CHAPTER 3

PWM SCHEMES IN THREE PHASE VOLTAGE SOURCE INVERTERS

3.1 Three phase VSI as a Switching Converter
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Figure 3.1 Three phase VSI

Power Electronic applications involved in synthesis of quality power essentially
rely on switching converters. In switching converters, power semiconductor devices are
operated in saturation region of operation. This is because there exists higher losses in
active region operation of these semiconductor devices. Thus switching aids in achieving
high efficiency, low weight, smaller dimensions, fast operation and higher power
densities in power converters. Hence the switching converters are applied in following
conversion techniques:

DC-DC conversion (direct current) - involves change and control of output voltage

magnitude.



AC-DC (alternating current ) rectification- involves control of output DC voltage and
input AC current for unity power factor operation.
AC-DC inversion-  involves synthesis and control of sinusoidal output voltages and
currents.
AC-AC conversion- involves change and control of input voltage and frequency.

Three phase DC/AC Voltage Source Inverter (VSI) shown in Figure 3.1 is being
used extensively in motor drives, active filters and unified power flow controllers in
power systems and uninterrupted power supplies to generate controllable frequency and

AC voltage magnitudes using various pulse-width modulation (PWM) strategies.

3.2 Desirable characteristics of three phase PWM VSI

i.  Wide linearity of operation
ii.  Minimum switching to ensure low switching loss
iii.  Minimum voltage and current harmonics
iv.  Over-modulation operation including six stepped operation
To achieve the mentioned characteristics two-implementation techniques exists
e Direct digital technique SVPWM
e Carrier based (triangle comparison) technique
The direct digital technique involves utilization of space vector approach wherein
the duty cycles for the switching inverter are calculated. The gating signals are pre-
sequenced and stored as lookup Table for the available switching states of a VSIL.
Carrier based PWM utilizes the per cycle volt-second balance [3.14] to synthesize the

desired output voltage waveform.
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3.3 Sinusoidal or Continuous PWM

The turn on and turn off action of the switch produces a rectangular waveform as
shown in Figure 3.2. The voltage is equal to input voltage v¢(t) when the switch is turned
ON while it is equal to zero whenever it is turned OFF. Thus continuous turn ON and
OFF cycles produces a train of output pulses. If the switch is turned ON for D. T where
D is the duty cycle of the switch and T is the switching frequency then the average value

of the output voltage is given by [A.1]
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Figure 3.2 Switching converter

It is thus evident that varying the duty cycle of the switching device will result

in variable output voltage. In synthesizing a sinusoidal output signal:
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High frequency sine modulated pulses are used to drive the switching device.

The modulation is done by comparing sine signal with a triangle.

When the output of the inverter is filtered through a low pass filter, the original
modulating signal is obtained which is of higher magnitude.

This principle is known, as Sinusoidal Pulse Width Modulation (SPWM) where

by comparing a sinusoidal signal with a triangle a sine weighted modulating signal is

generated [1]. This is shown in Figure 3.3, which is also known as continuous modulation
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Figure 3.3 Generation of SPWM modulating index =1
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In three phase VSI, the three phase shifted reference signals are compared with
the carrier signal, which define the switching instants for the power devices. The
harmonics generated with this scheme are around the carrier frequency and its multiples.
These can be filtered out using a low pass filter. These harmonics may not be completely
suppressed. The narrow range of linearity is the limitation of SPWM because the DC bus
utilization is only up to 78.5%. To maximize the DC bus utilization an alternative
technique known as Space Vector Modulation [3.2] is used which will be discussed in the

following section.

34 Space Vector Modulation SVPWM

3.4.1 Generation of the PWM switching signals

With a three-phase voltage source inverter there are eight possible operating
states. Obeying Kirchoff’s Voltage Law (K.V.L) and Kirchoff’s Current Law (K.C.L) the

generated states for the inverter are listed in Table 3.1

For KVL, no device in the same inverter leg should be turned on at the a time else the DC

link would be shorted leading to damage of the inverter.
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Table 3.1 Switching States in a 3 phase VSI

State Sap Shp Sep San Stn Sen
Null, Sy 0 0 0 1 1 1 San Stn Secn
S| 0 0 1 1 1 0 Sep San St
S, 0 1 0 1 0 1 Sbp San Scn
S: N 1 1 0 0 Sty Sep San
S4 1 0 0 0 1 1 Sap Son Sen
Ss 1 0 1 0 1 0 Ser Scp Son
S 1 1 0 0 0 1 Sap Sop Sen
Nul,S; |1 1 1 0 0 0 Sap Sop Sep

It is conspicuous that the inverter has six active states corresponding to S; through
S¢ and two null states Sp and S;, The stationary reference frame ‘qdo’ voltages of the
switching modes, also given in Table 3.2, are expressed in the complex variable form as
(a=¢% c=120°1[3.20]:
Vs = 2/3(Van + 2 Vin+ 2> Vep)

VO = 1/3(Van+ Vbn + Vcn) (3.2)
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Table 3.2: Switching modes of the three-phase voltage source inverter and

corresponding stationary reference frame qdo voltages.

Mode Sap Sbp Sep Vs Vs Vos

1 0 0 0 0 0 Va2
2 0 0 1 Va3 Va3 -V4/6
3 0 1 0 “Vd/3 Vo3 “Vd/6
4 0 1 1 2V4/3 0 V4/6
5 1 0 0 2V/3 0 -V/6
6 1 0 1 Vd/3 -VoN3 V/6
7 1 1 0 Vd/3 Vi3 Vi/6
8 1 1 1 0 0 Va2

This Table can be visualized as a regular hexagon and dividing it into six equal
sectors denoted as I, II, III, IV, V, VI in Figure 3.4.

Thus a reference voltage vector in any sector can be referred to as
x 2 e
Vaa = Ug =§Vde’(k_” 3 [B.1] with (k=1,2,3,4,5, and 6)

(3.3)
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Figure 3.4 (a) 3-D Plot of Stationary qdo voltages for the given states, (b) Projection

of the available states on the q-d plane.

A reference signal, qu* over a switching period T can be defined from the space

vector. Assuming that Ts 1s sufficiently small, qu* can be considered approximately

constant during this interval, and it is this vector, which generates the fundamental

behavior of the load.
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The continuous Space Vector Modulation technique is based on the fact that every
vector qu* inside the hexagon can be expressed as a weighted average combination of
the two adjacent active space vectors and the null-state vectors 0 and 7. Therefore, in
each cycle imposing the desired reference vector may be achieved by switching between
these four inverter states.

From Figure 3.4(b), assuming qu* to be laying in sector k, the adjacent active
vectors are Uy and Uy.j, where k+1 is set to 1 for k = 6. In order to obtain optimum
harmonic performance and the minimum switching frequency for each of the power
devices, the state sequence is arranged such that switching only one inverter leg performs
the transition from one state to the next. This condition is met if the sequence begins with
one zero-state and the inverter switches are toggled until the other null-state is reached.

To complete the cycle the sequence is reversed, ending with the first zero-state. If,
for instance, the reference vector sits in sector I, the state sequence has to be
...UoU,U,U;U,U, Uy... whereas in sector IV it is ...UgUsUsU7;U4UsUy... The central part
of the space vector modulation strategy is the computation of both the active and zero-
state times for each modulation cycle. These may be calculated by equating the average
voltage to the desired value.

In the following, Ty denotes half the on-time of vector Uy. T, is half the null-state

time. Hence, the on-times are evaluated by the following equations [B.1]:

L L &Jer &+Tk+Tk+, L
2 . 2 2 2 2
[V di=[U,di+ [Udt+ [U. di+ [U,de
0 0 2—” %+Tk %+Tk +T; 1
T
To"'Tk"'T/m:?3 (3.4
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Taking into account that Uy=U; =0 and that qu* 1s assumed constant and the fact

that Uy, Uy, are constant vectors, equation (3.4) reduces to

bﬂ

*

qu = (Uk. T+ (Ug11.Tis1) (3.5)

|

Splitting this equation into real and imaginary components, from (3.3) follows that:

(k—-Dr kx (k—-D)m  krx
AV cos coS— cos cos— (T
g |1 3 3 2 3 317k
273N wcve T 1537 -vr ke
Va sin sin— sin sin— [\Txn
3 3 3
(3.6)
Where k is to be determined from the argument of the reference vector
v - v
a=arg| ‘| such that (k=D <arg ’|< k—ﬂ (3.7)
v, 3 v, 3

For minimal number of commutations per cycle is met only if in every odd sector
the sequence of applied vectors is Uy Uy Uy Ux Uy , whereas in even sector the active
vectors are applied in the reversed order, hence U Uy Ux U7 Uy Uy Up.

Solving system (3.6) :

sink—”—cosk—”

2V, G=br  (k=Dx ||V,

(3.8)
Tk+1
3

The total null-state time Tp may be divided in an arbitrary fashion between the
two zero states. A common solution is to divide Ty equally between the two null-state

vectors Uy and U;. From (3.4), Ty results as

T
To=—-- (Tt Tien) (3.9)
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As an example for the switching scheme, in sector I one finds:
Assuming that is desired to produce a balanced system of sinusoidal phase

voltages, it is known that the corresponding space vector locus is circular. Imposing
qu* :|Vm |.(cos(a)t)+ Jjsin(at)), where |Vm|is the magnitude and ® is the angular

frequency of the desired phase voltages, it follows from (3.8) that

sin kz Ccos kz
T, v, 3 3 t
( ¢ ]:ﬁMT 3 3 {C?Swj (3.10)
T, 2V, _sin (k—Dr cos (k—Dr |\sinwt
3 3

While 0 <t <7, 3 the reference vector lies in sectors I and equation (3.10) reduces to

. T
(T‘)zﬁmn sin(y — et G.11)

T 2V sin ot

Thus the mentioned procedure is used for microprocessor or DSP based
implementation of space vector PWM. The corresponding output is shown in Figure 3.5.
The null times Ty have to be sequenced in every sector. This sequencing is not necessary

in carrier based PWM technique. This technique is discussed in following section.

Figure 3.5 Generation of SVPWM modulating index = 1
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3.4.2 Carrier based implementation of Space Vector Modulation SVPWM

In Figure 3.1 the important criteria to satisfy KVL and KCL is that.

S, +S, =1 where S;are switching functions and are defined as when compared with

ap an

S,, +8,, =1 triangle so that when

S, +S, =1 Vabe™ Vearr Sij:1

o T O
and  Vapen<Vearr; Sii=0
where 1,j=a,b,c. (3.12)
The phase voltage equations for star-connected, balanced three-phase loads
expressed in terms of the existence functions and input DC voltage V4 are given as

[3.20]:
.
(Sap - Sun )7[1 = VLH’I + Vno

V
(pr - Sbn )7[1 = Vbn + Vno

(S, —Scn)% =V, +V, (3.13)

In equations in (3.13), Va, Vin, Ven are the phase voltages of the load while the
voltage of the load neutral to inverter reference is Vy,. If the reference voltage set is
balanced, the load voltages from (3.12) are expressed in (3.14). The eight feasible

switching modes for the three-phase voltage source inverter are enumerated in Table 3.1.
Vd
Vv, = ?(2Sap =8, =S, =28, +S,, +S.)

v, :%(2pr -S,-S,-28, +S.,+S.)

n ap
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%
I/cn :?d(zscp _Sap _pr _2Scn +San +Sbn) (314)

The stationary reference frame qdo voltages of the switching modes, also given in

Table 1.1, are expressed as:

n=§@n—ﬁ—ﬂ>

1
fd _ﬁ(fb _fc)

fo=3 Ut £+ £) (3.15)
since

Sap +S, =1

S, =1-S,, S, =1-S,, S, =1-5, (3.16)

Substituting (3.16) in (3.14) and then solving for (3.15) we have

! Yo _y 1-1es, —nYe—y jores. —nYe
V;-g[zuzsw-—n—z- V17128, D57, 17125, ~D= ij

q

1
- 5(45’@ S=Ve=2,, =28

v, v, V, Vv, V¥
byt Y, =28, L+
2 2 2 2

= %(2Sade - prVd - Schd)

thus
%
v, = ?d(zsap -5s,, -S.,) (3.16)
| % %
v, = ﬁ((zsq] DV, ~ 28, D+ V,w)
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1

—(S -
N

v, = S,) (3.17)

Now,

V V V
Vs =(25,, —1)7"+(2Scp —1)7"+(25ap —1)7" =Ver + Vi, + Vo) +3V,

no

For balanced case V,, +V, +V, =0

3V,
(80 + 8y + 8, Wy~ =,

no

V V
V., :?d(Sap +3S,, +Scp)—7d=3V (3.18)

In the direct digital PWM method, the complex plane stationary reference frame
qd output voltage vector of the three-phase voltage source inverter is used to calculate the
turn-on times of the inverter switching devices required to synthesize a reference three-
phase balanced voltage set. In general, the three-phase balanced voltages expressed in the
stationary reference frame; situated in the appropriate sector in Figure 3.4(b) are
approximated by the time-average over a sampling period (converter switching period,
Ts) of the two adjacent active qd voltage inverter vectors and the two zero states Uy and
U;. If the normalized times (with respect to modulator sampling time or converter
switching period, Ts) the set of four voltage vectors termed as Vgda , Vadb, Vqdo, Va7
corresponds to time signals t,, ty, to, t; respectively. The q and d components of the

reference voltage qu* are approximated as [3.20]:

qu = qu + ded = quata + qubtb + quoto + qu7t7 (319)

Where we have the time spend in the null state given as,

t=ty+t, =1—1, —1, (3.20)
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Figure 3.6 Projection of times to generate the q,d reference vectors

When separated into real and imaginary parts, (3.19) gives the expressions for t,

and t, as:

{qu } ) {an qu }{ta }

Vi Vie Vil t,
Now A = ande - Vdqub (321)
hence

;I = l_ 99 qu— _ qude B quVdd

oA Va V| A

vV, V.V, -V V
t, = i ga Vg | _ " qa"dd " " qq" da 622)
AVie Vi A

It is observed that both V40 and V447 do not influence the values of t, and t,. The
times t, and t, are given in Table 3.2 for voltage references in the six sectors.
The expressions for the normalized times (t,,t,) displayed in Table 3.3 can be derived as

as follows:
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Consider for sector I from Figure 3.6 we have

2V,

_ =l _
Ve = T,Vda =0
V V
v, =<V, =-%L
qb 3 db \/g
2V, vV,
Now A:ande _Vdqub TE—O
A:2%2
33
From equation (3.22) we can write
Vd Vd
{ (f Vi = ?Vdd)
to =WV =VaVa) =
A 99 2Vd2

33

t_oxn@—Jﬁ@)
a Vd

and

1 1
L :X(anVdd -V Vda) = X(anVdd)

99

(3.23)

(3.24)

The times are calculated in each sector are listed in Table 3.3. These times can be

expressed in terms of the corresponding line-line voltages after inverse transformation

from stationary to ‘a-b-c’.
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The stationary reference frame inverse transformation is given as:

fo=f,+f,
__fq \/gfd
Sy = 5 _T_fo
__fq \/gfd
Jemmy
Now
fafh:fab:fq"‘fo"'%"'gfd_fo =$(3fq+\/§fd) (3.25)
fi-f.=f. =fq+f0+%—§fd—f0 =2, =B (3.26)
S, B f, 3 ~
fofo=fu==S = St o= L= f =3,
fo =31, (3.27)

Substituting the expressions for t, and t, from Table 3.3 into equations (3.25),

(3.26), and (3.27) we get Table 3.4 [3.20]
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Kirchoff’s voltage law constraints the existence functions such that Si;+ Six =1,

where i = a, b, and ¢ which when substituted in (3.2) are expressed as :

v

(28, - 1)7" =V,+V,
V

(2pr - 1)7d = Vbn + Vno

V
(28, - 1)?” =V, +V, (3.28)

The voltage equations expressed in terms of the modulation signals in (8) are
facilitated by the Fourier series approximation of the existence functions, which are
approximated as [A.2][A.3]:

S, =Z,=051+M,)
S, =Z, =0.5(1+M,,))
S, =Z,=051+M,) (3.29)

Where, My, , My, Mg, are the carrier-based modulation waveforms comprising of
fundamental frequency components. These vary between —1 and 1 (for the linear
modulation range). The approximate existence functions (Zap, Zpp, Zep) Which range
between zero and unity can be used to generate actual existence functions by comparing
them with a high frequency triangular waveform that ranges between unity and zero.

In general, the existence functions are usually generated by comparing the high
frequency triangle waveform, which ranges between —1 and 1 with the modulation

waveforms (Map, Mpp, Mcp). Hence the inverter switching signals which are connected to
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the base drives of the switching devices for the carrier-based PWM scheme can be
achieved by either of these two methods.
e Using the actual modulating signals.

e Using the approximate existence functions.

3.5 Carrier based implementation with injection of generalized zero sequence

voltage

The equations for the modulating signals of the top devices from (3.28) and
(3.29) are expressed as [3.20]:

V V

an no

M, = o
PV, 2V, )2

M — Vbn + no
Yov,2 V2

M, :LJFL (3.30)
v, v, 2

The neutral voltage V,,, averaged over the switching period Ts is given as :
<V, >=V t, +V, t, +V t,+V t, (3.31)
It should be noted that t. is partitioned into dwell times for the two null voltage
vector - t.a for Uyand t.(1-o) for Us.
The averaged zero sequence voltages for reference voltages in the voltage sectors

are derived as follows:

We know that the total switching time from (3.20) can be expressed as:
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t t t t
<4ty T =lort,=1-t,—t,
I, I, T
Now ¢, =t +t, if wedefine at, =¢, .. t, =(1-a)t,
<V, >=V t +V,t, +atV, +(1-a)lV,, (3.32)

This zero sequence voltage has various values in different sectors, which can be

generalized to obtain a single expression applied to all the sectors.

3.5.1 Generalized expression for V,

Consider section | we have

¥, 4
Voa: 4 ;Vob:_d
6 6
7, 4
VO(): s ;Vo7:_d
2 2

-V V -V V

<V o>=—2%t +—Lt, +at D+ (1-a), -+

no a 6 b c( 2 ) ( )c 2

Vd Vd Vd
=, -t )—at.—+(1-a). —=
2(b a) c 2 ( )c 2

v tV
<V >=-L(,—t)+L(1-2a) (3.33)
6 6
It is notable that a similar expression is obtained in sector III and V

Consider sector 11

V -V
Voa:_d;Vob: 4
6 6
Voo:_Vd;V(ﬂ_Q
2 2
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v ty
L <V >=m =)+ (- 2) (3.34)

Similarly the above expression is obtained for sector IV and VI

Thus the expression for zero sequence voltage in each sector used for injection

with the phase voltages is given in Table 3.5.

Table 3.5 Average zero sequence voltage for the sectors [3.20]

Sectors LIIL, V IL, IV, VI

t
c tch (1-26{)

2

v 14
Vo> <V, >= ?”(tb —t)+=L(1-2a) <V, >= %(ta —t,)+

6

Thus the generalized expression for <V,,> is obtained as follows

It is known that for balanced case sum of the phase voltages is zero hence,
v, +V, +V, =0

Consider sector 1

4 1V,
<V >:?d(tb —fa)+—‘76d (1-2a)

o V. V.
From Table 3.4 substituting the values of t, = V‘“ and t; :V;b and 1, =1-¢, —¢,
d d

V,(V, V.
<V, >=_4 _cb_Q + 1_;”_@ Q(1—2a)
6\V, V, 2

<V, >=%(2Vc -y, —Va)+%(1—2a)+0.5(1—2a)(Vb -V,)

V
<V, >:%(2Vc -V, —Va)+7d(1—2a)+0.5(1—2a)(Vb -V.)

uSing I/cn = _Van - Vbn

35



.
<V >:%(—2Va —2v, -V, —Va)+?d(1—2a)+0.5(1—2a)(Vb ~V)

,
<V >= —%(Vb + 1)+ (1=2a) +0.5(1=2a)(V, =V.)

Va
2

<V >:V—2d(1—2a)— (—1—1+2a)+%(1—1—2a)

V
<V >=7d(l—2a)+Va(a—1)—aVb (3.36)

From Table 3.4, it is observed that for Sector I the maximum phase voltage is V,

while the minimum phase voltage is V. thus

.
<V >=H1=20) + V(a1 =y, (3.37)

The expression for remaining sectors is as follows:

Sector II.

.
v, :%[2Va —V, =V 1+ SH1-2a]+ 050 - 2a)[V, - V]
1 v,
=12V, =2, =V, V. ]+ 1= 2a]+ 0.5 - 2a)[V, = V.]

= _—I[Vc + Vb]+%[l -2a]+05(1-2a)V, -V.]

v, 11 11
L =2a]+[-=——+alV, +[-=+——alV
2[ 1+[ 575 V. +[ ) ",

.
=H1-2a]+V [a-1]-a,

[a - 1] - anin

max

:%[1—204]”/
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Sector III.
1 v,
v, Ig[sz -V, —VC]+—2 [1-2a]+0.5(1-2a)[V,-V.]
1 v,
= 12, =2V, V14 1= 2a]+ 0501 - 200, - V]
-1 v,
ZT[V‘Z + VC]+7[1—2C¥]+05(1—2C¥)[V‘Z —Vc]
v, 11 11
i gl et alV A+~ —alV
2[ 1+[ ) W, +I 2 t3 I,
Vd
== 2a)+V [ -1]- o,

max

= %[1 —2al+V,  [a-1]1-aV, .,

Sector I'V.

%
V., =%[2VC -V, —Vb]+7"[1—2a]+0.5(1—2a)[Va -V, ]
1 v,
:g[—zVa =2V, =V, —Vb]+7[1—2a]+0.5(l—2a)[Va -V, ]
-1 v,
=7[Va +Vb]+7[1—2a]+0.5(1—2a)[Va -V, 1]
v, 1 1 I 1
=—-[1-2a]+[-——=+alV, +[-—+=——alV
5L It =g ral, tl=g - -alV,
Vd
:7[1—2a]+Vb[a—1]—aVa

max

= %[1 —2a)+V,  [a-1]-aV,
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Sector V.

%
V. :%[2Va -V, —VC]+7”’[1—2a]+0.5(1—2a)[Vc -V, 1
1 v,
:E[_ZV” =2V, -V, —Vc]+7[1—2a]+0.5(1—2a)[Vc -V, ]
-1 v,
:T[Vb +VC]+7[1—2a]+0.5(1—2a)[VC -V, 1
v, 1 1 I 1
=—[-2a]+[-——=+alV, +[-=+=——alV,
5L It - ral, =g+ -al.
Vd
:7[1—20¢]+V,7[0¢—1]—05Vc

= %[1 —2al+V,  [a-1]1-aV, .,

max

Sector VI.

,
v, =%[2Vb ¥, =V )21 2a] 05020, -V,
1 v,
= 120, =2, Y,V ]+ 1= 2a]+ 050 -2V, 7]
-1 v,
ZT[V(I + VC]+7[1—2OJ]+0.5(1—20!)[VC —Va]
v, 11 11
=—-[l-2a]+[-——=+alV, +[-—+——alV,
L1-2a]+[-3 -+ all, +[- + 2 -al,
Vd
=~ [1-2a] 4V, [a - 1]-aV,

max

= %[1 —2al]+V_ la-1]-aV .

38



This expression being the same for all the sectors, is a generalized expression

[3.20] [3.14] for the zero sequence voltage.

Substituting this V,, in (3.30) gives the carrier based SVPWM scheme.

o= Van +(1_2a)+Vmax(a_l)_anin
» Y2 V.12
Vv, V -D—-alV .
by — bn +(1_2a)+ max(a ) a min
Vv, /2 V,/2
V |4 -D—-alV .
o — cn + (1 _ 2“) + max (a ) a min (3.38)
vV, 12 v, /2

The expressions in 3.38 can be used for synthesizing the reference signals for

carrier based discontinuous modulating scheme.
Alternatively using the theory of existence functions, the equations for

discontinuous modulating signals can be derived. It will be shown in the preceding

section that both the methods yield same results.
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3.6 Carrier based implementation with injection of zero sequence signal using

theory of existence functions

Figure 3.7 shows the existence functions of the three top devices of the inverter
when operating in the first sector and the available times for each device. It is observed
from Figure 3.9 that the average (the first term of the Fourier series expansion) of an
existence function is equal to the sum of the normalized times each device is turned on to
realize a reference voltage. These existence functions are obtained by using the sequence
111-5110>100—-000—000—100—110—111. Thus the switching functions in all the

six sectors are shown below in Figure 3.8 and Figure 3.9

Sap Sbp Scp
1 1 1 ty
1 1 0 to
1 0 0 ta
0 0 0 ty
| | | |
Sap | I I I
I | I I o
| | C L L
I I | I I
Sep | | | | |
I I | I I

0.5t, 0.5t 0.5t 0.5t |
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Figure 3.7 Existence functions of top devices for operation in sector I

Sector 1
Sap Sbp Scp —Saa  —
7 1 7 [
1 1 0 b Sbp |
1 0 0 T
0 0 0 to Scp
0.5, §0.5t_§ 0.5t 40.5t ¢ 0.5t 4 0.5t 0.5t 105t
0.5T. 0.5T.
Sector 11
Sap Sbp Scp
7 7 7 v
0 T 0 B Sbp I
T 1 0 T
0 0 0 to Scp
0.5, Jo.5t, § 0.5t 805t I 053 0.5t 10.5¢, Jo.5¢,
0.5T, 0.5T.
Sector 111 .
Sap Sbp Scp i
1 1 7 1
0 7 7 B Sbp _
0 1 0 0
0 9 0 o oo ‘
o.5t.8 0.5t ¥ 0.5t8 0.5t I 0.5t1 0.5t1 0.5t Vo5t
0.5T< 05L

Figure 3.8 Existence functions of top devices for operation in sector I, II and 11T

41



Sector IV _J_ I I
Sap Sbp Scp Sa t 1
7 7 7 7 I
0 0 7 B Sbp I
0 7 7 T I
0 0 0 fo Sep I
‘ 0.5t) 0.5t 1 0.
: 0.5t7! O.Stb! O.St{ 0.5t6! 0.5t ) ! 0.5t )
1 0.5T. | 0.5T.
" | H
Sector V i I :
Sap Sbp Scp = I
7 7 7 7 I
1 0 1 [ Sbp [l
0 0 7 T 1 |
0 0 0 fo S 1 |
- 3 st] 0.5t ‘
j 0st] ost | O.St! o5l osd 05t} 05t] 05ty
—1—q l
' 0.5T. [ 0.5T. !
H 1 H
Sector VI ) I .
I
Sap Sbp Scp ﬁ&l ) I_
7 7 7 T I
1 0 0 tb Sbp 1
7 0 7 T I —_
0 0 0 fo
Sep L
: 05t,1 05t,1 O.St% 0.5t6! 05 05t 0541 O.5t7=
1 0.5T. [ 0.5T. i
H 1 H

Figure 3.9 Existence functions of top devices for operation in sector IV, V and VI

42



Table 3.7 Normalized times for the top devices

| 11 111 v \ VI
Zyp t,+t, +t, |t +t, t t to+1, t,+t, +t,
Zyp t,+1, t,+t, +t, | 1, i, +1, |t +t, t t
Zep t t to +1t, t,+t, +t, |t +t, 1t | L+,

Thus the normalized times for the top switching devices are expressed by adding

active on times from Figures 3.8 and 3.9 are summarized as in Table 3.7
If we define B = (1- a ) then it is notable that, 0 <3 = (I- o) < 1 which when varied

introduces different weights to the times the null switching modes are used.

3.6.1 Modulating signals expressions for each sector using existence functions

It is mandatory that ¢, +¢, +7, +1, =1
Consider ¢, =(1-a)t,

=(l-a)1-t,-1t,)

=(l-ao)1-t,-1t,) (3.39)
consider sector I of Table 3.7

Z, =t,+t,+(-a)l-(t,+1,))

ap

From Table 3.4 we have
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Ve Vo v, V.
=— 4 b L 1—a) 1- (=% 4 <
! )( Gt )]

ap
Vd d d a

Va B Vc Vc — Vb
ap = +
’ Vd Vd

+(1—a)[1—(%+%)j since (1-a)=/p

d d

v
Zy =V + BA=V,,) where V,, = V"” (3.40)

d

similarly we have

Z, =t +1,

pr =t, +(l-a)1-(, +t,))

pr=%+(1—a>[l—(%+%)j
d d d

V V
pr :V_Cb+ﬂ(1_Vabn):Vcbn+ﬂ(1_Vabn)Where Vcbn :V;b
d

d

similarly we have

Z, =t

p

Z,=(I-a)1-(, +1,))

Z,=(1- a)[l - (%Jr%)j

Z, =pB0=V,,) (3.41)

So we have the expressions for existence function in sector I can be written as
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Zyy =V + BU=V )

Zyy =View + BU=V,)

Z,=B0=Vu,) (3.42)
Sector II of Table 3.7

Z,=t,+(1-a)1-(, +1,))

From Table 3.4 we have

ap
d d d

Voo v - 1= (Zee 4 Yooy | since (1) =
VA :V—+(1 a)[l (V +V)Js1nce(1 a)=p

V
Z, =V, +B1U-V,,) Where V, = VL” (3.42)

d
Similarly we have

pr =t,+t, +1,

Z, =t, +t, +(l-a)1-=(2, +1,))

ap

V. V
:Lb+&+(l_a) 1_(@+ﬂ)
Vd Vd Vd Vd

Va B Vb Vc B Va
o= + +
! Vd Vd

<1—a>(1—(%+%>j

V V
pr = V;b + ﬂ(l - Vcbn) = Vcbn + ﬂ(l - Vabn ) Where Vcbn = V;b
d

d

Similarly we have
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Z, =t

cp

Z, =(I-a)1-(, +1,))

Zcp = (1_0)[1—(%4_%)]

V
Zcp = ﬂ(l - Vcbn) Where Vcbn = V_Cb (343)

d

So we have the expressions for existence function in sector II can be written as
Zap = Vabn +ﬂ(1_Vcbn)

pr :I/cbn +IB(1_I/Lbn)

Zcp = ﬁ(l_ Vchn)
Sector III of Table 3.7

Z =t

Z,=1-a)1-(, +1,))

From Table 3.4 we have

zZ, =0 —a)(l—(%+%)j since (1-a)=/

d d

K‘a
zZ, =p1-"v,,) where V, = 7 (3.44)

can cac
d

Similarly we have

Z, =t, +t,+t,
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Z,, =t,+t, +(1-a)1-(t, +1,))

VA

bp

VA

bp

Vca
pr :V_—I—ﬂ(l_V‘ ):V
d

Ve, V, Ve, V,
——Cb+ﬂ+(1—a)(l—(—d’+ﬂ)j

v, v, v, v,

V.-V, V,-V V. V.
=< b0 “+(1—a)(1—(i+ﬂ)]

V, Va Ve ¥,

e
can can + ﬂ(l - Vcan ) Where Vcan = -
: : V)

Similarly we have

Z

cp

Z

P

cp

zZ,

=1, +1,

Z’“ Fa-a)1-(t, +1,)

d

14 V v
Z =" +(l-a)l-(=2+-22)
Vd Vd Vd
Vba
Vi T BA=V_ ) where V, = % (3.45)

d

So we have the expressions for existence function in sector III can be written as

Z, =P0=V,)

pr:Vcan+ﬂ(1_V )

zZ,

can

Vban + IB(1 - chn)

Sector IV of Table 3.7
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Z, =t

Z, =(-a)(1-(, +1,))

From Table 3.4 we have

V V
Z =(l-a)1-(=“+-)|since 1-a)=
o =( )( (Vd Vd)J (l-a)=p
Vba
Zap =p01-V,,) where V, = 7 (3.46)

d
Similarly we have

Z, =t,+t,

P a

Zy, =t, +(Il=a)(1=(t, +1,))

V V., VW
pr=ﬁ+<1—a>[1—<i+i>j

d Vd Vd

can

d d

% V
pr:V;W+IB(1_Vban):Vcan+ﬂ(l_Vban)Where V = I/ca

Similarly we have

Z,=t,+t,+t,

V., V,
=~ (1)1 =, +1,))
d d

cp

V v, 14 v,
Z, =4 b (l-a)l-(==+-1)
Vd Vd Vd Vd



Zcp :Vban +ﬂ(1_V

ban

v,
) where V, = Vf’“ (3.47)

d

So we have the expressions for existence function in sector IV can be written as
Zap = ﬂ(l - Vban)
Zyy =V + BA=V,,)

can

Zcp = Vban +ﬂ(1_Vban)

Consider sector V of Table 3.7
Z,=t,+t,
Zap = tb + (1 - a)(l - (ta + tb ))

From Table 3.4 we have

14 V. V
7 =—“4(l-)1-(+—-<)|since (1—a) =
w =y ( )( (V v )] ( )=p5

d d d

Zap :Vacn +ﬁ(1_V

ben acn
d

Similarly we have

pr :t7

Z,, =(1-a)(1-(t, +1,))

Ve V.
Z, :(l—a)(l—(%+ﬁ)]

v
) where V= V“‘" (3.48)

49



v
Z,,=pa-V,,) were V, :%

can
d

Similarly we have

Z,=t,+1,+t,

o Ve - aya-, +1,)

v Vd Vd
e e a1 Ve
! Vd Vd Vd Vd
Vbcn
Zcp = Vbcn + ﬂ(l - Vbcn) WEre Vbcn = V (349)

d

So we have the expressions for existence function in sector V can be written as

2y =V + BA=V,,)

z, =p1-7,,)

Zy =Vien + BA=V,,)

Sector VI of Table 3.7
Z,=1,+t,+1;
Z,=t,+t,+(1-a)1-(, +1,))
From Table 3.4 we have

_ Vbc

ap

Var v - e 1= (Lo 2 Yooy sinee (1—ay =
+V—+(l a)[l (V +V )J since (1-a)=/

d d d d



Z V. +p0-V )

ap — " acn acn

Where V. = Ve
V

acn
d

Similarly we have

Z, =t

/4

Z,, =(1-a)1-(t, +1,))

pr:(l—a)(l—(%+—

d

acn

V
zZ,,=pa-v,,) where V,, = 7

Similarly we have

Zcp =t,+1t,

cp
d

cp
d

y
Z, =V, +p01A-V,,) where V, = v

acn

7 = I;b +(l-a)(1-(t, +1,))

v, Vie V.
7 =-t 1= 1- (=4
T )( o )

(3.41)

(3.43)

So we have the expressions for existence function in sector VI can be written as

Z =V +B(1-V, )

ap — " acn acn

Zy =PA=V,)
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Zcp bcn + ﬁ(l - Vacn)

The expressions for all the sectors is summarized as follows

Table 3.8 Discontinuous existence functions for top devices with star-connected load,

Vijn=Vij/Va, wherei, j=ab,c andi=j. (p=1-a)

Sector z, z, zZ,
VI BA-V,)+V ., pA=V,.) PA=V,.)+V,
Voo BA-V )+ V., pA=V,,) LA=V,0) + Vs,
v BA=V,,) BA=Vy0) + Ve, BA=V,0) + Vi
1 PA=V..) BA=V0) + Ve, LA~V o) + Vi
I BA-Vy)+V,, BA=V )+ Ve, BA=V,,)
Ll A=V +V e, BA=V )+ Vo BA=V,,)

3.6.2 Observations on the obtained schemes

Various kinds of GDPWM waveforms, which have been reported in the literature
[3.10-3.19] including DPWMIN, DPWMMAX, DPWM1, DPWM2 and DPWM3, can be
generated using either equation 3.38 or Table 3.8 for an three phase VSI inverter. When 3
= 1, each top inverter leg connected to a phase is clamped to the upper rail of the DC
source for 120 degrees and the lower inverter leg is clamped to the lower rail of the DC

source when 3 = 0. When B =0 and B =1, DPWMMAX and DPWMMIN are obtained,
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respectively and = 0.5, gives the SVPWM. With the definition B = 0.5[1 + Sgn(Cos
3(wt + 0))] where o is the angular frequency of the reference voltage and & is the
modulation phase angle, an infinite number of modulation waveforms can be generated.
If 6 =0, -n/6, -n/3, the resulting modulation signals are the same as the DPWMI,
DPWM2, and DPWM3 respectively. Figures 3.13 through 3.15 shows the comparison of
the modulating signal and the corresponding gating (switching) signal. It can be noted
that the device is clamped effectively for 120 degrees in a cycle for all the modulators.
Thus a varied switching loss in the device can be anticipated for different load power
factors. The modulator has to be chosen in order to minimize the switching loss for the
given load power factor. The characteristics of these modulators have been already
studied in terms of switching loss, harmonic loss factor or the distortion factor [3.10-
3.19]. The superior performance of the DPWMI1, DPWM2 and DPWM3 in higher
modulation region has been explicated in [3.10] [3.11] [3.17]. The method for achieving
these waveforms was by injection of zero sequence voltages through generalized
expression of V.

The method for generation of zero sequence voltage through theory of existence function

gives the same results, which are shown in the following figures.

53



Ch2[ T00mv ™ M4.00ms A Ch1 J—61.0mv|

Mathil 100my 4.00ms |11+~ |—8.56000ms

»- [

AL 34.0mV
1@ —§.00mv

1A 1.25kHz
T@: 133 Hz

17 Jun 2003
13:20:06

Figure 3.10 Generation of Switching function for DPWMMIN when 3 =0
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Tek Prevu | F +— ] - [mm=
P T A B OmY
_ ; ; 1@ 96.0mV
R 1A 1.25kHz
: : . ' T@: 133 Hz

Ch2[ T00mv ™ M4.00ms A Ch1 J—61.0mv|
17 Jun 2003
OEWR | 100mvV _ 4.00ms i+~ |~8.56000ms 13:21:35

Figure 3.11 Generation of Switching function for DPWMMAX when =1
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Tek PrevVu |

Ch2[ 100mv ™~ |Md4.00ms A Ch1 J—4a4.0mv|

Mathjl 100mv 4.00ms

B [

AL 240mV
1@ —110mVv

iAT 125 Hz
1@ 96.2 H?

17 Jun 2003
13:26:37

Figure 3.12 Generation of Switching function for DPWM1 when, 3 = 0.5[1 +

Sgn(Cos 3(ot +3))] and 5 =0
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Tek Prevu | 4 B [
e b et . 30 OmV
i@ 122my

1A 50.0 Hz
1@ 38.5 Hz

Ch2[ T00mv ™ M10.0ms A Ch1 J—9.00mv|

17 Jun 2003
Mathil 100my 10.0ms 13:29:24

Figure 3.13 Generation of Switching function for DPWM2 when, § = 0.5[1 +

Sgn(Cos 3(ot + 3))] and 6 = -/6
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»- [

"TA: 58.0mV
@ 166mv
1A 125 Hz
1@ 96.2 Hz
Ch2[ T00mv ™ M10.0ms A Ch1 J—9.00mv|
17 Jun 2003
Mat hi T TY 10.0ms 13:30:41

Figure 3.14 Generation of Switching function for DPWM3 when,

B =0.5[1+ Sgn(Cos 3(wt + §))] and 6 = -1/3
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3.7  Experimental results

Illustrative experimental results are given in Figures 3.15 through 3.20 showing
the nature of the discontinuous modulation waveforms and the corresponding voltage and
current waveforms along with the FFT of the current waveforms. The load applied was a
I-hp three-phase induction machine at no load. From these Figures, the relationships
between the modulation schemes derived in this paper and those already reported in the
literature are established. The FFT of current shows the harmonic content generated by

various modulators for the same load power factor.
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i—1}[td_5210]-.(;H-1-1(_10-V-:10-!11-.."72—----:----:----:----:---—i
[ 2) [tds210].2H2 100 mY - 10 m$ - : : : B
[4) [tede290).6HA 1Y, 1OWMS, v, 0003

(@)

Tt of current at beta=0

a 50 100 150 200 250 300 350 400 450 500

(b)

Figure 3.15 Experimental results for three-phase inverter under GDPWM
modulation feeding an induction motor on no-load. V4= 200V, frequency = 30 Hz.,
Modulation magnitude = 0.9 (a) (1) Motor line-line voltage, (2) motor phase current.

(4) B =0, DPWMMAX (b) FFT of the phase current
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[1) [tds210].CH1 100 ¥V 10 mS : : : : ]
[2) [tds210].CH2 100 m¥ 10 m P : : -
[3) [tds210].CH1 1 ¥ 10 mS ; ; : : ]
Eiiisiedcbaty gaiioioaits] fogiisiobaiitey Pviiofsy foy fogtastade iy EREaaieicbirs el

o s0 100 150 Zoo 250 200 250 400 450 500

(b)
Figure 3.16 Experimental results for three-phase inverter under GDPWM
modulation feeding an induction motor on no-load. V4 =200V, frequency = 30 Hz.,

Modulation magnitude = 0.9 (a) (1) Motor line-line voltage, (2) motor phase current,

(b) B = 0.5, SVPWM, (b) FFT of the phase current
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[tds210L.CHA- 1 V- 10 mS-
) [tds210].CH1 100 ¥ 10 mS
ds210]. Mo

(b)
Figure 3.17 Experimental results for three-phase inverter under GDPWM
modulation feeding an induction motor on no-load. V4=200V, frequency = 30 Hz.,

Modulation magnitude = 0.9 (1) Motor line-line voltage, (2) motor phase current.

B =1.0., DPWMMIN. (b) FFT of the phase current
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B [tds2101.CHA 100 -V - 10-mS |

£) [tds210].CH2 200 mV 10 mS]
B) [tds210].cH1, 1.%, 10 mS, |, |

(@)

M of current at delta=o

(b)

Figure 3.18 Experimental results for three-phase inverter under GDPWM

modulation feeding an induction motor on no-load. V4 =200V, frequency = 30 Hz,

modulation magnitude = 0.9 (a) (1) motor line-line voltage, (2) motor phase current.

B =0.5[1+ SgnCos 3(wt + 3)], 5 =0, DPWMI (b) FFT of the phase current
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Figure 3.19 Experimental results for three-phase inverter under GDPWM
modulation feeding an induction motor on no-load. V4=200V, frequency =30 Hz,
modulation magnitude = 0.9 (1) motor line-line voltage, (2) motor phase current.

B =10.5[1+ SgnCos 3(wt + d)], 6 = =-30°, DPWM2, (b) FFT of the phase current
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(b)
Figure 3.20 Experimental results for three-phase inverter under GDPWM
modulation feeding an induction motor on no-load. V4 =200V, frequency = 30 Hz,

modulation magnitude = 0.9 (1) motor line-line voltage, (2) motor phase current.

B =0.5[1 + SgnCos 3(wt + 3)], d =-60°, DPWM3. (b) FFT of the phase current
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3.8  Modulation for unbalanced voltages

There are situations in which it is desirable to impress an unbalanced three-phase
voltage set to an unbalanced three-phase load in order to ensure a balanced three-phase
load current or to use unbalanced three-phase voltage set for voltage or current
compensation in active filters in distribution lines. In general, four-leg inverters are used
in such applications since the phase currents are not constrained when the load is star-
connected. However, when the impressed unbalanced three-phase voltage set is
constrained such that the load currents add to zero in star-connected loads, a three-leg
inverter can be used. Under such conditions, the expressions for the three modulation
signals M;, must be determined given the phase voltages Vain , Vin, Ven Which are not
balanced in general. Since there are three linear independent equations to be solved to
determine expressions for three unknown modulation signals and V,,, these equations are
under-determined.

In view of this indeterminacy, there are an infinite number of solutions, which are
obtained by various optimizing performance functions defined in terms of the modulation
functions. For a set of linear indeterminate equations expressed as AX =Y, a solution
which minimizes the sum of squares of the variable X is obtained using the Moore-
Penrose inverse [A.3].

From the matrix properties if A is a matrix of rank (r x n) then we know that the

product form ATA has the dimension (n x n) while the product AA" has dimension of
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(rx1). If r > n, then ATA could be nonsingular but AA" is a singular matrix. Similarly
ifr<n, AA"can be a nonsingular matrix but A"A is a singular matrix.
The solution of under-determined case in which the dimension of the matrix A (r
x n) where r < n has the matrix product of AA" is nonsingular. Thus the pseudoinverse
definition can be derived as follows:
AX =Y
Using the identity: ~ AAT[AA']'=1
We have the following expression,
AX=AAT[AAT]'Y
Which gives
X=A"TAAT]'Y
This solution is for the minimization of the sum of the squares of the three
modulation signals and the square of the normalized neutral voltage (V' pn = V,n/0.5 V).
Equivalently, this is the maximization of the inverter output-input voltage gain, i.e. My, 2
+ Myp 24 Mep 2 4+ V*no 2 subject to the constraints in (1). The result expressions for the
modulation signals are given as [3.20]:
Map = 1/4 B3Vamn— Vorn—Vemn ) 5 Vamn = Van/ 0.5Vy
Myp= 1/4 (-Vann + 3Vban— Venn ) » Vonn = Vin/ 0.5Vy
Mep = 1/4 (-Vamn = Vomn + 3Vem ) » Vemn = Va/ 0.5V4

V*pn = 1/4 ('Varm 'Vbnn - Vcnn) (344)
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An alternative carrier based discontinuous modulation scheme is obtained by
using the Space Vector methodology to determine the expression for Vy, in (3.44). Since
the reference voltage set is unbalanced, the reference three-phase voltages mapped to the
stationary reference frame has in addition to the q and d voltage components the zero
sequence voltage. The reference zero sequence voltage, V, is approximated by time-
averaging the zero sequence voltages of the two active and two null modes. From (3.44),

the neutral voltage V,,, averaged over the switching period T; is given as:

<Vino> = Voata + Vo ty + Voo to + Vo7 t7 - Vo (3.45)
Table 3.9 gives the expression for the averaged neutral voltage <V,,> for the six
sectors of the space vector. Hence, given the unbalanced voltage set at any instant, V*qdo
in the stationary reference frame is found and the sector in which qu* 1s located is
determined. The expression for V,, is then selected and is subsequently used in (3.10) to

determine the modulation signals for the three top devices.

For unbalanced case the expression for each sector is derived as follows:

V,=V.t,+V,t,+V t +V .t

oa a 00" 0
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Sector I

V V
V., =—%0t,-t,]1+(1-a), -~
6[b a] ( )62

Vd Vd
=20t -t 1+-L|-at, +t, —at
6 [b a] 2[ c c c]

v v
=?"[xb —ta]+7d[1—2a]tc t=[1—t,—1,]

Va
6

V
[I/cb _Vac]+?d[1_2a][Vd _Vcb _Vac]

V V
z?d[Vc _Vb _Va +Vc]+7d[1_2a][Vd _Vc +Vb _Va +Vc]

:é[2VC -V, —Va]+V—2"[1—2a]+ 0.51-2a)([V, -V,]

Sector 11

n

V V
V., ==Lt —t,]+->(1-2a),
0 6[a b] 2( )c

g

Vab B V Vd Vab B Vca
6" v,

“]t 4 (1-2q) V=
2 v,
1 1
:E[Va -V, -V, +Va]+5[1—2a][Vd —V, +V, =V, +V,]

=%[2Va ¥, ~VJ+li-2al¥, -V, +7,)

:%[ZVa -V, —VC]+V—2C’[1—2a]+ 0.51-2a)[[V, -V.]
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Sector 111
V V
Vo o=—40t —t 1+—L(1-2a)t
no 6[b a] 2( )C

— Q[Vba B Vcb

4 V,-V,, -V
]+ d(l_za) d ba ch
6V, 2

d

=%[V,, —V, -V +Vb]+%[1—2a][Vd —V,+V, =V, +V,]
A AT B RV

:%[21/1, -V, —VC]+%[1—205]+ 0.51-2a)[[V, -7.]

Sector IV
V V
V. ==Lt —t,]+—+(1-2a)
no 6[a b] 2( )C

V, V=V

:_[ xa

6 v,

4 ~V,, -V,
] + _d(l _ 2CZ) Vd Vca bc
2 v,

:%[VC -V, -V, +Vc]+%[1—2a][Vd —V.+V, -V, +V.]

= %[21/0 —V,-V,] +V—2d[1 —2al+0.5(1-2a)[[V, -V,]
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Sector V
V V
V. =Lt -t ]+—-L(1-2a)
no 6[b a] 2( )C

v, V. -V,
6V,

Va

5 (1- 205){

]+ Vd_Vac_Vbaj|

Va

=%[Va —V. -V, +Va]+%[1—2a][Vd —V, +V, =V, +V,]
1 1
=2V, =V, v+ li-2aly, +v -7,

v
:%[2Va -V, —VC]+7”’[1—205]+ 0.5(1-2a)[[V. -V, ]
Sector VI
v v
V. o=-2[t -t ]+-<(1-2a)t
no 6 [b a] 2( )C

:Q[M]J_;(l_zm[

Vd B Vbc B Vah
6 v,

d

:%[Vb -V, -V, +Vb]+%[1—2a][Vd —V,+V. =V, +V,]

:%[2Vb -V, —Vb]+V—2"[1—2a]+ 0.51-2a)[[V, -V,]
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The above equations are simplified and summarized in Table 3.9

Table 3.9 : Expressions for the neutral voltage for the six sectors

Sector Neutral Voltage <V,,>

VI (Vb—2 Va—2V¢)/3+0.5V4(1-20)- a(Ve— V,)
A% (Va—2 Vp—2V¢)/3+0.5V4 (1-20)-o(V— Vp)
v (V-2 V,—2Vy,)/3+0.5V4(1-2a) —ou(V,— Vi)
111 (Vb=2 Va—2V,)/3 + 0.5 Vy(1-2a)-a(Va— Vo)
II (Va—2 Vp—2V¢)/3+ 0.5V (1-20)-o(Vp— Vo)
I (V-2 V,—2Vy,)/3+ 0.5 Vy(1-20) —a(Vy— Va)

3.9 Simulation Results

Figures 3.21-3.25 shows the simulation results of an inverter feeding an
unbalanced load with the desired objective of balancing the load current. The resistances
of the R-L load used are r, = 0.5 Ohm, 1, = 0.5 Ohm, r. = 0.5 Ohm and the corresponding

load inductances are L, = 0.025H, L, = 0.02H, L. = 0.0125H. With given reference three-
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phase currents, the corresponding phase voltages are determined and used in equations
(3.44) to realize the continuous modulation signals, which are subsequently used to
generate the required voltages. The same balanced current set can be generated by using
the discontinuous modulation scheme based on Table 3.9 and equation 3.30.

With = 0.5[1 + Sgn(Cos 3(wt + 8))] where = 1- a, Figures 3.21 through 3.24
are generated for values of & = 0°, -30 °,- 60°. It is observed that devices are clamped to
the positive or negative rail for less than 120 degrees unlike when the reference phase

voltages are balanced as in Figures 3.15 through 3.20.
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Figure 3.21 Balanced current in an unbalanced load. Reference peak current is SA.

(a) Balanced three phase actual currents (b) Phase a voltage, (c) Modulating signal.
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Figure 3.22 Simulation results for unbalanced three-phase voltage under GDPWM.
B =0.5[1 + SgnCos 3(wt + 3)], d =0, DPWMI1, (a) Balanced three-phase current (b)

phase a voltage Vas (c) Modulation signal.
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Figure 3.23 Simulation results for unbalanced three-phase voltage under GDPWM.
B =0.5[1 + SgnCos 3(wt + d)], 6 =-30, DPWM2, (a) Balanced three-phase current

(b) phase a voltage Vas (¢) Modulation signal.
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Figure 3.24 Simulation results for unbalanced three-phase voltage under GDPWM.
B =0.5[1 + SgnCos 3(wt + d)], 6 =-60, DPWM3, (a) Balanced three-phase current

(b) phase a voltage Vas (¢) Modulation signal.
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