200V

Using equation (5.1), the voltage equations can be rewritten as:

v v v
Viao = %(Zsap —1) Vo = %(zsdp - Vo = %(2599 -1

V. Ve Vie

Vio = 7d(28bp 1) Vg = 7d(25ep 1) Vio= 7d(28hp -1) (5.3)
v, V. Vi,

Veo = 7"(28cp -1) Vg, = 7d(28fp -1) Vg = 7d(28ip -1)

Where: the switching function of the top switch of each phase ‘ S wp and the expression

for the modulation index can be written as:
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S, =051+M. ), x=a,b,c,d,e, f,qg,h,i
»=05(+M,) g 54

Mxp = 2(\/Xz/:\/n0)’vno :\%(1_ 205)_(1\/min _(1_a)\/max

Where: ‘Vyp’ presents the reference voltage for phase ‘x’, ‘V_. ’ is the minimum value of

the nine phase set, ‘V,,, ’ is the maximum value of the nine phase set and ‘& ’is also given in

equation (5.5).
o= %[1+ sgn[cos(9a.t + 9)]] (5.5)

Where © @’ is the frequency of the command voltages and ‘&’ is the initial angle of the

modulation index.
Substituting the switching function of equation (5.4) in to the voltages of equation (5.3)

results in equation (5.6).
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VAn :Vdc 2a
M

VBn :Vdc7b

VCn :Vdc Mc

VEn :Vdc 2e
M, (5.6)
Ve, :Vdc7
M g
VGn :VdcT
M
VHn :Vdc7h
M;
VIn :VdCT

Since the machine is controlled in the rotor reference frame the inverter, voltages also

should be transformed to the rotor reference frame.
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[ c(6)
s(0)
c(36)
s(36)
c(50)
s(50)
c(76)
s(76)

| 1/2

27

c(@—-a)
s(0—a)
c3(0—-a)
s3(0 — )
c5(0 - )
s5(0 — a)
c7(0—-a)
s7(0—a)
1/2

c(@-2a)
s(0-2a)
c3(0 - 2a)
s3(0 - 2x)
c5(0 - 2a)
s5(0 - 2a)
c7(0-2a)
s7(0-2a)
1/2

c(0 -3a)
s(0 —3a)
c3(€ -3a)
s3(0 - 3a)
c5(0 —3a)
s5(0 —3a)
c7(6 —3x)
s7(6 —3a)
1/2

a= e S =sin, C =cos, @ =reference angle

c(@-4a)
s(0—4a)
c3(0 —4a)
s3(0 - 4a)
c5(0 - 4a)
s5(0 —4a)
c7(6—4a)
s7(60 - 4a)
1/2

c(0 —-5a)
s(0 —5a)
c3(€ —5a)
s3(0 —5a)
c5(60 —5a)
s5(0 —5a)
c7(6 —5a)
s7(6 —5a)
1/2
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c(@-6a)
s(@—6a)
c3(0 —6a)
s3(0 —6a)
c5(0 - 6a)
s5(0 —6«a)
c7(6—-6a)
s7(6 —6a)
1/2

c(@-Ta)
s(@—-Ta)
c3(0-Tx)
s3(0 - 7x)
c5(0-T7a)
s5(0 - 7a)
c7(0—-Ta)
s7(0-Ta)
1/2

c(6-8a) ||

s(0 —8a)
c3(¢ -8a)
s3(0 —8a)
c5(0 —8a)
s5(0 —8a)
c7(6 —8«x)
s7(0 —8a)

1/2

ap

ap

=T <L L

(5.7)



Equation (5.7) can be represented as equation (5.8).

Vo M,
le M dl
Vs M,
Vd3 M d3
Vqs _Vdc qu
Vd5 M d5
Vir M,
Vd7 M d7
_VO _ L MO _
Where:

1
I

[ c(6)
s(6)
c(36)
s(36)
c(50)
s(56)
c(76)
s(76)

o | | 1/2

o= %[ S =sin, C =cos, @ =rotor angle

c(f0—a)
s(6—a)
c3(0 - «)
s3(0 - )
c5(0 — &)
s5(60 - a)
c7(0—a)
s7(0—a)
1/2

c(f0-2a)
s(6-2a)
c3(0 - 2a)
s3(60 - 2a)
c5(6 - 2a)
s5(0 - 2ax)
c7(0-2a)
s7(60 —2a)
1/2

e} o o
@ = =3

[=8
w

o o
~ ()

o
-

=z <L L
I
O©|N

c(@-3a)
s(6 —-3a)
c3(60 —3a)
s3(0 - 3a)
c5(0 - 3a)
s5(0 — 3«)
c7(0 - 3a)
s7(60 —3a)
1/2

c(0—4a)
s(0-4a)
c3(0 - 4a)
s3(0 —4a)
c5(6 - da)
s5(0 — 4a)
c7(60—4a)
s7(0 - 4a)
1/2
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c(@ -5a)
s(6 —5a)
c3(0 —5a)
s3(0 —5«)
c5(6 —5a)
s5(0 —5a)
c7(0 —5«)
s7(6 —5a)
1/2

c(0—6a)
s(6 - 6«)
c3(6 —6a)
s3(0 - 6a)
c5(6 —6a)
s5(0 — 6a)
c7(0-6a)
s7(60 —6a)
1/2

c(@-Ta)
s(0-Ta)
c3(0-T7a)
s3(0—-Ta)
c5(60-Ta)
s5(0 - 7)
c7(0-Ta)
s7(0—-Ta)
1/2

c(@-8a) |

s(6 —8a)
c3(¢ —8a)
s3(0 —8«x)
c5(6 —8a)
s5(0 —8a)
c7(0 —8a)
s7(60 —8«)

1/2

ap

222X

S

(5.8)
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5.2.2 Controller Design

In this section, relationship between the reference currents of the q and d axis is generated.
The q axis current reference can be generated from the speed controller loop and the resulting
current can be used to generate the d axis current. The desired d axis reference current is generated
based on the minimum copper loss strategy that is derived using Lagrange optimization method.
The proper relationship between g and d axis current can be derived based on the machine equations
in the rotor reference frame. From chapter 3 the machine equations for the salient pole (IPM) in the

steady state conditions are:

V,, =i, +@ (A4,)

qlr s qlr

. (5.10)
ler = Klyyr — @ (;’“qlr)
To obtain the simpler form of the machine equations, the d axis of the rotor reference frame
can be aligned to the flux linkage of the rotor permanent magnets. After alignment, the flux linkages

of the machine in the rotor reference frame could be presented as:

ﬂ“dlr — Ldldlldlr +2‘pmd1r

(5.11)

Aot = Lyl

q glgl°qglr

Where “ Lyy4;” and quql’ are the stator inductances of the q and d axis in the rotor

reference frame respectively. And ° lpmdlr > is the magnetic flux linkage of the permanent magnet

bars of the rotor in the d axis of the rotor reference frame. The electromagnetic torque also is

presented in equation (5.12).

. S (5.12)
T. = T[(Lqml ~ Lasan)lgarlare i Apmanr]
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The stator copper loss can be defined as:

9 | . (5.13)
Ploss = Z rs (Idlr2 + Iq1r2>

To obtain the minimum loss, the minimum point of the equation (5.13) should be found
while the electromagnetic torque is equal to the load torque according to equation (5.14).

9P - :
TL B T[(quql o Ldldl)lqlrldlr + Iqlr/fi’pmdlr] =0 (5-14)

Therefor the Lagrange function can be defined as equation (5.15). In this equation * A’ is

the Lagrange multiplier [158]:

opP

9 . ; - - -
L= 2 I, (Idlr2 + Iqlr2)+ X(TL _T[(quql — Lasan)lqartaar +gur Apmane ]j (5.15)

Now the essential conditions for the controller can be obtained from the equations (5.16) to

(5.17). Note that: the common solutions for the Lagrange derivations show the minimum point of

the copper loss.

a9 . 9P .
di— :Ers(ldlr)_i_/l(_T(quql_ Ldldl)lqlr] =0 (5.16)
dir
d. 9 oP :
P = > I (Iq]_r )"‘ ﬂ(—T[(quql — Lyagn)igsr + Z’pmdlr]j =0 (5.17)
gqlr
dL oP . i
a = T|_ _T[(quql - Ldldl)lqlrldlr + Iqlrﬂ’pmdlr] =0 (5.18)

From the equations (5.16) and (5.17) the relationship for the g and d axis currents can be

derived as:
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Idlr Iqlr

(quql - Ldldl)iqlr [(quql - Ldldl)idlr + /lpmdlr] (5.19)
Equation (5.19) results in:
(Lot — Laran)ianr- + Apmarriazr — (Lgagr — Laza1)iger- =0 (5.20)
The equation (5.20) is representing an ellipse. Using MATLAB/EZPLOT the ellipse could

be plotted as Figure 5.2.

0 /, D\\
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Idlr
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e ——— e
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-15 -10 -5 0 3) 10 15
Iqlr

Figure 5.2: The plot of the ellipse representing the g and d axis current relationship.

The smaller and bigger diameters and also the central point of the ellipse are represented in

the equations (5.21), (5.22) and (5.23) respectively.

A
D, = pmdir (5.21)
(quql - Ldldl)

2\/Eﬂ’pmdlr

Db — (5.22)
(quql - Ldldl)
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~ Apmarr 0 (5.23)

(idlr ! iqlr)center - !
2(quql - Ldldl)

The equation (5.20) could be considered as a quadratic equation in terms of idlr >. From

this equation the d axis current can be calculated from q axis current. This equation shows the

condition between the g and d axis currents in which the copper loss is minimized.

A A’ ,

. pmdi1r pmdlr :
+ +41,,

) (Ldldl - quql) (Ldldl - I—qlql)2 (5.24)
Idlr = 2

5.2.3 Speed Controller Design

The speed controller loop can be designed using the mechanical dynamic equation which
relates the rotor speed to the electromagnetic and load torque. The mechanical dynamic equation is

shown in the equation (5.25).

2
T, = J(;) P, +T, (5.25)

From this equation, the derivation of the rotor speed is:

2 «
] e =T.-T, =6, =K,,(S)lo, -
(Pj pwr e L or (ur( )(wr a)r) (526)

The speed controller loop is also shown in the Figure 5.3. It can be seen that the P1 controller

(Kwr(S)) is operating on the error between the reference (a)r*) and the rotor (@, ) speeds.
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Figure 5.3: The speed controller loop.

Substituting the electromagnetic torque to the equation (5.26) results in:

oP .. .
Te = 5a>r +TL - T[(quql - Ldldl)lqlrldlr + Iqlrﬂ’pmdlr] = 5a)r +TL (5.27)

The last equation can be solved with the equation (5.24) to obtain the reference value for
the g axis current according to equation (5.28). By solving the equation (5.28), the equation (5.29)
can be derived which can be used for generating the reference value for the q axis current. By
substituting the reference of the g axis current in to the equation (5.24) the reference value for the

d axis current also can be calculated.

9P - i
T[(quql - Ldldl)lqlrldlr + Iqlr//{’pmdlr] = 5a;r +TL (5 28)
2
ﬁ’pmdlr + ;medlr +4iq1,—2
. (Ldldl o quql) (Ldldl - quql )2
Idlr = 2
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2
(quql_ Ldldl)2 qlr (5 +T ) pmdlr qlr _( ( +TL)) =

(5.29)

The PI controller for the speed controller loop can be designed using the mechanical

dynamic equation as:

po, = (pr +%)(w ~o,) (5.30)

The above equation results in:

o SK,, + Ki,
= (5.31)
o, S°+K, S+K,

r

By setting the denominator of the transfer function to be equal to the second order

Butterworth polynomial the controller coefficients can be designed [161].

S?+K,,S +K;, =p*+v2pw, + o,
(5.32)

The speed controller loop has to be at least 10 times faster than the desired rotor speed
profile [157]. The final desired speed profile is a trapezoidal waveform that has the frequency of up
to 0.05 (Hz). Therefore, the frequency of the speed controller loop has to be selected bigger than
0.5 (Hz). Setting w, = 7 the correspondent relationship between the denominator of the transfer

function and the Butterworth polynomial yields:

K., =2w, =72 (5.33)

(5.34)
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5.2.4 Current Regulator Design

Using the dynamic equations of the g and d axis voltages in the rotor reference frame, the
current regulators for controlling the iOIlr >and <14, * can be designed. The equations are repeated

here from chapter 3.

Vqlr =1I qlr + qulql qlr — @y I—dldlidlr _a)r/’i’pmdlr (535)
ler =T, Idlr + pLdldl dir +C() quql qlr (5.36)
-*
| qur | i o)
| K | gs
| Pq I
| |
: |
|
|
Ly Kiq I
- I |
I : S |
1r | '
a Pl
I_ ________ -
Figure 5.4: The q axis current regulator.
The q axis current controller is designed as:
rsiqlr + qulqliqlr = 5qs = qu(i olr — iqlr) (537)
According the Figure 5.4 ¢ qu > is a PI controller therefore it can be expressed as:
Kig
qu = qu + ? (538)

Substituting the controller equation in the voltage equation results in:
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Kig V/.x .
I qlr + qulql qlr — (qu +?qJ(I qlr — Iqlr) (5.39)

k. k.
My = 9 G 5.40

s qlr + qulql qlr + qu qlr S Iqlr - qu +? (l qlr) ( )
. qu +& M
Iqlr _ S _ qu
o - 5.41)
I qir Ki (

rSerquqlJerq+?q g2 +S(r +K )+ Ki

ql qu

The denominator of the equation (5.41) can be set equal to the second order Butterworth
polynomial to obtain the <K ,* and ‘K, . Using the machine parameters from chapter 3 the

controller coefficients are calculated using equation (5.42).

K) K (5.42)
p*+ p(rS: pQ)+ L 9 = p?+2pa, + @,

qlql qlql

The internal loops of a current controller have to be at least 10 times faster than the rotor

speed controller loop [155]. Since the frequency of the speed controller loop is selected as 7 (Hz)
the frequency of the current regulator has to be at least 70 (Hz). Selecting @, =200 (rad/sec)

results in:

(r.+K,q) (5.43)

V20, -
L

qlgl

Where: Lqig1=0.0026 (H).

=2w,Lyq; — T, =0.73539—0.01 = 0.725397 (5.44)

S
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K, )
— —w > K_ =104
L () iq

qlql

(5.45)

The d axis current controller also can be designed as:

Flgar + Plysgrlasr = Ogs = de(i dir = idlr) (5.46)

Idlr

Figure 5.5: The d axis current regulator.

According to the Figure 5.5 the K;; can be considered as a Pl controller according to

equation (5.47).

Ki
Ky = (Kpd +?dj (5.47)
. _ Ko Voo
rsldlr + pLdldlldlr = 5ds = (Kpd +?dj(l dir — Idlr) (548)
: : : Kig - Kig )i+
Folasr + Plggarlasr + Kpglayr +?Id|d1r = (Kpd +?Idj(| dlr) (5.49)
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_ pK 4 + K,
T D v
lyir S _ Ldldl

- K, - (5.50)
[+ Plyg; + Kpg + Sd (rs+Kpd) K.

-k
I dir

p>+p +

Ld 1d1 I—d 1d1

The denominator of the equation (5.50) can be set equal to the second order Butterworth

polynomial to obtain the K ;> and “ K;; .

\/Ea)o _ (I’S + Kpd) (5.51)

I_dldl

By substituting the Lq141=0.0012 (H), the controller coefficients can be calculated as:

K g =20, Ly, — T, =2 x 200x 0.0012 - 0.01 = 0.3294 (5.52)
Kid _ .2 _
Lo =0, > K, =48 (5.53)

By substituting the Oy, and 5qs back in to the dynamic equation of the g and d axis

voltages, they can be rewritten as:

rSidlr + pLdldlidlr - 5ds :ler - p/’i’pmdlr — quqliqlr
(5.54)
Since the flux linkage due to the permanent magnet is constant the derivation of that would

remain zero. Therefore, the above equation will change to the equation (5.55).

rsidlr + pLdldlidlr = 5ds :ler — quqliqlr (5.55)
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*

@ r (Ldldlldlr + }‘pmdlr )

Qr
+ K,
T L
a)r
a)—r»ControIIer
—
Iabc...m
0,
( ~
@, Observer
I a
qdir
S L T0) %
L@ |
(b)
Figure 5.6: (a) Controller diagram of the machine, (b) The drive diagram.
Also the voltage equation for q axis can be expressed as:
rsiqlr + qulqliqlr = 5qs :Vqlr + a)r I—dldlidlr + a)r/’i’pmdlr (5'56)

The block diagram of the designed controller is shown in the Figure 5.6. In this controller
after obtaining the voltage references for q and d axis they can be transformed to the natural

quantities to be fed to the stator phases. The feedback signals (iqir, 1d1r) are coming from the
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measurement and the flux linkages (Aqir and J41r) are calculated using the stator inductances and
feedback currents. Since the load torque is not known the T is set equal to zero which means the

load torque will be the system disturbance. In this procedure the exact position of the rotor flux

linkage (é,) is needed. The goal of the next sections of this chapter is to design an estimator to

estimate the rotor angle and rotor speed.

5.3 High Frequency Injection

To implement the position estimation using the high frequency injection, the form of the
currents due to the high frequency voltage injected to the machine needs to be known. The
motivation of this section is to design a proper signal processing method to extract the position
information from the high frequency currents of the machine stator. The high frequency voltages
that are used in this study will be injected in the third sequence of stationary reference frame of the
machine which means that the equivalent circuit of this sequence is needed to be derived and used
in high frequency investigates.

To obtain the inductances of the third sequence, the different sequences of the airgap
function and the winding function need to be obtained. The winding function of the machine is
generated in the section 3.2. Figures 3.8 to 3.16 show the different components of the winding
function. The Fourier series of the winding function is repeated here in equation (5.57).

n, = N,sin(¢—kea) + N,sin3(¢p —kear) + N sin5(p —ka) + N, sin 7(p —ka)

, (5.57)
x=ab,c.i k=0123.28, a:?ﬁ

Also the Fourier series of the air gap function can be generated from the air gap function of

the Figure 3.6. Equation (5.58) represents the Fourier series of the air gap function.
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07 (9,6,) =3 +2,C05 2(¢— 6,) + 8, 05 6(¢p — 6,)

+a,c0s10(p—6,) +a, cosld(p—6,) (5.58)
b b b
aQ=a a=-ba=—-a = A=

1( 1 1 j 1( 1 1 j
a==|—+— |, b=—| ———
209, 9 2\ 0, U,
Using the Fourier series of the winding function, the air gap function and also the equation

(3.4) the self and mutual inductances can be expressed as equation (5.59) [87].

2 2

L =2u,r[a, (N, cos(k — j)a + N4;) cos7(k — j)a+|\2|—55c035(k— e

2
+ I\|—3cos 3(k—-)a)+ 1 (alle)cos(—Z(k - J)a+26.)
9 2 (5.59)

1,a,N,’ . 1,a,N;’ .
+ = (22=)cos(-6k(k — j)ar+66,) +=(==-) cos(~10k (k -
5 S )cos(-6k(k = J)ar+66,) + o )cos(=10k(k - j)a

a,N.’ 2
+1006,) + (ﬁ) cos(—14k(k — )a+146,)], a = 5

Where “k” and ‘j’ represent the machine phase number according to Table 5.1, ““ @; ™ are the

2

coefficients of the Fourier series of the air gap function, presented in equation (5.58) and “N,

represents the coefficients of the Fourier series of the winding functions. For example, the self-

inductances of the phase ‘a’ can be expressed as equation (5.60).
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Table 5.1 The corresponding numbers for k and j.

Name of The Phase Kand j
a 0
b 1
c 2
d 3
e 4
f 5
g 6
h 7
i 8
2
a(N12+ +N3 j+i(N12+N3N1+N7N N,N, jC s(20,)
9 | 2 3 3% 35
2
La = 271111, + "*ZZ(NSN N9~°> + N15N5 N, ]Cos(60) (5.60)
2 2
5['\“'\'3 oNs | N3N7JCos(1oer)ﬁc:os(149r)
2\ 21 25 21 98

Neglecting the coupling terms between the different harmonics of the turn function results

2 2 2
a, N12+N7 +N5 +N3
49 25 9

)Cos( 2Ka +26.)
(5.61)

Labc...l = Zﬂrlluo +

[NT]COS( 6Ka +66.)
{—JCOS( 10K« +1086.)

2
aN,’

Cos(-14Ka +146,)
98

Finally, the inductances can be arranged in the matrix of equation (5.62).
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Lah Lai
Ly L
Lch Lci
Ly Ly
I-eh Lei
L, Ly
(] Lgh Lgi
L + Loy Ly
Ly L + L

Then using the transformation matrix of the equation (5.63) the various components of the

inductances in stationary reference frame can be obtain.

T(0)=

[ ¢(9)
s(6)
c(36)
s(36)
c(50)
s(50)
c(76)
s(70)
| 1/2

2r

c(f-a)
s(0-a)
c3(60-a)
s3(0-a)
c5(0 - a)
s5(6 - a)
c7(0—a)
s7(0-a)
1/2

a=—,0=0

9

c(f-2a)
s(6 -2a)
c3(6 -2a)
s3(0-2a)
c5(0 - 2a)
s5(60 - 2a)
c7(f0-2a)
s7(6 -2a)
1/2

quo =T (O) LssT _1(0)

c(@-3a)
s(60-3a)
c3(60-3a)
s3(6—-3a)
c5(6 - 3a)
s5(6 - 3a)
c7(0-3a)
s7(60-3a)
1/2

c(f-4a)
s(0-4a)
c3(0 - 4a)
s3(0-4a)
c5(0 - 4a)
s5(6 - 4a)
c7(0-4a)
s7(0-4a)
1/2

c(6-5a)
s(60-5a)
c3(6 - 5a)
s3(6 —5a)
c5(6 —5a)
s5(6 —5a)
c7(0-5a)
s7(6 -5a)
1/2

c(6-6a)
s(0-6a)
c3(6 -6a)
s3(0 - 6a)
c5(6 —6a)
s5(6 —6a)
c7(0-6a)
s7(6 -6a)
1/2

c(@-Ta)
s(@-Ta)
c3(0-Ta)
s3(0-Ta)
c5(0 - Ta)
s5(0-Ta)
cr(@-Ta)
s7(0-Ta)
1/2

c(6-8a) |
s(60-8a)
c3(6-8a)
s3(6—8a)
c5(6 -8a)
s5(6 - 8a)
c7(0-8a)
s7(60-8a)

172 |

(5.63)

(5.64)

The qdo model of the machine can be obtained by transforming the natural variable equations

to the stationary reference frame. The third qd sequence equivalent circuit to be used for the rotor

angle estimation, has the g and d inductances expressed in equations (5.65) and (5.66), which are

clearly dependent on the rotor angle. Hence the third sequence equivalent circuit, which is non-
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torque producing, will be used to modulate the high frequency voltage to estimate the position of the

rotor.
N 2
L, =1.06(a, TS)(:os((ser ) (5.65)
N32 V4
Ld3 = 106(&2 T)COS(69I. + E) (566)

A high frequency voltage set according the equation (5.67) is injected into the third sequence
of the nine-phase IPM in the stationary reference frame to generate the rotor angle dependent

component of the stator currents.
V., Cos(a,t) (5.67)
W | _ . .
V,, Cos(a,t - E)

The voltages of the equations (5.67) can be transformed back to the stationary reference
frame to give equation (5.68). It should be noted that in the injected vector of the equation (5.68) all

the components excluding the third ones (First, Fifth, Seventh) are zero:

V, 0 [ cos(at)

V, 0 cos(—3a + w,t)

V, Vq3 cos(—6a + o t)

V, Vi, cos(—9¢a + at)

V, |=T0) 0 [=V|cos(-12a+al)| ,a= 2% (5.68)
V, 0 cos(-15a + at)

v, 0 cos(—18a + w t)

V, 0 cos(—21x + ayt)
v, | 0 | |cos(-24a +at) |

Using the qd inductances in equations (5.65) and (5.66), the voltage equation for third

sequence of the machine in stationary reference frame can be expressed as equation (5.69).
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Vel Cos(a,t) i Ao
= . |=r] " |+p
Vd3 Cos (a)st - E) a3 ﬂds

The q,d, flux linkage equations are:

/1d3 0 Ld3 id3
The equations (5.69) and (5.70) result in:

2
Cos(w,t) qu %COS(GQ)

A Cos(a)st+%) =T P

s| =

|d3 O

Applying the derivations result in:

60,a,N,’

Acos(at) = Ky —Tssin(wr)iqs + a2§3

S

2
Asin(@,t) =i, +%cos(eer)id3 + &N

cos(66,) pi

sin(66,) piy;

The general form of high frequency current iqd3 can be obtained using the harmonic balance

technique [167]. The general form of the high frequency current is assumed to have the form of

equation (5.74).

NP ICY
lyas = 1€

By separating the g and d axis components of the high frequency current they could be

expressed as:

i3 =1cos(4)
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43 = 1sin(8) (5.76)

Substituting the currents in to equations (5.72) and (5.73) result in:

: . 6m.a,N,; : wa,N,’
Asin(at) =1, + Tcos(Ger)l sin(é) +Tcos(66?r)l cos(6) (5.77)
2 2
Acos(at) =i, — 6a)wil\%sin(&%)l cos(6)) —%COS(GQM sin(6) (5.78)
Where o, = ddét’r and o d?' The last equations can be expanded to equations (5.79) and
(5.80).
2
Acos(at) = rigs — %[sin(wr +0)+sin(66. —0,)]
(5.79)
2
_28Ns 16060, +6) +sin( —66,)]
2
Asin(@,t) = iy, +>2%Ns U ineo. + ) +sin(o, —60,)]
(5.80)

@,3,N,°|
+ 2223 _[cos(66, +6,)+cos(66, —6)]

Neglecting the first and the second term because of their low magnitudes compared to the

third one results in:

Alcos(wt) + jsin(w)]= (5.81)

03N, I[ sin(66, +6,) +sin(60, —6,) + jcos(66, +6,) + jcos(66, - 6,)]

The currents can be expressed in the polar form as:
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2 . /1 . T
wa,N;" g EOrO)  006-)

Aell@t) — (5.82)
18
From equation (5.82) the harmonic balance technique results in:
(66, + 0 +%):a)st—>¢9i = ot 60, —%
(5.83)

—(60, -0 -Dy=at >0 =0t +60, -2
r 1 2 S 1 S r 2

The 0,d, currents due to the high frequency voltage set expressed in complex form are given

as:
(60, +at-2) (60, +at-2)
| = | 2" 1 ].e 2 (5.84)
1 2
Where:
L __ 18A
ey (55

It should be noted that the mentioned currents here are the components due to the interaction
between the machine saliency and the high frequency currents of the stator. The high frequency

currents arguments have two angles, one angle is related to the frequency of the injected high

frequency voltage (wst) and the Second angle related to the rotor angle (¢, ). To extract the rotor

)

position information, the signal of equation (5.84), is multiplied by e_J(wst which results in:

(66, -2) i(-66,-2)

_18Ae 2 N 18Ae 2 (5.86)
(a)i)a2N32 (C‘)i)azN?,2

qu3

363



A low pass filter can remove any remaining high frequency noise that may still lingers in the
equation (5.86). The output of the filter has a variable magnitude which varies with the rotor speed.

Normalizing that can be done by using the equation (5.87).

i i
T q3 T d3 5.87
Inq3 - ’ Ind3 - ( )

.2 . 2 < 2 - 2
|q3 + 143 Iq3 +1y3
Equation (5.88) presents the signal after normalizing. This signal can be used as the input of

the observer.

. j(66,-%)  j(-66,-2)
=€ 2 +e 7 (88)

5.4 Design of the Position Observer
5.4.1 Design of the Luenberger Observer

The high frequency voltages injected to the stator windings of the machine can generate the
position dependent signal which is used for the estimation. To extract the information carried by the
high frequency current a proper estimator needs to be designed. The mechanical dynamic equations
of the rotor can be used for designing the position estimator.

Based on Figure 5.7, the mechanical dynamic model of a rotor is:
2]
5 Po +Bo =T.-T, (5.89)

PO =, (5.90)
In the above equations the ‘P’ is the number of the poles of the machine, ‘B’ is the friction

coefficient, ‘J’ is the momentum of inertia of the rotor, * 8, is the rotor position, ‘T,’ is the

electromagnetic torque produced by the machine and ‘T;’ is the load torque.
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TL Te  Wr

Figure 5.7: The rotor of the machine.

The dynamic equations of the rotor are presented in equation (5.91). Using that, the observer
can be designed as equation (5.92) which is the standard form of a close loop observer [160]. In
this equation ‘A’ represents the system matrix, ‘B’ is the input matrix, ‘U’ is the input of the system,

‘C’ 1s the output matrix and ‘X’ represents the state vector of the system.

X = AX +BU (5.91)
Y =CX
X = AX +BU +K(Y —=CX) (5.92)

In the equation (5.92) the term X is the estimated state variables. The error between the

estimated and real state and also the derivation of the error are:
e=X-X (5.93)
a3 (5.94)
Substituting the X and X from equations (5. 93) and (5.94) in to the (5.92) results in:
é=AX +BU — AX —BU + K(CX —CX) (5.95)
Rearranging the equation results in:

¢=A(X = X )+ K(CX —CX) = Ae + KCe (5.96)
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The standard form of mechanical dynamic equations can be written as:

PB P P
@ -~ 0lo _ -
p[ r} 2] {er} 20 T-| 21 I (97)
1 O™ 0 0

The observer is a closed loop one. According to the equation (5.88) the input signals carry
the information of the position, therefore to be able to compare the output and the input, the output

of the system has to be the position. Based on that the output is defined as:

Y =0 1][

@, (5.98)
9

r

Substituting the mechanical dynamic equations to the observer equations results in:

N PB . A P 5.99
Ppo, = _E . + Kl(gr _er)_'_Z(Te _TL) ( )
pér = é)r + KZ(gr _ér) (5.100)

Using the equations (5.99) and (5.100), the position estimator can be built according to

Figure 5.8.

To design the observer gains ( K, , K,) the characteristic polynomial of the observer is

needed. The characteristic polynomial of the observer can be derived using the procedure outlined

below.
The errors can be defined as:
e =, _a3r (5.101)
e, =0, — ér (5.102)

Therefore, the derivative of the rotor speed error can be shown as:
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er ‘/\8 K - Te R 1 ér
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) K|1
0, S

sz

Figure 5.8: The position observer.
pe, = pa, — pé, (5.103)

Substituting the actual and estimated rotor speed from the mechanical dynamic equation

and the equation (5.99) in to the equation (5.103) results in:

P PB P PB . ~ (5.104)
pe; ZE(Te _TL)_Ea)r _E( e _TL)+§a)r - Kl(gr _0r)
This equation can be rearranged as:
PB . A PB 5.105
pelzz(a)r _a)r)_ Kl(er_er):_zel_Klez ( )
To have zero position error, K; needs to be replaced with a Pl which can be represented as:
PB K (5.106)
pe, = _Eel _(Kpl + ﬁjez
Also the derivative of the e, can be defined as:
pe, = p(6, ~&, )= p6, - p, (5.107)

Substituting the derivations of the actual and estimated positions from equations (5.99) and

(5.100) results:
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pe2 = pa)r - pé\)r - KZ(er - Hr): e.l. — K282 (5108)
By defining a new state variable as equation (5.109) the state space equations of the observer

can be represented as equation (5.110).

pe; =€, (5.109)
PB i
€ _E ~ N1 Ky €
pe;,|=| 1 -K, 0 |e (5.110)
€, 0 1 0 |&

The characteristic polynomial of the estimator can be derived as:

PB
A+E Kpl Kll
M-A=l -1 A+K,, 0 (5.111)
0 -1 A

PB PB PBK
(ﬂﬁ-zj(ﬂz-l-ﬂ,sz)‘i‘(ﬂ,Kpl‘i‘K|1)=13+12(Kp2+5j+2’( 2J = +KP1J+K|1 (5112)

Setting the above equation equal to the third order Butterworth polynomial [161] results in:

(5.113)

PBK
2 +;€(Kp2 +Ej+,1( P2 4 KP1J+ K, = A +20, +20% A+,
2J 2J

The mechanical parameters of the machine can be found in the Table 5.2 [153].

Table 5.2 The mechanical parameters of the machine.

B 0.01 N.m.sec/rad
J 0.1 N.m.sec?rad
Rotor Rated Speed 377 rad/sec

To be able to operate in all operating range the frequency of the polynomial should be
selected to be bigger than the maximum rotor frequency and the frequency of the speed controller

loop in equation (5.34).
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@, > Oy _patted > W, (5.114)

Using the equation (5.114) the © @), is selected to be 500 (rad/sec). Therefore, using the

equation (5.113) the coefficients of the observer can be designed as:

PBK

(5.115)
= 2% +1000.4% + 5000004 +125000000
. I
(jco_,t—GH,_—%) (76@*%) 9
e e*jwsr le ' Low Pass ——’.
Filter a3
(@

I g3 Inq 3 +
Normalization

_ ndSm
I f
d3 [Cos(6d)5in 69)
P

Normalization Heterodyne Observer
(b)

Figure 5.9: (a) The block diagram used to extract signal for observer, (b) The Luenberger

observer.
Substituting machine parameters from Table 5.2 in to the equation (5.115), the different

coefficients of the observer can be calculated as:

5.116
(sz + PBJ 1000 —» K , =999.9 ( )
2J
PBK _, (5.117)
[ >3 P2 ij =500000 — K, =499900.1
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K,; =125000000 (5.118)

The input of the Figure 5.8 is ‘6,.” while the observer is fed with the currents generated from
high frequency signal injection. The input signals which are derived in the section 5.2 have the form
of the equation (5.88) by separating the real and imaginary parts of the signal they can be shown as

equations (5.119) and (5.120) respectively.

ie = Sin (66,) (5.119)

I,45 =C0S(66.) (5.120)

To extract the rotor position from the above signals a function is needed to extract the ‘6,.’
and subtract the output value from it and to obtain the error. The first solution for this case is

proposed according equation (5.121).

& = i,xCos(6, )—i,4,Sin(60), ) (5.121)
Substituting the currents from equations (5.119) and (5.120) in to the (5.121) results in:
£ = Sin(66,)Cos (66, )- Cos(66,)sin (66, )= sin(66, —64), ) (5.122)

At the steady state when the observer is tracking the real position the equation (5.122) can

be approximated as:

¢=sin(60, 66, )= (66, -6, ) (5.123)

Therefore, by substituting the block that generates the estimation error ( £ ) in the Figure
5.8 by the equation (5.122) and also adding the normalizing block and low pass filter, the observer
can be changed to the one shown in Figure 5.9. The observer has four parts as shown in the Figure

5.5. The first part is normalizing part that normalizes the input signals which have a variable
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magnitude to bring the magnitude to unity. The second part is heterodyning to compare the input
position with the estimated one and calculate the error between the input angle and the estimated
angle. The third part is the PI controller of the observer to force the observer to operate at zero error
in steady state. And the last part is the mechanical model of the rotor to calculate the rotor speed

and the rotor position.
5.4.2 Design of the Low Pass Filters

According to the Figure 5.9 the observer also has a low pass filter which removes the extra
high frequency components of the signals after the heterodyning process. The low pass filter

general form is presented in equation (5.124).

C()zn
82 42&0,S + @’

f (5.124)

Where ¢ 5 ” is the damping factor of the filter and “ @,, ’ is the cut frequency. The frequency

of the high frequency signal that is injected for position estimation is more than 6000 (rad/sec)
therefore, the cut frequency of the filter needs to be below this value to be able to remove the

remaining of the harmonic distortions after heterodyning. By selecting the cut frequency equal to

1000 (rad/sec) and * &> equal to \/E , the transfer function of the filter can be presented as equation
(5.125).

. 10°
S2 +24210%S +10°

(5.125)
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5.4.3 Robustness of the Observer

The stability of the observer that is designed in this section can be affected by changings of
some variable parameters, such as the changings of the third sequence inductances of the machine
by increasing the stator current. In this section the poles of the third sequence circuit are plotted for
different stator current levels. It should be noted that the Lunberger observer is using the mechanical
dynamic equation which is independent of the machine inductances, therefore, the stability of the
observer just depends on its gains which are designed to be stable. The filters are also independent
of the machine parameters, therefore, their stability cannot be affected by the changes of parameters.
The dynamic equation for the third sequence circuit is presented in the equation (5.71). To
investigate the stability of this circuit, the third sequence inductances are needed for the all ranges

of the stator current. The equation (5.71) can be expanded as equation (5.126).

'vqg}: {iqg}{—fserqgsin(Ger) 0 }{iqg}r
Vs | s 0 6, L5 €0S(66,) | iys (5.126)

L5 c0s(66,) 0 ) ig3
0 L,,sin(60,) || i,

Equation (5.126) can be rewritten in standard form as equation (5.127).

pX = AX +Bu

Y =CX + Du (5.127)
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p_ﬂ =
|d3

L,,5in(66,)(6, L, sin(66,) -, ) . l
0.5L5L455in(36,) I3
0 Ly €05(66,)(6, Ly c05(66,) -1, ) | iy,
0.5L45L455in(36,) | (5.128)

1 L,,sin(66,) 0 Vi,
0.5L,L4,5in(36,) 0 Ly;os(66, )| V,,

Y = B ﬂﬁq?} (5.129)
d3

For 9 = K% K =1,2,3,... the “A’ matrix is not defied. Therefore, the stability of such points

need to be checked separately. For ¢, = K% ,K =1,2,3,... the third sequence circuit model can be

presented as equation (5.130).

Vs -1, ?q3 N 0 0 -iqg .\ L O 5 ?q3 (5.130)
Vd3 lis 0 6(()rLd3 s 0 0 i

First and second rows of the Equation (5.130) can be separated as shown in equations

(5.131) and (5.132).
Vs =3 + Plysiys (5.131)
Vs =y +60, Lyslys (5.132)
The equation (5.131) has a pole in (S = —rS/Lq3) therefore, it is stable. The equation (5.132)

is algebraic and it is stable. For the rest of the points the characteristic equation of the system is

needed. The characteristic equation of the matrix A can be presented as equation (5.133).
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S1 - A=

- Ld3sin(6¢9r)(6a)qu3sin(69r)— r) o, b cos(66,)(6w, L, cos(66,) —r,) _
0.5L,,L4,5in(36,) 0.5L,,L4,Sin(36,)

(5.133)
S? s L,,sin(66,)(6es, L,;sin(66,) - r)+ L,; cos(66,)(6e, Ly, cos(66,) - r,) .
0.5L5L458in(36,)
(Lys in(66,)(6, Ly, 5in(66,) — 1, )l Ly cOS(66, ) (60, Ly; cOS(66,) T, ))
(0.5L,5L,55in(36,) f
gX 10 |
o I‘q3 o Ld3
6
P
g4
T
5!
O o _
0 4 8 12 16 20

Ampere
Figure 5.10: The magnitude of third sequence inductance of the stationary reference frame
versus stator current.
Using FEMM the magnitude of g and d inductances of the third sequence versus the RMS
value of the stator current are generated as Figure 5.10. Using the inductances of the Figure 5.10
the poles of the equation (5.130) can be plotted as Figure 5.11. It can be seen that for all the ranges

of the stator current the poles are stable.
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Figure 5.11: The poles of the third sequence circuit for different stator current levels.

5.5 Implementation of the Sensorless Nine-Phase IPM Drive

5.5.1 Discretizing the Controller

The controllers that were designed in the previous sections of this chapter are discretized
and translated to C++ language and implemented in the DSP. The discretizing process can be done
using the dynamic equations of the controller. Form the equation (5.25) the equation of the speed

control loop can be discretized. The equation (5.25) is repeated in equation (5.134).

P, = (pr + KS"" j(wf -, )= Our (5.134)

As it can be seen this equation is in the ‘S’ domain. To convert it to the ‘Z’ domain the ‘S’

can be replaced by Tustin approximation which is one of the simplest ‘Z’ domain approximations
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and therefore, it is easy to implement in DSP [159]. The Tustin approximation of the term ‘S’ is
represented in equation (5.135).
21_771 (5.135)

T1l+z"
Where: T is the sampling period of the controller. By substituting the equation (5.135) in

to the equation (5.134) the controller loop can be rewritten as:
25, [1-2)=(2K,, -2 )+ T+ 22K, o —a,) (5.136)

The equation (5.136) can be rewritten as:

2560!’ _25a)rz - 2KP(uea)r 2KPa) +TKI(oea)r +TKI(UZ e (5137)
Where:
e, =aw —o, (5.138)

. -1 .
In the above equations the term ¢ Z ~’ represents one delay. Therefore, it can be replaced
by a delay in the sampling process. The resulting equation can be presented as:

(K)=K (K)-Kge, (K—-1)+ (5.139)

(or Pa) r

T

(K)+ K€ (K =1)+ 6, (K ~1)

Ia) r r

Where K is the sample number. The output of this control loop can be used to generate the

reference of the g axis current according to the equation (5.140).
-k 4 4 -k
(Luger = Lora fiaar (K)+ 55 (80 (K) + TL () A e (K)
, (5.140)
4
- —0, (K)+T, (K =
0,00+ T.()]

The reference of the q axis current that is generated by the equation (5.140) can be used in
equation (5.141) to generate the reference current of the d axis current. The equation (5.141) is the

same as equation (5.24) that is derived from the minimum loss strategy.
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) Apmr .
_ pmdlr + pmd1ir + 4 qlr(K)2

(Ldldl - quql) (Ldldl —Lyg )2 (5.141)
2

Now the g and d axis currents reference can be used in the current regulators dynamic

i"g1r (K) =

equations to generate the output voltages. The equation (5.142) shows the dynamic equation for the

g axis current.

k
5qS(K)=[qu +?'qjeiq(K) (5.142)
Where:
6, (K) = ("ar (K) —ig, (K)) (5.143)

Substituting the ‘S’ from the equation (5.135) into the equation (5.143) results in:

2(1-27)5,,(K) = 2K, (1— 2% e, (K) + T kg (L+ 270 e, (K) (5.144)

-1
In the above equation the term ¢ Z ~ is one step delay therefore the equation (5.144) can be

rewritten as:

ei
G (K) =K g (K) =1 (K 1)+ 2K, T ki (K)

(5.145)
+2K T K€y (K =1) +8,, (K ~1)

The current regulator for the d axis current also can be discretized using the dynamic

equation of the d axis controller.

645(K) :(Kpd +%)eid(K) (5.146)

Where:
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€id (K) = i*dlr(K) - idlr(K)

(5.147)
)iy () x| |
(K =("ar (K)—igy () Tarr | [ g Ars \/ s
& l * ! Z(Ldldl_l'q]ul) 4(Ldm1_me)z+l°ﬂ’
5qS(K)=queiq(K)—%(K—1)+2KPQTkiqeiq(K) |

€ (K)= i e (K) _idlr (K) "_@

Fis(K) = K14 €4(K) =K1 €4 (K1)

+ 2K, T Ko (K —1) 8,0 (K ~1)

!

Vqlr(K) = 5qs(K)_wr(K)Ld1d1id]r(K) _wr(K)’lpmdu

5Ky (K) 2 Ky (KD +,(K-D

¥
Tur (K) =Ko, (K) - Ko e, (K-1) ler (K) = (Sds(K) +a (K) quqliqlr (K)

47 K (K47 K (K D)+, (K1) ) !

)
(quql - Ldldl)ziqer(K) +

6,0+ T () gL (K) -

(;(EM(K3+TL(K))jZ=O

T,

Figure 5.12: The controller flow chart of the IPM machine.

Substituting the ‘S’ from the equation (5.135) into the equation (5.146) results in:
264, (K) =227'6,,(K) = 2K 48 (K) — 2K 4 (K)z™

(5.148)
+TK8 (K) +TK4e4 (K) 2™

-1 :
And finally after substituting the term ¢ Z ~ by one delay step, the equation (5.148) changes
to:

T T
355 (K) = Kpg@ig (K) = Kipglig (K =D + 2 Kig€y (K) + S Kigig (K =D+ 55, (K =1) 514

Now the output of the current controller loops can be used to generate the voltages of the q

and d axis. The voltages can be generated from equation (5.150).
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Varr (K) = 845(K) + @, (K) Lyygrl, (K) (5.150)

Also the voltage equation for q axis can be expressed as:

Vqlr (K) = 5qs(K) - a)r (K)Ldldlidlr (K) - a)r (K)ﬂ‘ (5151)

pmdlr

Using the generated discrete equations, the flow chart of the machine controller is generated

according to Figure 5.12.

5.5.2 Discretizing the Position Estimator

The position observer (designed in section 5.4) is composed of low pass filters, heterodyning
and Luenberger observer. All the components should be discretized to be implemented in the DSP.

The first step is to discretize the filter. The filter transfer function is presented in equation (5.152).

f = 10° 5.152
S2 +1414S +10° (5.152)

Now, to derive the discretized function the term ‘S’ can be substituted with the equation

(5.153).

I 10°

o]

f=—= 5 (5.153)

|in -1 51 )

(?i Z_lj +1414($i Z_l}rlo6
+ 7z +Z

Then finally to implement the equation in the DSP is written in the below form.

¢ o _ (T+z*)f10° (5.154)

i al-zf +2828(T(1+ 21— 2)+10°(T (L+ 2 )f
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Figure 5.13: The flow chart for the filter.
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(L0° T i, (K)+2x10° Ty, (K —1)+10 Tim(K—Z))J (5.155)

—(997172T + 4)i, (K — 2)—(2x10° -8}, (K —1)
(1002828 T + 4)

io(K)=[

Now the filter can be shown in the flow chart of Figure 5.13. For the observer (shown in

Figure 5.14) itself (with B=0) transfer functions can be generated.

K
&, f+ Ko < (5.156)
= @
g JS P2
~ aA)r
0, =% (5.157)

By combining the equations (5.156) and (5.157) the transfer function between the input

error and the output can be generated as:

é: K+ 5K, + K ,S° (5.158)
g Js°
PB
2]
T|
O ‘(\8 K L L 1 + wr‘l ér
4 i 35 s
) K|1
0, S
sz

Figure 5.14: The position observer.
Finally, after transferring the equation (5.158) to the ‘Z’ domain the observer transfer

function can be represented as:
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4, KulTlr ) +2K,0- zl)(T((1+ zl))Z + 3K, (2= (T 2Y) (5.150)

And from there:

236, =—230,(-321+322 - 2)+ K, T3(1+32" +32 2 + 2°%)

(5.160)
2K, T2zt =22 —2°)+4TIK ,(l-27 — 22 +27°)
230,(K)=636,(K -1)-630,(K —2)+ 236, (K —3)+ K, T?¢(K)
+3K T?e (K -1)+3K, T (K -2)+ K, T’s (K —3)+ 2K ,,T ?(K)
+2K, T2 (K -1)-2K ,T?e(K —2)- 2K ;T ?e (K —3)+ 4TJIK ,,&(K) (5.161)
—4TIK & (K —1)—4TIK & (K —2)+4TIK ,,&(K —3)
Where:
g(K):er(K)_ér(K) (5.162)

Using the Equation (5.162) the flow chart of the observer can be presented as Figure 5.15.

5.6 Sensorless Nine-Phase IPM Drive
In this section, the performance of the designed position observer and the controller are
verified wusing simulation and experimental results. The simulation is done using
MATLAB/Simulink and the experiment is done using DSP-FPGA controller.

5.6.1 Constant Volt/Hz Open-Loop Operation

In the first step, to check the performance of the proposed observer, the full order model of

the 2hp, nine-phase IPM machine is simulated and the high frequency voltages are injected in
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addition to the fundamental voltage under a constant Volt/Hz (v/f =1.8) open-loop operation.

The high frequency voltage (980Hz), (5V peak) set is injected in the third sequence channel of the
machine. In simulation the initial speed of the machine is set at the negative rated and it increases
to zero and after a short stop, the speed increases to the positive rated speed. Similarly, the proposed
rotor angle estimation method has been implemented on a 2hp, nine-phase IPM using a DSP-FPGA
controller which controls the machine via a nine phase voltage source inverter (switching frequency

of 6 kHz).
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™
. Y
t T {ki>30>—  Ki=0 —+
Get € \
1
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L>30 L=0
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N

Figure 5.15: The flow chart for the observer.
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Figure 5.16: Simulation results for the nine-phase voltages applied to the stator windings.

The discretized model of the observer has been implemented in the DSP (DSK
TMS320C6713). The current sensors are connected to the controller with nine Analog/Digital
converters with the sampling rate of 50 kHz. After generating the high frequency voltages inside
the DSP they are sent to the FPGA which generates the PWM pulses for the inverter. Figure 5.16
and 5.17 show stator voltages after high frequency injection for simulation and experimental results

respectively.

Vv 1.8f cos(f x27t)+5c0s(980x 27t) ]
1.8f cos(f x27t+a)+5cos(-3a —980x 27t)
1.8f cos(f x 27t +2a)+5c08(—6c —980x 27t)
1.8 cos(f x 27t +3a)+5c0s(-9a —980x 27 t)
1.8 cos(f x 27t +4ar)+5c0s(~12a — 980 x 27 t)
1.8 cos(f x 277t +5a)+5c08(~15¢ — 980 x 27 t)
1.8f cos(f x 27t +6ar)+5c0s(~18a — 980 % 277t)
1.8 cos(f x 27t +7ar)+5c0s(~21cr —980x 27 t)

| 1.8f cos(f x 27zt +8a)+5c05(—24c —980x 27t) |

a

< <

o

<

(5.163)
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Figure 5.17: Experimental results for the nine-phase voltages applied to the stator windings,

(a) Phases ‘a’, ‘d” and ‘g’, (b) Phases ‘b’, ‘e’ and ‘h’, (¢) Phases ‘c’, ‘f” and ‘i’ (40 Volt/scale).

Nine-phase currents of the machine for simulation and experimental results are shown in

Figures 5.18 and 5.19 respectively. From these figures, the effect of the stator magnetic saturation
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can be seen in the practical results. These currents are used for controller feedback and position
estimation. Using the transformation matrix of equation (5.63) the different components of the nine

phase currents are extracted which can be used for control and position estimation. The fundamental
component of the stationary reference frame currents ‘14, > and ¢ iql > for simulation and experimental

results are shown in Figures 5.20 and 5.21 respectively. These currents can be used for the controller
feedback. From this current it can be seen that, the practical results show more harmonics compared
with the simulation result. The harmonics of the practical results are coming from some details that

are not modeled in simulation such as stator magnetic saturation.
The third sequence (g.d:) circuit currents (id3,iq3) for simulation and experimental results are

shown in Figures 5.22 and 5.23 respectively. These currents are used for the rotor position
estimation. Currents of Figure 5.22 and 5.23 have a variable magnitude which are due to the
interaction between the rotor saliency and the high frequency injected voltages. The time scales of

these figures are selected such that to show the variable magnitude of the signals.

Amperes
o

0 0.05 0.1 0.15 0.2
sec

Figure 5.18: Simulation results for nine phase stator currents.
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Figure 5.19: Experimental results for the nine-phase currents of the stator windings, (a) Phases
‘a’, ‘d’ and ‘g’, (b) Phases ‘b’, ‘e’ and ‘h’, (c) Phases ‘¢’, ‘f” and ‘i’ (5A/scale).
It is noted that since the high frequency currents are extracted using the sequence analysis

in the stationary reference frame, there is no need for heterodyning and high pass filtering of the
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phase currents to extract the high frequency signals from the nine phase currents as required in most

of the existing methods.
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Figure 5.20: Simulation results for fundamental sequence current in stationary reference

frame (iqz, id1).
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Figure 5.21: Experimental results for fundamental sequence current in stationary reference

frame (iqz, id1).
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Figure 5.22: Simulation results for third sequence current in the stationary reference frame

(igs, lds).
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Figure 5.23: Experimental results for third sequence current in the stationary reference frame

(g3, 1d3).
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Figure 5.24: The spectrum phase ‘a’ current (Simulation results).
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Figure 5.25: The spectrum phase ‘a’ current (experimental results).

The spectrum of the stator phase currents in the high frequency ranges are shown in the
Figures 5.24 and 5.25 for simulation and experiment respectively. The spectrums show the presence

of the current component with the same frequency as the frequency of the injected voltages (980

Hz).
Beside the 980 Hz signal, there is another signal with a lower frequency (a)s —6a)r) related

to the rotor speed (pointed in the figures). The signals pointed in the figures can be extracted and
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used for the position estimation. The electromagnetic torque of the machine for simulation and

experiment are shown in the Figure 5.26 and 5.27 respectively.
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Figure 5.26: The developed electromagnetic torque showing a low ripple content in

electromagnetic torque (simulation results).
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Figure 5.27: The developed electromagnetic torque (experimental results).

The third sequence currents, after heterodyning, are shown in the Figures 5.28 and 5.29 for

simulation and experimental results respectively. These currents are filtered to remove their extra
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high frequency parts and also they are normalized to have unity magnitude to be compatible with

the observer.
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Figure 5.28: The third sequence of the current in stationary reference frame (ig3, ia3) after

heterodyning and filtering (simulation results).
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sec.

Figure 5.29: The third sequence of the current in stationary reference frame (igs, ia3) after

heterodyning and filtering (experimental results).

The resulting currents after, filtering and normalizing, are shown in the Figure 5.30 and 5.31

for simulation and experimental results, respectively.
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Figure 5.30: The third sequence of the current in stationary reference frame (ign3, ian3) after

normalizing (simulation results).
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Figure 5.31: The third sequence of the current in stationary reference frame (ign3, idn3) after
normalizing (experimental results).
In the third harmonic currents, the measured currents show more ripples than the simulated

ones. The ripples are mostly coming from sampling noise of the prototype.
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Figure 5.32: (a) The estimated and simulated rotor angle (simulation results), (b) The position
estimation error (simulation results).
These currents are injected to the observer to obtain the position of the rotor. The plots of
the estimated and actual rotor angles along with the estimation error are shown in Figures 5.32 and

5.33 for full order machine model simulation and experiment respectively. It is observed that, in
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the negative, positive and also zero rotor speed regions the rotor position observer follows the rotor

position precisely.
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Figure 5.33: (a) The estimated and measured rotor angle (experimental results), (b) The estimation
error (experimental results).

The error of the position in Figures 5.32 (b) and 5.33 (b), are mostly due to the natural delay

of the observer and the filters. It can be seen more clearly at the moments when the angle jumps

between ‘0’ and ‘2w’. At these moments the error appears as big spikes. At zero speed, when there

IS no jumping, the spikes cannot be seen. Figures 5.34 (a) and 5.35 (a) also show the estimated
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speed and rotor speed for the simulation and experiment respectively. It can be seen that the
estimator can follow the rotor speed accurately. The errors of the estimated speed are shown in the

Figures 5.34 (b) and 5.35 (b) for simulation and experimental results, respectively.
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Figure 5.34: (a) The simulated and estimated rotor speed (simulation results), (b) The speed

estimation error (simulation results).
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Figure 5.35: (a) The measured and estimated rotor speed (experimental results), (b) The speed

error (experimental results).

5.6.2 Vector Control Simulation and Experimental Results

The second test performed on the nine phase machine is a vector control drive in the rotor
reference frame. The designed controller (designed in section 5.2) is coupled with the position
estimator according to Figure 5.36. As it can be seen in the Figure 5.36, the high frequency signals
are injected in the third channel of the machine circuit. The high frequency injection is done in

controller level before transforming the voltages in stationary reference frame to natural variables.
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The simulation and experimental results for vector control are presented in this section. The
simulation and experiment run for 20 seconds and the load is a damping load according to equation
(5.164). The speed reference is a trapezoidal one that starts from zero and covers positive and

negative rotor speeds.

T =0.0lo, (5.164)
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Figure 5.36: The controller of the IPM machine with observer.

The following figures show the drive results. The rotor speeds for simulation and
experiment are shown in Figures 5.37 and 5.38 respectively. Figure 5.37 (a) shows the reference
speed and the rotor speed together. The speed error is also shown in the Figure 5.37 (b). It can be
seen that the drive can track the reference speed while operating in negative and positive ranges.
Figure 5.38 (a) shows the reference and feedback rotor speed from the experiment. The speed error
is also shown in the Figure 5.38 (b). The drive uses the controller in the rotor reference frame to

control the machine speed according to the trapezoidal speed reference of the Figure 5.38. In this
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drive the g axis reference current is generated from the speed error and the d axis reference current

is coming from the minimum copper loss strategy.
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Figure 5.37: (a) The rotor speed and the reference speed (simulation results), (b) The speed

error (simulation results).
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Figure 5.38: (a) Reference and rotor speed (experimental results), (b) The speed error

(experimental results).

Figure 5.39 show the simulation result of the g axis voltage in rotor reference frame. The
experimental result of the same voltage is also shown in Figure 5.40. It can be seen that by
increasing the rotor speed, when the load torque and consequently g axis current increases, the g

axis voltage also increases to let the machine supply the load. Figures and 5.41 and 5.42 show the
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output voltages of the controller loops for d axis in rotor reference frame for simulation and
experimental results respectively. The q and d axis voltages are transformed to real quantities and

the resulting nine phase voltages are used to generate appropriate nine-phase PWM signals.
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Figure 5.39: The g axis voltage in the rotor reference frame (simulation result).
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Figure 5.40: The q axis voltage in the rotor reference frame (experimental result).
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Figure 5.41: The d axis voltage in the rotor reference frame (simulation result).
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Figure 5.42: The d axis voltage in the rotor reference frame (experimental result).

The reference and simulated current of the d axis in rotor reference frame are shown in the
Figure 5.43. The reference current is generated from the q axis current according to minimum
copper loss strategy. It can be seen that the machine current tracks the reference. The reference and
feedback of the d axis current for experiment are also shown in Figure 5.44. In both of the figures
the reaction of the current regulators to the load torque can be seen from the changes of the current

magnitudes.
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Figure 5.43: (a) The d axis currents, reference and actual (simulation results), (b) The current

controller error (simulation results).
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Figure 5.44: (a) Reference and actual currents for the d axis in the rotor reference frame
(experimental results), (b) The error between the reference and feedback currents (experimental
results).
The reference and simulated current of the g axis in rotor reference frame are also shown in
the Figure 5.45. The reference current is generated from the speed control loop and it is clear that

the machine current tracks the reference.
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Figure 5.45: (a) Reference and actual currents for the g axis in the rotor reference frame
(simulation results), (b) The error between the reference and feedback currents (simulation
results).
The experimental results for q axis current is also shown in Figure 5.46. In both of the

figures, the q axis current varies with the rotor speed that changes the load torque.
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Figure 5.46: (a) Reference and actual currents for the g axis in the rotor reference frame
(experimental results), (b) The error between the reference and feedback currents (experimental
results).

The simulation and experimental results for electromagnetic torque of the machine are
shown in the Figures 5.47 and 5.48 respectively. The experimental results for the torque is measures
from the coupling shaft between the machine and the load. The load torque is generated by a DC

machine that operates as load. The DC machine has a fixed field current and the armature is
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connected to a load resistance. Figures 5.49 shows the simulation results of the nine phase currents
and Figures 5.50 and 5.51 show experimental results of the stator currents for speeds of 377 and
180 rad/sec respectively. Again from these figures, the effect of some non-modeled effects such as
stator magnetic saturation can be seen. The saturation causes some rotor position dependent

variations in the stator inductances and consequently results in low frequency ripples in the currents.
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Figure 5.47: The electromagnetic torque of the IPM machine (simulation results).

10

o [\ \n

pd | \,\l\

'100 5 10 15 20

sec.
Figure 5.48: The electromagnetic torque of the IPM machine (experimental results).
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zoomed in view of currents for rotor speed equal to 180 and 377 rad/sec respectively.
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Figure 5.50: The nine-phase currents of the machine for phases, (a) ‘a’, ‘d’ and ‘g’, (b) ‘b’, ‘e’

and ‘h’, (c) ‘c’, ‘f” and ‘1’, rotor speed equal to 377 rad/sec (experimental results) (5 A/scale).
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Figure 5.51: The nine-phase currents of the machine for phases, (a) ‘a’, ¢

and ‘h’, (¢) ‘¢’
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, rotor speed equal to 180 rad/sec (experimental results) (5 A/ scale ).



10.1 102 103 104 105 106

10

9.9

9.8

9.7

sec.
(b)

Figure 5.52: (a) The dgs currents before heterodyning (simulation results), (b) The dgs currents

before heterodyning around the zero speed (simulation results).
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Figure 5.53: (a) The third sequence currents in g and d axis of the stationary reference frame

after heterodyning and filtering (experimental results), (b), (c) The zoomed view
(experimental results).
The third sequence of the nine-phase currents need to be extracted to be used for position

detection. The third sequence can be extracted using the transformation matrix of equation (5.63)
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Figure 5.55: (a) The dgs currents after heterodyning (experimental results), (b) The dgs currents

after heterodyning, zoomed view (experimental results).

To extract the low frequency component, the generated signals are multiplied to term e ~/@st
the result signals are shown in the Figure 5.54 and 5.55 for simulation and experimental results
respectively. It can be seen that the currents have a low frequency part which can be extracted using

a low pass filter.
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Figure 5.56: (a) The dgs currents after filtering (simulation results), (b) The zoomed view

(simulation results).
The signals of Figures 5.54 and 5.55 can be filtered to remove their remaining high
frequency components. Figures 5.56 and 5.57 show the simulation and experimental results for the

third sequence currents after filtering for simulation and experiment respectively.
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Figure 5.57: (a) The dqgs currents after filtering (experimental results), (b) The zoomed view

(experimental results).

It can be seen that the high frequency parts are removed by low pass filter and the position

dependent low frequency signals are remained.

The signals of Figures 5.56 and 5.57 are the signals that carry the information of the rotor

position. According to these figures, the signals have variable magnitude. To be able to use them

to feed the observer, they should be normalized (using equation (5.87)) to have unity magnitude.

Figures 5.58 and 5.59 show the normalized currents for simulation and experimental results.
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Figure 5.58: The normalized currents fed to observer. (simulation results).
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Figure 5.59: The normalized currents fed to observer. (experimental results).

From Figures 5.58 and 5.59, it can be seen that the magnitudes of the currents are fixed to

unity. Now the currents are suitable to be fed to the Lunberger observer that was designed in

pervious sections. The currents are fed to the Lunberger observer to estimate the rotor angle.

417



f
|
|
|
|
|
|
|

— Estimated Angle —Rotor Angle

84
®)
&
2
0 | | |
I i I
0 5 10 15 20
SecC.
@

Figure 5.60: (a) Estimated and simulated rotor angle (simulation results), (b) Estimation error
(simulation results).
Figures 5.60 and 5.61 show the estimated and rotor angle for simulation and experiment

along with the estimation error.
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Figure 5.61: (a) Estimated and measured rotor angle (experimental results), (b) Estimation error

(experimental results).

The Figures 5.58 t0 5.61 are repeated in the Figures 5.62 and 5.63 to show the zoomed views

of zero crossing intervals. The estimated and simulated rotor angles can be seen more clearly in
419

these figures.
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Figure 5.62: (a) The normalized currents fed to observer around rotor speed zero crossing
(simulation results), (b) Estimated and measured rotor angle (simulation results), (c) The

estimation error (simulation results).
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Figure 5.63: (a) The normalized currents fed to observer around rotor speed zero crossing
(experimental results), (b) Estimated and measured rotor angle (experimental results), (c)

The estimation error (experimental results).
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5.6.3 Low Speed Run

In this section the controller is tested for a low speed reference as the input command. The
speed reference starts from the zero and goes to a fixed speed at 10 (rad/sec) after drive settles
down to the steady state conditions a step load torque is applied to the rotor for 2 seconds. The

simulation and experimental results are shown in this section.

f f
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Figure 5.64: (a) The reference and rotor speed (simulation results), (b) Speed error (simulation

results).
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Figure 5.65: (a) The reference and rotor speed (experimental results), (b) Speed error (experimental
results).
Figures 5.64 and 5.65 show the reference speed and the rotor speed together along with the
speed error for simulation and experiment respectively. From Figures 5.64 (a) and 5.65 (a) it can

be seen that the drive can accurately follow the reference speed.

423



1.5

_Te _TL
1
S
- 0.5
0
0% 10 15 20
SecC.
Figure 5.66: The electromagnetic torque of the machine (simulation results).
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Figure 5.67: The electromagnetic torque of the machine (experimental results).

The Figure 5.64 (b) and 5.65 (b) show the speed error for simulation and experiment
respectively. Figures 5.66 shows the electromagnetic torque of machine and the load torque for
simulation and 5.67 shows the electromagnetic torque of machine for experiment. From both figures
it can be seen that, by applying the load, machine generated electromagnetic torque to keep the

rotor speed constant.
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Figure 5.68: The voltage generated by the current regulators in q axis of rotor reference frame

(simulation results).
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Figure 5.69: The voltage generated by the current regulators q axis of the rotor reference frame
(experimental results).
Figures 5.68 and 5.69 show the output voltage of controller generated in g axis of the rotor
reference frame for simulation and experimental respectively. It can be seen by applying the load

torque the q axis increases to let g axis current increase and generate the electromagnetic torque.
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Figure 5.70: The voltage generated by the current regulators d axis of the rotor reference frame

(simulation results).
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Figure 5.71: The voltage generated by the current regulators d axis of the rotor reference frame

(simulation results).

Figures 5.70 and 5.71 show the output voltage of controller generated in d axis of the rotor

reference frame for simulation and experimental respectively. It can be seen by increasing the q
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axis current and consequently d axis current, the d axis voltage increases in negative side to let the

essential d axis current flow to the machine stator.

qlr

qlr

10
sec.

15

20

Figure 5.72: The q axis reference and feedback currents (simulation results).
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Figure 5.73: The q axis reference and feedback currents (experimental results).

Figures 5.72 and 5.73 show the reference and measured currents in q axis of the rotor

reference frame for simulation and experimental respectively. The g axis current is generated from
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the speed error and it can be seen that, the g axis current increases when the load torque is applied

to the machine shaft.
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Figure 5.74: The d axis reference and feedback currents (simulation results).
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Figure 5.75: The d axis reference and feedback currents (experimental results).

Figures 5.74 and 5.75 show the reference and the feedback values for the d axis current for
simulation and experiment respectively. The reference is again generated from the q axis current

using the minimum copper loss strategy.
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Figure 5.76: (a) The currents of the machine in natural variables (simulation results), (b) and (c)

Zoomed view before and after load application respectively (simulation results).
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Figure 5.77: The nine-phase currents of the machine phases before applying load for phases,

(a) ‘a’, ‘d’ and ‘g’, (b) ‘b’, ‘¢’ and ‘h’, (c) ‘¢c’, ‘f” and ‘i’ (experimental results) (2 A/ scale).
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Figure 5.78: The nine-phase currents of the machine phases after applying load for phases for
phases, (a) ‘a’, ‘d’ and ‘g’, (b) ‘b’, ‘¢’ and ‘h’, (c¢) ‘¢’, ‘f” and ‘1’ (experimental results) (5 A/

scale ).
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Figure 5.79: (a) The third sequence of the stator current in the stationary reference frame (simulation

results), (b) The zoomed view (simulation results).

Figure 5. 76 shows the simulation results of the stator currents. The effect of the increase in

g and d axis current of the rotor reference frame can be seen from their peak magnitude. The stator

currents of experimental results are also shown in Figures 5.77 and 5.78. Figure 5.77 shows the

currents before applying load torque and Figure 5.78 shows the stator currents after applying load

torque. There are some ripples on the currents of the experimental results which are due to the

magnetic saturation of the machine stator and measurement noise.
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Figure 5.80: (a) The third sequence of the stator current in the stationary reference frame (experimental

sssssss ), (b) The zoomed view (experimental results).
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Figure 5.82: (a) The third sequence of the stator current in the stationary reference frame after

heterodyning and filtering (experimental result), (b) The zoomed view (experimental result).



The signals of Figures 5.81 and 5.82 need to be normalized to have unity magnitude and be
fed to the observer. Figures 5.83 and 5.84 show the signals after normalizing for simulation and

experimental results respectively.
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Figure 5.83: The normalized currents of the third sequence (simulation results).
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Figure 5.84: The normalized currents of the third sequence (experimental results).
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The signals of Figure 5.83 and 5.84 carry the rotor position information. The rotor position
now can be extracted using Luenberger observer. The signals are fed to the observer and the results
are shown in Figures 5.85 and 5.86 for simulation and experiment respectively. These two figures

show the rotor angle and the estimated one along with the estimation error.
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Figure 5.85: (a) The simulated and estimated angle (simulation results), (b) The estimation

error (simulation results).
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Figure 5.86: (a) The simulated and estimated angle (experimental results), (b) The estimation

error (experimental results).

The Figures 8.87 to 8.88 show the zoomed view of the Figures 5.85 and 5.86 for first five

seconds.
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5.6.4 Very Low Speed Run

The last test is the same controller in a very low speed. In this test the machine runs at the
speed of 0.3 rad/sec and a step load is applied to the machine when it is in the steady state. The
following figures show the simulation and experimental results. The speed reference starts from the
zero and goes to a fixed speed at 0.3 (rad/sec) after drive settles down to the steady state conditions

a step load torque is applied to the rotor for 10 seconds.
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Figure 5.89: (a) The rotor speed and the reference speed (simulation results), (b) The speed

error (simulation results).
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Figure 5.90: (a) The reference and rotor speed (experimental results), (b) The speed error (experimental
results).

Figures 5.89 (a) and 5.90 (a) show the reference and rotor speed for simulation and
experimental results respectively. From these figures, it can be seen that the drive can track the
rotor reference accurately. For better view, the speed errors are also presented in Figures 5.89 (b)
and 5.90 (b) for simulation and experimental results respectively. Figure 5.91 shows the
electromagnetic torque and the load torque for simulation. The electromagnetic torque of the

machine for experimental result is also shown in the Figure 5.92. From these figures, it can be seen
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that, the drive can react to the load torque and generate proper electromagnetic torque to keep the

rotor speed constant.
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Figure 5.91: The load and electromagnetic torque (simulation results).
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Figure 5.92: The electromagnetic torque of the machine (experimental results).
The voltages generated by machine controller in rotor reference frame are shown in the
Figures 5.93 and 5.94 for simulation and experimental results respectively. Again from this Figures

the reaction of the drive to the changes of the load on the motor shaft can be seen.
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Figure 5.93: The g and d axis voltages in rotor reference frame generated by the controller

(simulation results).
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Figure 5.94: The q and d axis voltage of the machines in the rotor reference frame generated by

the controller (experimental results).

The generated voltages are applied to the machine to inject the desired currents to the stator.
Figures 5.95 and 5.96 show the reference and measured current of q axis reference frame for

simulation and experiment respectively.
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Figure 5.95: The reference and the feedback currents in rotor reference frame for q axis
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Figure 5.96: The reference and the feedback currents in rotor reference frame for q axis

(experimental results).

Figures 5.97 and 5.98 also show the reference and measured current of d axis reference

frame for simulation and experiment respectively.
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Figure 5.97: The reference and the feedback currents in rotor reference frame for d axis

(simulation results).
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Figure 5.98: The reference and the feedback currents in rotor reference frame for d axis
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(experimental results).

Figure 5. 99 shows the simulation results of the stator currents. From this figure it can be

seen that, the magnitude of the stator current increases by applying the load torque to the machine.
The stator currents of experimental results are also shown in Figures 5.100 and 5.101. Figure 5.100
shows the currents before applying load torque and Figure 5.101 shows the stator currents after
applying load torque. The experimental current waveforms show some low frequency ripples which

are due to some un-modeled nonlinearities of the machine such as magnetic saturation of the stator.
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Figure 5.99: The simulation result of nine-phase stator currents, (a) Before applying load

torque, (b) After applying load torque.

The currents of the third sequence of stationary reference frame are shown in the Figure
5.102 and 5.103 for simulation and experiment respectively. These currents are derived from the
9 x 9 transfer matrix in stationary reference frame. These currents can be used for signal processing
and position estimation process. From these figures, it can be seen that, the third sequence currents
have variable magnitudes. The ripples on the magnitudes are caused by the rotor saliency and they

can be used for position estimation.
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Figure 5.100: The nine-phase currents of the machine phases before applying load for phases, (a)

‘a’, ‘d’ and ‘g’, (b) ‘b’, ‘e’ and ‘h’, (¢) ‘¢’, ‘f” and ‘i’ (experimental results) (5 A/ scale).
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Figure 5.101: The nine-phase currents of the machine phases after applying load for phases for phases,

Mode
Sample

(a) ‘a’, ‘d” and ‘g’, (b) ‘b’, ‘e’ and ‘h’, (c) ‘c’, ‘f” and ‘i’ (experimental results) (5 A/ scale).
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Figure 5.102: The dqgs currents before heterodyning (simulation result).
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Figure 5.103: The dqgs currents before heterodyning (experimental result).
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Figure 5.105: The dqgs currents after heterodyning (experimental result).

Again to extract the low frequency content the signal needs to go through a heterodyning
and filtering procedure. By multiplying the signals of the Figures 5.102 and 5.103 by e ~/®st the
signals change to signals of Figures 5.104 and 105 for simulation and experiment respectively. The
signals of the Figures 5.104 and 105 pass through a low pass filter to shed their high frequency

ripple. The experimental results waveforms show more ripples which are due to the sampling noise.
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Figure 5.106: The dqgs currents after filtering and normalizing (simulation result).
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Figure 5.107: The dqgs currents after filtering and normalizing (experimental result).

452



—‘Estimated rotbr angle — Rotorangle
6"‘ // //
c
5 4 yd <
g, / // yd
0
0 5 s%c 1 2
(a)
10 .
—Position Error
5
S
s 0
S
-5
1% 5 10 15 20
sec.
(b)

Figure 5.108: (a) Estimated and simulated rotor angle (simulation results), (b) The estimation
error (simulation results).

Again since the currents after filtering have variable magnitudes which vary with the rotor
speed they need to be normalized to make their magnitudes equal to unity. Figures 5.106 and 5.107
show the normalized currents after filtering and normalizing for simulation and experiment
respectively. The signals of Figures 5.106 and 5.107 are fed to the Luenberger observer to generate
the rotor angle. Figures 5.108 and 5.109 show the rotor angle along with estimated rotor angle and
the estimation error for simulation and experiment respectively. It can be seen that the observer

follows the rotor position in all steady state and transient intervals.
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Figure 5.109: (a) Estimated and measured rotor angle (experimental results), (b) The estimation

error (experimental results).
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5.7 Steady State Performance of Nine the Phase IPM Using FEMM.

The inductances of the machine in g and d axis are generated in chapter 3. The machine
inductances now can be used to obtain the steady state performance of the IPM machine using
FEMM.

5.7.1 Steady State Performance of Nine the Phase IPM Below Base Speed

The equations (5.165) and (5.166) represent the steady state conditions for the machine
operation when the rotor speed is less than the base speed.

(5.165)

- 2 = 2 2
|q + 1y = | “rated

qu +Vd2 <V2rated = (I’Siq + w, Ldid +a)rﬂ“pm)2 +(rsid —, Lqiq)2 <V2rated (5166)

From the section 5.2 the relationship between the g and d axis currents for the minimum

copper loss is expressed as:

2
A A
s pm v 2
Iy =— + +1,

2(Ld - Lq) 4(Ld -1, )2 (5.167)

At this region, machine operates under minimum copper loss strategy and rotor speed is
below the base speed. The stator voltage is below the base value and stator current can be equal or

smaller than the rated.
5.7.2 Steady State Performance of Nine the Phase IPM in Field Weakening Region |

When rotor speed exceeds the base speed, the machine constraints change to the equations
(5.168) and (5.169) which are the field weakening region I.
(5.168)

- 2 - 2 2
|q + 1 = | “rated
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qu +V,2 =V 2w < (rsiq +o, Ll +o A )2 +(rsid -, Lqiq)2 =V % ated (5.169)

r’“pm

At this mode, the stator voltage and current are equal to the rated value and machine torque

is less than the rated value.
5.7.3 Steady State Performance of Nine the Phase IPM in Field Weakening Region 11

By increasing the rotor speed, the machine has to operate under new constrains which are
presented in the equations (5.170) and (5.171) and represent field weakening region Il. At this
region, the stator current and voltage are below the rated values and the electromagnetic torque can

increase to the maximum possible value.

iq2 + id2 < |2rated (5170)

qu +Vd2 <V2rated = (I‘siq + w, Ldid +a)r2’pm +(rsid — @, Lqiq )2 <V2rated (5171)

Under these new constraints the Lagrange equations can be used to obtain the maximum
possible torque which still satisfies the equations (5.170) and (5.171). Here it should be noted that,
while solving the above equations to obtain the g and d axis currents of the machine in different
operation modes the inductances which are corresponding to that values should be used. Using the
chapter 3 results for the inductances, the steady state curves are plotted for the discussed machine.
Figure 5.110 shows the maximum possible torque of the machine in different modes of operation
it is clear that by increasing the speed after base value the maximum possible torque decreases in

both of field weakening regions.
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Figure 5.110: Maximum possible torque of the machine in deferent modes.

The q d and peak value of the stator current of the machine are shown in the Figure 5.111
based on this figure the rated current can be injected to the stator of the machine until it is operating

in the field weakening region II.
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Figure 5.111: The g and d axis and stator currents.

Figure 5.112 shows the stator voltage of the machine. According to this figure, in the MTPA
region, the stator voltage increases linearly with the rotor speed and beyond that it remains almost
constant. Figures 5.113 and 5.114 show the copper loss and the total losses of the machine. The

total loss of the machine includes the copper loss and hysteresis loss.
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Figure 5.113 shows the copper loss of the machine according to this figure in the field
weakening region Il, since the current is constant the copper loss would remain constant as well,
beyond that speed since the stator current starts decreasing the copper loss also decreases. The total
output power of the machine is shown in the Figure 5.115. It can be seen that below the base speed
the machine power increases linearly by the rotor speed. While in the first region of the field

weakening the output power is almost fixed and it is decreasing at the second field weakening

region.
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Figure 5.113: The copper loss of the machine.
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In this chapter a nine-phase controller is designed for a single star nine phase machine using
the main components of the machine circuit. The position observer is also presented in this chapter.
The position observer uses high frequency injection in a non-torque producing channel. After high
frequency analyses the essential signal processing method is presented and the position observer is
designed. Finally, the performance of the drive and the observer is validated by simulation and
experimental results. The major contribution of this chapter is designing a position observer that

can observe the rotor position of the machine without producing extra torque pulsations. In the final

Rotor Speed (RPM)

Figure 5.115: The output power of the machine.

5.8 Conclusion
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sections of this chapter the steady state performance of the machine is analyzed using FEMM for

different stator current levels and operation modes of the controller.
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