CHAPTER 6
CONTROL OF FOUR LEGGED VOLTAGE SOURCE INVERTER WITH

UNBALANCED AND NONLINEAR LOADS.

6.1 Modeling of 4- legged Inverter.
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Figure 6.1 Four-leg inverter feeding a three-phase load

In Figure 6.1 is shown the four-leg inverter feeding a three-phase load which may
be balanced, unbalanced, and/or nonlinear in nature. The phase loads are shunted with
filtering capacitors C with the neutral point of the load connected to the fourth leg (d) of
the inverter through an inductor L, .

In the mentioned figure in obeying KVL and KCL
S,+S,=1,8,,+S,=1,8,+S8S,=1,8,,+S, =1. (6.1)
As shown in the figure, writing the KVL equations across the loop from point ‘a, b, c,

and d’, the output voltages can be expressed as

V +V

o~ " an no

Va
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Vie =Viu +V,

no

Vco = Vcn + Vno

Vdo = Vdn + Vno (62)
where
V
Vao = ;C (Sll _Slz)
V
Vie = ;C (SZI _Szz)
V
Vco = 2dC (S31 _S32)
VC
Vio = ; (S =S8p). (6.3)

Now, the voltage loop equation is given as

Vir =21, +V
v, =Z1,+V,,
Vcn = lec + Vccn
V,=21. (6.5)

Substituting (6.3) and (6.4) in (6.2) the expression is written as

V
;C (Sll _SIZ):ZIIa +Vaan +Vno

e
;C (Szl _Szz) = leb +Vbbn +Vno

v
SC (SSI _SSZ) = lec +I/ccn +Vno
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Vi
;‘ S,-S,)=21,+V, (6.6)

v
or V= %(S41 —-S4,)—Z,1,, thus substituting ¥, in (6.5)

V V

;C (Sn _Su) = lea +Vaan + ;C (S41 _S42)_Zn1n

V V

;C (S21 _Szz) = leh +Vbbn +%(S41 _S42)_Zn]n

Vdc Vdc

D (S31 _S32) = lec +Vccn + 2 (S41 _S42)_ann' (6-7)

Substituting (6.1) in (6.7) and simplifying we have

Vin = Vdc(Sll _S41)_lea +Zn1n

Vbbn = Vdc(S21 _S41)_leb +Zn]n

Vo =V (Sy—-S,)-ZI, +Z1I, (6.8)

: d .
Setting Z, = r, + L p and Z, =L, p where p :E’ the output voltage equations

can be written as

V :Vdc(Sll_S4l)_rs]a_Lspla+anIn

View =V (Syy =S4)—rd, =L pl, +L, pl,

V = Vdc(S31 _S41)_rslc _Lsplc +an[n (69)

cen

Define S, =S, -S,, S, =8, -S,,8. =8, -5,. (6.10)

c

The output voltage equations can be written as
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Vaan = V S _rs[a _Lspla +an[n

dc™~a

Vbbn = Vchb _’/Tylb _Lsplb +an1n

Vccn = Vchc _rtv[c _Lsplc +an1n . (611)
The DC link current flowing into the inverter is given as

Id = Sllla +S21]b +S31]c +S4lln (6.12)

but

I, +I,+1 +I,=0orl, =—-(I,+1,+1)). (6.13)

Substituting (6.13) in (6.12)
L, = (S, =Sy, +(Sy =S, + (S5 =Sy, (6.14)
The output capacitor currents are given as

CpV :[a_[al

CpVy, =1, -1
Cchcn :Ic _]cl' (615)

The neutral current is given by (6.13).

Hence from (6.15) and (6.13) the neutral current can be written as

I, =-[CpV

aan

+CpV,,, +CpV. . +1,+1,+1,]. (6.17)

Thus having the voltage equations as given by (6.11) and current equations as
given by (6.14), (6.15), and (6.16) the derived model can be transformed into g-d-o

synchronous reference frame for designing the controller.
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6.2 Modeling in q-d-o Synchronous Reference Frame
The g-d-o modeling of the four legged inverter in synchronous reference frame is
done by applying the transformation on Equations (6.11), (6.14), (6.15), and (6.16).

Consider (6.11);

Vaan Sa Ia Ia In
Viea |=Vae| So | +75| L |+ Lo L, |+ L,P| 1, ]. (6.18)
VCC” SC [C [C I}’l

The g-d-o quantities can be obtained from the a-b-c coordinates through following

relationship.
/i ] = T[] where (6.19)
cos(d) cos(@— ) cos(d+f) 21

T(0) =§ sin(@) sin(@—p) sin(@+ ) and f = 5
1 1 1

2 2 2

The relations that will be used during the transformation are derived as below

Using (6.18) and (6.19)

|.qun J = T(Q)[Vaabbccn ] s (620)
Vi [=T@O1 ] 6.21)
1S |= T O[S, ], (6.22)

llqdan J = T(H)[Innn ] . (623)
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Also the inverse transformation can be applied as

Sare =T O f (6.24)

sin(@d) sin(@—- ) sin(@+ )
T7'(@)=|cos(@) cos(@—p) cos(@+p)]|.
0 0 0

Consider the term 7'(6) p! . this can be solved as explained below.
TOpf e =TOT (01,
T(O)pf oy = TO\PT ™ (O) f s + TOT OV ]

Consider the first term, 7'(0) pT ' (0) f,

dos *

Now define 6 = j wdt+6, where 6 =0 thus 49 _ w.

dt

And %cos(&) = %(cos(ﬁ))% = —sin(@)w.

cos(f) cos(@—pf) cos(@+ )| |—sin(@) —sin(@— L) —sin(d+ )
% sin(f) sin(@—p) sin(@+ f) |w| cos(f)) cos(@— L)  cos(O+ L) |f s
1

1 1 1 0 0 0
2 2 2
0 1 0 0 w 0
TOpPfue]=W =1 0 0|/ == 0 0|/, (6.25)
0 0 0 0 0 0
0O w O
Thus T(O)p[l,,.]=|-w 0 0|[1,4,] (6.26)

0 0 0
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Consider the term 7'(@)pl,, this can be solved as explained below.

nnn

T(O) b =[TO)PT (O yion + TOT (D BS i

Now

cos(@) cos(@—p) cos(@+p)| [,
TO)f, :g sin(@) sin(@—-p) sin(@+p) | f,,1=| 0 [=0.
1

1 1 1 fonl (37
2 2 2

But

TOT (O pf, adon = [0 0 3 pfon] but /,, is the zero sequence current which is same as

1

os *

7)1, =[0 0 3pI,] (6.27)

Thus using (6.20) through (6.23) and (6.26) and (6.27), the g-d-o transform in
synchronous reference frame of (6.18) is given by the following equation.

v.=vV,S,—-rl, —Lpl —oLl,

qs dc™ gs st gs s qs

V=V, S, —rl,—Lpl,+ a)LSIqS
v.=v,S,—rl, —Lpl +3L pl, (6.28)
Now consider 6.14
Sa
=1, 1, 1]S,|. (6.29)
S

Applying transformation

[T O 4o 1 1S 4o 1T (OIS 1]
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(770 T (O s 1 1S s ]

O+ (O-P)+F(6+P) cA(O)s(0)+c(0-L)s(0-P)+c(0+P)s(0+ )  c(O)+c(@—p)+c(O0+ )

=| c(O) +c(O— P)s(O- ) +c(0+ P)s(O+ ) $2(0)+52(0—P)+5*(O+ ) S(O)+5*O-P+5 0+ P [1,.]S,]
oO)+c(0—P)+c(0+) 5(0)+s(0- ) +s(0+ ) 3
[cos(8) cos(@— L) cos(8+f) cos(6) sin(&) 1
—| sin(@) sin(@—p) sin(@+p) [w{cos(@—B) sin(@—B) 1[I, ][S,0]
|1 1 | cos(+ ) sin(@+p) 1
[3/2 0 0
=1 0 3/2 01, ][S ]
0 0 3
3
1, :E[I‘”qu +1,S8, +21,8,]. (6.30)

Thus output capacitor currents transformation using (6.27) and (6.15) gives

CpV,,+aCV, =1,-1,
Cp Vds - a)CVqs = ]ds - Idl

CpVo :]os _]ol' (631)
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6.3 Controller Design for Voltage Regulation of Four Legged Inverter

V q qs ql
ql iy + ’

T(0)

Figure 6.2 Controller structure for the four-leg inverter.

The controller objective is to regulate the three-phase voltages of the load both in
magnitude and phase in-spite of its nature - balanced, unbalanced, and/or nonlinear. This
control objective translates to the individual regulation of the three qdo voltages Vg, Vi,
Vo in the synchronous reference frame. Although the system equations in the
synchronous reference frame become linear but coupled, a input-output linearization with
decoupling control methodology is adopted [9-10]. This method linearizes the control
equations, ensures system stability and high performance at all anticipated operating
points given sufficient inverter DC voltage margin. The input-output linearization and
decoupling are achieved by the following definitions and manipulations. The states

available from modeling equations are p/ ,  and pV , . Thus we can control either

qdos

output voltage or current.



6.3.1 Feedback Linearization Control [A.3]

This control scheme is a type of nonlinear control scheme for Inverter.

The design based on exact linearization consists of two steps:

192

1. A nonlinear compensation, which cancels the nonlinearities included in the

Inverter, is implemented as an inner feedback loop.

2. A controller, which ensures stability and some predefined performance, is

designed based on the conventional theory; this linear controller is implemented

as an outer feedback loop.

The application selected here is utility inverter wherein the output voltage of the

inverter should remain constant irrespective of the load.

The IP controller is designed using the following state equations as given in (6.28) and

(6.31).

Vtrd, +Lpl, +olL 1, =V,S,
Vi trdy+Lply —oLd, =V,S,
v +rl, +(L,-3L)pl, =V,S,
and

CpV,=1,-1,-aCV,

CpVy =14 —1,+aCV,

Cqu :IOS _Ial

(6.32)

(6.33)
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The control law is derived as follows.

Let CpV, =0, =1,~1,-aCV, (6.34)
1, =oc,+1,+aCV, (6.35)
and CpV, =0, =1, —1,+aCV, hence (6.36)
1, =o,+1,-aCV, (6.37)
and CpV, =0, =1, —1, hence (6.38)
I, =o,+1,. (6.39)

From (6.35), (6.37), and (6.39) lqs ,[ds , andlos are the desired reference

currents for generating the given reference voltages.

The required modulating signals need to be generated, hence from Equation (6.32) define

rl +Lpl =o,, (6.40)
s gs st gs qq

Pl y + Liply =0y (6.41)
rslos + (Ls _3Ln )plus = O-oo‘ (642)

Thus (6.32) can be written in terms of the switching function as

1

qu = V—(O'qq + Vqs + a)LSIdS)
dc
1

Sds :_(O-dd +Vds _a)Ls[qs)
Vdc

1
Sos = V—(Gao +V,) . (6.43)

de
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6.3.2 Controller Definition for Reference Currents

The transfer function for the feedback voltage over the desired voltage can be

obtained as follows.

From (6.34)

CpV,=oc,=K, WV, -V,)-K,V,.
Thus

V.(Cr+ K, +K,)=K, qVqs* and hence the controller transfer function for g- axis is

defined as

V K

qs lq

v (Cp+K,, +K,,)

qs

K
Where K|, is the integral gain = “ and K », 18 the proportional gain, thus we have

V K

qs lq

vV, (Cp*+pK, +K,)

qs

(6.44)

From (6.36)
CpVy=0,=K,Vy =Vi)- K, V.
Thus
V,.(Cp+K, +K,,)=K,V, and hence the controller transfer function for d- axis is

defined as

Vds — Kld
V, (Cp+K,, +K,,)

: . . _K . . .
where K, is the integral gain =—'< and K, is the proportional gain.
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Thus

Vi _ K,
Vs (Cp2+pK2d+K1d)

(6.45)

From (6.39)
PV, =0, =K,V =V, )= Kl
Thus
V.(Cp+K, +K,)=K,V, and hence the controller transfer function for o- axis is
defined as

v, K

S lo

V. (Cp+K,+K,,)

os

: . . _K . : :
where K, is the integral gain =—% and K, is the proportional gain. Thus

Vos Klo
SP— _ (6.46)
V (Cp +pK2o+Klo)

os

6.3.3 Controller Definition for Reference Currents
The transfer function for the feedback current over the reference current can be

defined as follows.

7"S Iqs + LS p]qs = O-qq = K (ICIS - ]qs) - KZCI‘]I‘]S

— Thlgq

Thus

l,(r,+Lp+K, +K, )=K,I qs* and hence the controller transfer function for g-

2qq
axis is reference current defined as

K

qs lqq

I° :(rS+LSp+K

qs lgg

+K2qq)
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K
where K, is the integral gain =—1% and K 244 18 the proportional gain. Thus

I K
% led (6.47)

1. (Lp+pr,+K,)+K,,)

qs 2qq

The transfer function for the reference current can be defined as follows.
r A +Lpl, =0, =Ky 1)~ Kyl
Thus
I,(r,+Lp+K,, +K,,)=K,,1I, and hence the controller transfer function for d-

axis is reference current defined as

1, _ K,
1, (r,+Lip+ K, +K,y)

K
where K, is the integral gain=—'%- and K, is the proportional gain. Thus

1, _ K, ) (6.48)
1, (Lsp2 +p(r, +Kypy) + Kigg)

The transfer function for the reference current can be defined as follows
rslos + (Ls - 3Ln )plos = O-oo = Klou (Io;< - ]os) - KZoolos
Thus

+K,,)=K,,I, and hence the controller transfer function

loo

IOS (rS + (LS‘ - 3Ln )p + K
for o- axis is reference current defined as

K

os loo

I T (rs +(Ls _3Ln)p+Kloo +K200)

os
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. . . K . . .
where K, is the integral gain =—- and K,, is the proportional gain. Thus
p
I K
= — . (6.49)
I, ((L,-3L)p" +p(r, +K,,)+K,,)

The controller structure for the inverter is given in Figure 5. The manipulations in
(7-8) ensures that the description of the system becomes linear making it possible to use
classical control design schemes to evolve a controller that works for all anticipated
operating conditions. The outputs of the three axis control loops are inverse-transformed
to yield the fundamental components of the desired phase voltages, Vap*, pr* and ch*.
These voltages are transformed to the stationary reference frame to determine the sector
where the control voltage set lies and the identification of the expressions for the
discontinuous modulation signals in Table V.

The gains of the transfer functions are selected based on a Butterworth
polynomial which locates the eigen-values uniformly in the left-half S-plane on a circle
of radius o, , with its center at the origin. The Butterworth polynomials for a transfer
function with a second denominator is given as : p* + \2pw, + ®° = 0.

Comparing the denominators of Equations 6.44 through 6.49 with the second
ordered Butterworth polynomial p* + p\/za)o +a)02 and equating the coefficients for
desired response time and percent overshoot the desired IP controller parameters can be
found.

Thus on comparing the middle term of the polynomial equation, the K, or the

proportional parameter can be defined as
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r +K
(s L 2qq):\/5a)u or

S

K,, = (\/Ea)o —r,)L, similarly K, ,, = (\/5600 —r,)L,and

K,, =20, -r)L,-3L,). (6.50)

Now similarly,

K,, :\/Ea)oC, K,, :\/Ea)oC, and K,, Z\/Ea)OC . (6.51)

Now comparing the last term of the polynomial equation, the K; or the integral parameter

can be defined as.

K, =L, similarly K,,, = ®,’L and

lag

K, =L -3L). (6.52)

loo

Now similarly,

K,=0,C,K,=0,"C,and K, =0,’C. (6.53)

6.4 Simulation Results

Figure 6 shows the simulation results of the controlled four-leg inverter feeding
three phase unbalanced loads. The filter parameters are r;= 0.01 Ohm, Ly = 0.4 mH, C
=400 uF , Vdc = 400 V and the load impedances are r,= 10 Ohm, L, = 0.5 mH, r,= 50
Ohm, Ly = 0.5 mH, r, = 100 Ohm, L, = 0.5 mH. The reference ‘qdo’ load voltages,
which are ramped and then maintained at constant values, are seen to track closely the
actual measured voltages as reflected in Figure 6(a-b). The steady state phase load

voltages given in Figure 6(a), track the references and the required modulation signals for
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the top devices of the four legs are also given in figure 6(d). Figure 7 gives the simulation
results with balanced three-phase r-1 loads with r, =1, =1, =50 Ohms and L, =Ly, = L. =
0.5 mH and also a single-phase diode bridge rectifier with a capacitor S00uF — resistance
200 Ohm on phase ‘a’ of the inverter output. The quol* references were kept at 150V,
100V, and OV, respectively. The controller gains for ‘q” and ‘d’ phases were calculated
with cut off frequency chosen as 754 rad/sec for the given Lsand C, while for ‘o’ phase

the o, was chosen as 20 rad/sec.

The I.P controller gains for voltage loop are
Kigqv =Kigv =227 and Koy =0.16 and
Koqv = Kagv = 0.4265 and K,y =0.0113 and

for the current loop
Kigq=Kia =227 and Ko = 0.1480

K2q1 = KZdI =0.4165 and K201 =4.6518e-04.

Initially the reference ‘qdo’ voltages are ramped and later maintained at constant
values. Inspite of the unbalanced and nonlinear nature of the load, the regulation of the
three-phase voltage is achieved both under dynamic and steady state situations. Although
there are slight differences between the reference and actual ‘qdo’ voltages the actual

phase voltages closely track the reference.
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Figure 6.3 Regulation of load voltages having unbalanced load impedance. (a)

Tracking of reference voltages, (b) steady-state load voltages (c) line currents, (d)

modulation signals.
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Figure 6.4 Regulation of load voltages having a parallel combination of balanced

load impedance and single-phase rectifier loads. (a) Tracking of reference voltages,

(b) steady-state load voltages (c) line currents, (d) modulation signals.
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The current sensor is placed on the load side and hence the inverter currents are
calculated as follows:

CpV,=1,-1,-aoCV,

CpV, =1, —-1,+ a)CVqs

CpVo = [os _Iol

At steady state CpV,, = CpV,, = CpV,, =0 hence we can assume
l,=0CV,+1,

I, =-0CV +1,

I, =1

os ol *

Per Unit Model:
Selection of Base Values:

Vbase = Vdc and Ibase = Idc

V
Zbace =
‘ Idc
1
Zbasc wa and mee -
@, C,

L,
V +Rw11qm ® p1qvn+L Idm_S

sn
b

L,
Vdsn +R Idvn +— p[dvn -L,1 _S
w

sn™ gsn ds
b

V 4R I +ﬁp1m=5m

osn sn= osn W
b



and

Cvn
W Vqsn = ]qsn B [q In Csn Vdsn
b
= desn = Idsn - Idln + Canqsn
b
= pVosn = Lo _]oln
a)b
where
L C
Rsn = rS B Lsn =— s Csn = :
Z base L b Cb

hence we have

I = an + [q In + Csn Vdsn

gsn

1, =0, +1, —C,V

dsn sn’ qsn

*
I :O-on+[oln

osn

L

sn _

Rxn [ qsn + p ] gsn O-qqn
@,

L
sn _
Rsn Idsn + pldsn - O-ddn
,

L

sn _

Rsn Iosn + plosn - O-oon
W,

Sds = Vdsn + Gddn +L I

sn” gsn

203
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S, =V.,+o,..—L,1,,

qs qsn qqn

os — " osn oon
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