
CHAPTER 6 

CONTROL OF FOUR LEGGED VOLTAGE SOURCE INVERTER WITH 

UNBALANCED AND NONLINEAR LOADS. 

 
6.1 Modeling of 4- legged Inverter. 
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Figure 6.1 Four-leg inverter feeding a three-phase load 

 
In Figure 6.1 is shown the four-leg inverter feeding a three-phase load which may 

be balanced, unbalanced, and/or nonlinear in nature. The phase loads are shunted with 

filtering capacitors  C with the neutral point  of the load connected to the fourth leg (d) of 

the inverter through an inductor Ln .  

In the mentioned figure in obeying KVL and KCL 

11211 =+ SS  , , 12221 =+ SS 13231 =+ SS , 14241 =+ SS .    (6.1) 

As shown in the figure, writing the KVL equations across the loop from point ‘a, b, c, 

and d’, the output voltages can be expressed as 

noanao VVV +=  

 183 
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nobnbo VVV +=  

nocnco VVV +=  

nodndo VVV +=          (6.2) 

where  

)(
2 1211 SSVV dc

ao −=  

)(
2 2221 SSVV dc

bo −=  

)(
2 3231 SSVV dc

co −=  

)(
2 4241 SSVV dc

do −=  .        (6.3) 

Now, the voltage loop equation is given as 

aanaan VIZV += 1  

bbnbbn VIZV += 1  

ccnccn VIZV += 1  

nndn IZV = .          (6.5) 

Substituting (6.3) and (6.4) in (6.2) the expression is written as 

noaana
dc VVIZSSV

++=− 11211 )(
2

 

nobbnb
dc VVIZSSV

++=− 12221 )(
2

 

noccnc
dc VVIZSSV

++=− 13231 )(
2
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nonn
dc VIZSSV

+=− )(
2 4241         (6.6)  

or   nn Idc
no ZSSV

−−= )(
2 4241V , thus substituting  V  in (6.5)  no

nn
dc

aana
dc IZSSVVIZSSV

−−++=− )(
2

)(
2 424111211  

nn
dc

bbnb
dc IZSSVVIZSSV

−−++=− )(
2

)(
2 424112221  

nn
dc

ccnc
dc IZSSVVIZSSV

−−++=− )(
2

)(
2 424113231 .    (6.7) 

Substituting (6.1) in (6.7) and simplifying we have 

nnadcaan IZIZSSVV +−−= 14111 )(  

nnbdcbbn IZIZSSVV +−−= 14121 )(  

nncdcccn IZIZSSVV +−−= 14131 )(        (6.8) 

Setting and pLrZ ss +=1 pLZ nn =  where 
dt
dp = , the output voltage equations 

can be written as 

nnasasdcaan pILpILIrSSVV +−−−= )( 4111  

nnbsbsdcbbn pILpILIrSSVV +−−−= )( 4121  

nncscsdcccn pILpILIrSSVV +−−−= )( 4131      (6.9) 

Define  , 4111 SSSa −= 4121 SSSb −= , 4131 SSSc −= .    (6.10) 

 

The output voltage equations can be written as 
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nnasasadcaan pILpILIrSVV +−−=  

nnbsbsbdcbbn pILpILIrSVV +−−=  

nncscscdcccn pILpILIrSVV +−−= .      (6.11) 

 

The DC link current flowing into the inverter is given as 

ncbad ISISISISI 41312111 +++=        (6.12) 

but  

0=+++ ncba IIII  or )( cban IIII ++−= .     (6.13) 

Substituting (6.13) in (6.12) 

cbad ISSISSISSI )()()( 413141214111 −+−+−= .     (6.14) 

The output capacitor currents are given as 

alaaan IICpV −=  

blbbbn IICpV −=  

clcccn IICpV −= .         (6.15) 

The neutral current is given by (6.13). 

Hence from (6.15) and (6.13) the neutral current can be written as 

][ clblalccnbbnaann IIICpVCpVCpVI +++++−= .    (6.17) 

Thus having the voltage equations as given by (6.11) and current equations as 

given by (6.14), (6.15), and (6.16) the derived model can be transformed into q-d-o 

synchronous reference frame for designing the controller. 
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6.2 Modeling in q-d-o Synchronous Reference Frame 
 

The q-d-o modeling of the four legged inverter in synchronous reference frame is 

done by applying the transformation on Equations (6.11), (6.14), (6.15), and (6.16). 

Consider (6.11);  
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The q-d-o quantities can be obtained from the a-b-c coordinates through following 

relationship. 

[ ] [ abcqdos fTf )( ]θ=  where                   (6.19) 


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)sin()sin()sin(
)cos()cos()cos(

3
2)( βθβθθ

βθβθθ
θT   and 

3
2πβ = .    

The relations that will be used during the transformation are derived as below 

Using (6.18) and (6.19) 

[ ] [ ]aabbccnqdo VTV )(θ= ,               (6.20) 

[ ] [ abcqdos ITI )( ]θ= ,          (6.21) 

[ ] [ abcqdos STS )( ]θ= ,          (6.22) 

[ ] [ nnnqdon ITI )( ]θ= .          (6.23) 
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Also the inverse transformation can be applied as 

qdoabc fTf )(1 θ−=          (6.24) 
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)cos()cos()cos(
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θT . 

Consider the term T abcpI)(θ  this can be solved as explained below. 

[ ]qdosabc fpTTpfT )()()( 1 θθθ −=  

 [ ]qdosqdosabc pfTTfpTTpf )()()()()( 11 θθθθθ −− +=T  

Consider the first term,T .      qdosfpT )()( 1 θθ −

 Now define    where  owdt θθ += ∫ 0=oθ  thus w
dt
d

=
θ . 

And  w
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d
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[ ] qdosqdosabc fw
w

fwfpT

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Thus .       (6.26) [ ] [ qdosabc Iw
w

IpT
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Consider the term T nnnpI)(θ  this can be solved as explained below. 

qdonqdonnnn pfTTfpTTpfT )()()]()([)( 11 θθθθθ −− +=  

Now  
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But  

[ onqdon pfpfTT 300)()( 1 =− θθ

osI

] onI but is the zero sequence current which is same as 

. 

[ osnnn pIIT 300)( = ]θ         (6.27) 

Thus using (6.20) through (6.23) and (6.26) and (6.27), the q-d-o transform in 

synchronous reference frame of (6.18) is given by the following equation. 

dssqssqssqsdcqs ILpILIrSVV ω−−−=  

qssdssdssdsdcds ILpILIrSVV ω+−−=  

osnossossodcos pILpILIrSVV 3+−−=       (6.28) 

Now consider 6.14 

[ ]



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



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


=

c

b

a

cbad

S
S
S

IIII .        (6.29) 

Applying transformation  

])[(][][)]([ 1'''1
qdosqdosqdos STSIT θθ −−  
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]

]

][])][()([ '1'1
qdosqdos SITT θθ −−  
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)()()()()()()()()()()(
)()()()()()()()()()()()(

222222

222

qdoqds SI
sssccc

ssssssscscc
cccscscscccc

















++−+++−+
++−+++−++++−−+

++−++++−−+++−+
=

βθβθθβθβθθ
βθβθθβθβθθβθβθβθβθθ

βθβθθβθβθβθβθθθβθβθθ

 

[ ] [ qdoqdos SIw '

1)sin()cos(
1)sin()cos(
1)sin()cos(

111
)sin()sin()sin(
)cos()cos()cos(

















++
−−
















+−
+−

=
βθβθ
βθβθ

θθ
βθβθθ
βθβθθ

 

[ ] [ qdosqdos SI '
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


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]2[
2
3

oodsdsqsqsd SISISII ++= .       (6.30) 

Thus output capacitor currents transformation using (6.27) and  (6.15) gives 

qlqsdsqs IICVCpV −=+ω  

dldsqsds IICVCpV −=−ω  

oloso IICpV −= .         (6.31) 
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6.3 Controller Design for Voltage Regulation of Four Legged Inverter 

K 1q v E q n
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Figure 6.2 Controller structure for the four-leg inverter. 

The controller objective is to regulate the three-phase voltages of the load both in 

magnitude and phase in-spite of its nature - balanced, unbalanced, and/or nonlinear. This 

control objective translates to the individual regulation of the three qdo voltages Vql, Vdl, 

Vol in the synchronous reference frame. Although the system equations in the 

synchronous reference frame become linear but coupled, a input-output linearization with 

decoupling control methodology is adopted [9-10]. This method linearizes the control 

equations, ensures system stability and high performance at all anticipated operating 

points given sufficient inverter DC voltage margin. The input-output linearization and 

decoupling are achieved by the following definitions and manipulations. The states 

available from modeling equations are  and . Thus we can control either 

output voltage or current.  

qdospI qdospV
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6.3.1 Feedback Linearization Control [A.3] 

 
This control scheme is a type of nonlinear control scheme for Inverter. 

The design based on exact linearization consists of two steps: 

1. A nonlinear compensation, which cancels the nonlinearities included in the 

Inverter, is implemented as an inner feedback loop.  

2. A controller, which ensures stability and some predefined performance, is 

designed based on the conventional theory; this linear controller is implemented 

as an outer feedback loop. 

 

The application selected here is utility inverter wherein the output voltage of the 

inverter should remain constant irrespective of the load.  

The IP controller is designed using the following state equations as given in (6.28) and 

(6.31). 

qsdcdssqssqssqs SVILpILIrV =+++ ω  

dsdcqssdssdssds SVILpILIrV =−++ ω  

odcosnsossos SVpILLIrV =−++ )3(       (6.32) 

and 

dsqlqsqs CVIICpV ω−−=  

qsdldsds CVIICpV ω+−=  

oloso IICpV −=          (6.33) 
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The control law is derived as follows. 

Let CpV dsqlqsqqs CVII ωσ −−==       (6.34) 

dsqlqqs CVII ωσ ++=*         (6.35) 

and CpV qsdldsdds CVII ωσ +−==  hence      (6.36) 

qsdldds CVII ωσ −+=*         (6.37) 

and CpV olosoo II −== σ  hence       (6.38) 

oloos II += σ*
.         (6.39) 

From (6.35), (6.37), and (6.39) , , and  are the desired reference 

currents for generating the given reference voltages. 

*
qsI

*
dsI

*
osI

The required modulating signals need to be generated, hence from Equation (6.32) define  

qqqssqss pILIr σ=+ ,         (6.40) 

dddssdss pILIr σ=+ ,          (6.41) 

ooosnsoss pILLIr σ=−+ )3( .        (6.42) 

Thus (6.32) can be written in terms of the switching function as 

)(1
dssqsqq

dc
qs ILV

V
S ωσ ++=  

)(1
qssdsdd

dc
ds ILV

V
S ωσ −+=  

)(1
osoo

dc
os V

V
S += σ  .        (6.43) 
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6.3.2 Controller Definition for Reference Currents 

The transfer function for the feedback voltage over the desired voltage can be 

obtained as follows. 

From (6.34)  

qsqqsqsqqqs VKVVKCpV 2
*

1 )( −−== σ . 

Thus 

*
121 )( qsqqqqs VKKKCpV =++  and hence the controller transfer function for q- axis is 

defined as 

)( 21

1
*

qq

q

qs

qs

KKCp
K

V
V

++
=  

Where is the integral gain =qK1 p
K q1  and  is the proportional gain, thus we have qK 2

)( 12
2

1
*

qq

q

qs

qs

KpKCp
K

V
V

++
= .        (6.44) 

From (6.36)  

dsddsdsddds VKVVKCpV 2
*

1 )( −−== σ . 

Thus  

*
121 )( dsdddds VKKKCpV =++  and hence the controller transfer function for d- axis is 

defined as 

)( 21

1
*

dd

d

ds

ds

KKCp
K

V
V

++
=   

where is the integral gain =dK1 p
K d1  and  is the proportional gain.  dK 2
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Thus  

)( 12
2

1
*

dd

d

ds

ds

KpKCp
K

V
V

++
=  .       (6.45) 

From (6.39)  

osoososooos VKVVKCpV 2
*

1 )( −−== σ . 

Thus  

*
121 )( osoooos VKKKCpV =++  and hence the controller transfer function for o- axis is 

defined as 

)( 21

1
*

oo

o

os

os

KKCp
K

V
V

++
=    

where is the integral gain =oK1 p
K o1  and  is the proportional gain. Thus  oK 2

)( 12
2

1
*

oo

o

os

os

KpKCp
K

V
V

++
=  .       (6.46) 

6.3.3 Controller Definition for Reference Currents 

The transfer function for the feedback current over the reference current can be 

defined as follows. 

qsqqqsqsqqqqqssqss IKIIKpILIr 2
*

1 )( −−==+ σ  

Thus  

*
121 )( qsqqqqqqssqs IKKKpLrI =+++  and hence the controller transfer function for q- 

axis is reference current defined as 

)( 21

1
*

qqqqss

qq

qs

qs

KKpLr
K

I

I
+++

=     
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where is the integral gain =qqK1 p
K qq1  and  is the proportional gain. Thus  qqK 2

))(( 12
2

1
*

qqqqss

qq

qs

qs

KKrppL
K

I

I
+++

=  .      (6.47) 

The transfer function for the reference current can be defined as follows. 

dsdddsdsdddddssdss IKIIKpILIr 2
*

1 )( −−==+ σ  

Thus 

*
121 )( dsddddddssds IKKKpLrI =+++  and hence the controller transfer function for d- 

axis is reference current defined as 

)( 21

1
*

ddddss

dd

ds

ds

KKpLr
K

I
I

+++
=    

where is the integral gain =ddK1 p
K dd1  and  is the proportional gain. Thus  ddK 2

))(( 12
2

1
*

ddddss

dd

ds

ds

KKrppL
K

I
I

+++
= .       (6.48) 

The transfer function for the reference current can be defined as follows 

osooososooooosnsoss IKIIKpILLIr 2
*

1 )()3( −−==−+ σ  

Thus  

*
121 ))3(( osoooooonssos IKKKpLLrI =++−+  and hence the controller transfer function 

for o- axis is reference current defined as 

))3(( 21

1
*

oooonss

oo

os

os

KKpLLr
K

I
I

++−+
=    
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where is the integral gain =ooK1 p
oo1K  and  is the proportional gain. Thus ooK 2

))()3 22
2

1
*

oooosn

oo

os

os

KKrppL
K

I
I

+++
=

(( sL −
 .     (6.49) 

The controller structure for the inverter is given in Figure 5. The manipulations in 

(7-8) ensures that the description of the system becomes linear making it possible to use 

classical control design schemes to evolve a controller that works for all anticipated 

operating conditions. The outputs of the three axis control loops are inverse-transformed 

to yield the fundamental components of the desired phase voltages, Vap
*, Vbp

* and Vcp
*. 

These voltages are transformed to the stationary reference frame to determine the sector 

where the control voltage set lies and the identification of the expressions for the 

discontinuous modulation signals in Table V. 

The gains of the transfer functions are selected based on a Butterworth 

polynomial which locates the eigen-values uniformly in the left-half  S-plane on a circle 

of radius ωo , with its center at the origin. The Butterworth polynomials for a transfer 

function with a second denominator is given as :  p2 + √2pωo + ω2
o = 0.   

Comparing the denominators of Equations 6.44 through 6.49 with the second 

ordered Butterworth polynomial 22 2 oopp ωω ++  and equating the coefficients for 

desired response time and percent overshoot the desired IP controller parameters can be 

found. 

Thus on comparing the middle term of the polynomial equation, the Kp or the 

proportional parameter can be defined as  
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o
s

qqs

L
Kr

ω2
)( 2 =

+
 or  

ssoqq LrK )2(2 −= ω  similarly ssodd LrK )2(2 −= ω and 

 )3)(2(2 nssooo LLrK −−= ω .       (6.50) 

Now similarly, 

CK oq ω22 = , CK od ω22 = , and CK oo ω22 =  .    (6.51) 

Now comparing the last term of the polynomial equation, the Ki or the integral parameter 

can be defined as. 

soqq LK 2
1 ω=  similarly and LK odd

2
1 ω=

 .        (6.52) )3(2
1 nsooo LLK −= ω

Now similarly, 

CK oq
2

1 ω= , , and .      (6.53) CK od
2

1 ω= CK oo
2

1 ω=

 

6.4 Simulation Results 
 

Figure 6 shows the simulation results of the controlled four-leg inverter feeding 

three phase unbalanced loads. The filter parameters are  rs =  0.01 Ohm, Ls = 0.4 mH,  C 

= 400 µF , Vdc =  400 V and the load impedances are ra =  10 Ohm, La = 0.5 mH, rb =  50 

Ohm, Lb = 0.5 mH, rc = 100 Ohm, Lc = 0.5 mH.  The reference ‘qdo’ load voltages, 

which are ramped and then maintained at constant values, are seen to track closely the 

actual measured voltages as reflected in Figure 6(a-b). The steady state phase load 

voltages given in Figure 6(a), track the references and the required modulation signals for 
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the top devices of the four legs are also given in figure 6(d). Figure 7 gives the simulation 

results with balanced three-phase r-l loads with ra = rb = rc = 50 Ohms and La = Lb = Lc = 

0.5 mH and also a single-phase diode bridge rectifier with a capacitor 500uF – resistance 

200 Ohm on phase ‘a’ of the inverter output. The Vqdol
* references were kept at 150V, 

100V, and 0V, respectively. The controller gains for ‘q’ and ‘d’ phases were calculated 

with cut off  frequency  chosen as 754 rad/sec for the given Ls and C, while for ‘o’ phase  

the ωo was chosen as  20 rad/sec.  

 

The I.P controller gains for voltage loop are 

K1qV  = K1dV  = 227 and K1oV  = 0.16 and  

K2qV  = K2dV  =  0.4265 and K2oV  = 0.0113 and 

for the current loop 

K1qI = K1dI  = 227 and   K1oI = 0.1480 

K2qI  = K2dI  = 0.4165 and   K2oI = 4.6518e-04. 

 

Initially the reference ‘qdo’ voltages are ramped and later maintained at constant 

values. Inspite of the unbalanced and nonlinear nature of the load, the regulation of the 

three-phase voltage is achieved both under dynamic and steady state situations. Although 

there are slight differences between the reference and actual ‘qdo’ voltages the actual 

phase voltages closely track the reference. 
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                              (a)       (b) 
 
 

 
                              (c)       (d) 

Figure 6.3 Regulation of load voltages having unbalanced load impedance. (a) 

Tracking of reference voltages, (b) steady-state load voltages (c) line currents, (d) 

modulation signals. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 201
 
 
 

 

 

                              (a)       (b) 
 

 
                              (c)       (d) 

 
 

Figure 6.4 Regulation of load voltages having a parallel combination of balanced 

load impedance and single-phase rectifier loads. (a) Tracking of reference voltages, 

(b) steady-state load voltages (c) line currents, (d) modulation signals. 
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The current sensor is placed on the load side and hence the inverter currents are 
calculated as follows: 
 

dsqlqsqs CVIICpV ω−−=  

qsdldsds CVIICpV ω+−=  

oloso IICpV −=  

 
At steady state 0=== qsdsqs CpVCpVCpV  hence we can assume 
 

qldsqs ICVI += ω  

dlqsqs ICVI +−= ω  

olos II = . 
 

Per Unit Model: 

Selection of Base Values: 

Vbase = Vdc and Ibase = Idc 

dc

dc
base I

V
Z =  

bbbase LZ ω=  and 
bb

base C
Z

ω
1

=  

qsdsnsnqsn
b

sn
qsnsnqsn SILpI

L
IRV =+++

ω
 

dsqsnsndsn
b

sn
dsnsndsn SILpI

L
IRV =−++

ω
 

ososn
b

nnsn
osnsnosn SpI

LL
IRV =

−
++

ω
3
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and 

dsnsnqqsnqsn
b

sn VCIIpV
C

−−= lnω
 

qsnsnddsndsn
b

sn VCIIpV
C

+−= lnω
 

lnoosnosn
b

sn IIpV
C

−=
ω

 

where  

base

s
sn Z

r
R = , 

b

s
sn L

LL = ,
b

s
sn C

C
=C  

qnqsn
b

sn pV
C

σ
ω

= , dndsn
b

sn pV
C

σ
ω

=  and onosn
b

sn pV
C

σ
ω

=  

hence we have 

dsnsnqqnqsn VCII ++= ln
* σ  

qsnsnddndsn VCII −+= ln
* σ  

ln
*

oonosn II += σ  

qqnqsn
b

sn
qsnsn pI

L
IR σ

ω
=+  

ddndsn
b

sn
dsnsn pI

L
IR σ

ω
=+  

oonosn
b

sn
osnsn pI

L
IR σ

ω
=+  

qsnsnddndsnds ILVS ++= σ  

 
 



 204
 
 
 

dsnsnqqnqsnqs ILVS −+= σ  

oonosnos VS σ+=  
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