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Brushless doubly-fed (dual-winding, mixed-pole) machines have received
renewed attention in the last few years for use in adjustable-speed drives and variable
speed generator systems. This class of machine has two three-phase stator windings
wound for different pole numbers and a cage or a reluctance rotor. It appears to be highly
attractive due to its structural simplicity, high efficiency, lower manufacturing cost, and
its ability to operate in induction and synchronous machine modes with the possibility of
sub- and super-synchronous speeds operations.

This dissertation presents an accurate modd of the doubly-fed reluctance
machine, which considers the core-loss of the machine. The g-d equivalent circuits with
series core-loss resistances or shunt core-loss resistances are given. The analysis and
performance characterizations of a few systems with this machine are set forth. These
systems are:

(1) Stand-alone doubly-fed reluctance generator system with capacitive excitation in both
the power and control windings.

(2) Doubly-fed synchronous generator system with DC current excitation in control
windings and three-phase impedance load or a loaded three-phase diode rectifier in
power windings.

(3) Doubly-fed synchronous reluctance generator systems with controlled DC output
voltage. DC-DC buck converter or boost converter is used as DC voltage regulator.

(4) Field-orientation doubly-fed motor control system that can run in a wide speed range.
IP controller, Input-output linearization controller, voltage-controlled voltage source
PWM inverter, and current-controlled voltage source PWM inverter are used in two
control schemes.

Dynamic simulation, steady-state calculation, and experimental measurement are
used to revedl its potentia application.
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CHAPTER 1
RESEARCH BACKGROUND

1.1 Introduction

Brushless doubly-fed (dual-winding, mixed-pole) machines have received
renewed attention in the last few years for use in adjustable-speed drives where efficiency
optimization and energy conservation are desirable. This class of machine has two three-
phase stator windings wound for different pole numbers and a cage or a reluctance rotor.
The three-phase stator windings that carry the load are called the power windings, while
other three-phase windings usually used for speed and power flow control are called the
control windings. The stator windings of the doubly fed machines are shown in Figure
1.1. Two sets of stator windings can be connected together or physically separated. In
Figure 1.1(a), by following special rule of winding connection, the resulting windings can
be divided into two sets of stator windings with different pole numbers when viewed
from two sets of leads, A-B-C and ab-c. When these two sets of leads are powered
simultaneously from two independent sources, the terminal currents will not affect each
other due to the symmetric nature of the winding. In Figure 1.1(b), two stator windings
are separated from each other. Separate stator windings are generally undesirable except
added flexibility of design or operation is necessary.

In genera, brushless doubly-fed induction machine has a specia cage
construction to support the two air-gap fields produced by the two sets of stator windings.

1



The double-fed reluctance machine, on the other hand, has either a simple salient
laminated pole (shown in Figure 1.1(c)) or axialy laminated rotor structure with no cage
windings (shown in Figure 1.1(d)).

The concept of a single machine with two sets of polyphase stator windings,
which do not couple directly but interact via a specially formed rotor, originated one of
those ingenious techniques developed to overcome fixed speed limitation of the induction
motor before the frequency conversion was developed using power electronics. The first
machine to use this concept, called Hunt motor [1], resulted from the incorporation of
two effective machinesin asingle magnetic circuit. Based on the ideas of the Hunt
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Figure 1.1. Doubly-fed reluctance machines. (a) The same group stator windings, (b) The
separate group stator windings, (¢) Salient-pole rotor, (d) Axialy-laminated rotor.
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Figure 1.2. Schematic of BDFM ASD.

motor, the so-called self-cascaded induction machine [2] was made by overcoming the
structural problems in design. Because the speed of the self-cascaded machine can be
controllable without brush-gear by adjustable resistance, some significant industrial use
has been found over severa years [3]. Broadway and his associates [4-11] had
extensively investigated this type of machine two decades ago. The advent of power
electronics converters capable of adjustable-frequency, adjustable-voltage, bi-directional
power flow has revived interest in the self-cascaded induction machine [12-13]. This
interest is promoted by the demonstrated adjustable speed drive (ASD) capability in
which one of the stator windings is supplied by a converter of a rating significantly
smaller than that of the machine. This configuration, shown schematically in Figure 1.2,
is now referred to as a brushless doubly fed machine (BDFM). Its basic adjustable speed
principleis based on this equation: wx = (w; + w)/P.. Where oy isthe angular frequency
of the power winding currents, while wy, is the angular frequency of the control winding
currents. If P, rotor pole-pair number, and wy are fixed, the rotor speed w will be

adjustable by increasing or decreasing the current frequency of the control windings.



1.2 Literature Survey

To explore the potential of brushless doubly-fed machine and improve its design
to sufficiently obtain its expected advantages, intensive investigations have been
undertaken. The research can be divided into four areas:

(@) The development of dynamic and steady state models for performance
evaluation and design of doubly-fed machines [15-26].

(b) The investigation of doubly-fed machine as a motor in adjustable speed
drives systems (ASD) [27-32].

(c) The investigation of doubly-fed machine as a generator in variable speed,
constant-frequency powers generation and in stand-al one application [33-41].

(d) The design and analysis of the rotor structure of brushless doubly-fed

machines with cage-rotor and reluctance rotor [42-45].

1.2.1 Modding and Analysis of Doubly-Fed Reluctance M achines

An accurate model is very important for design and application engineers. The model can be used
to investigate the performance of machines and show the effects of certain trendsin machine design. The
simulation, by using an accurate model, will provide adequate representation of full performance for
control and stability. Recent research has devel oped afew models of brushless doubly-fed machine with
cage and reluctance rotors.



Figure 1.3. Steady-state equivalent circuit.

In early research [4,8-11], a steady state equivalent circuit is given to predict
machine's performance in the synchronous mode of operation and to investigate the
characteristics of the drive system in steady state conditions. The steady-state equivalent
circuit was shown in Figure 1.3 [5].

This circuit is similar to that of a conventional induction machine, except for the
extra series impedance KyXpq and KgXyg in the primary and secondary circuits,
respectively. The constants K, and K are dependent on the magnetic properties of the
rotor. Sqand Sy are dip values of primary and secondary windings. X is areferred value
of mutua reactance between the 2p-pole and 2g-pole component windings. B is the
relative displacement between the 2g-pole component winding and the rotor at a zero
instant in time. X, and Xq represent the self-reactances of 2p-pole and 2g-pole component
windings. V,, Vg, ip, and iq are the voltages and currents of the 2p-pole and 2g-pole
component windings.

To investigate the characteristics of doubly-fed machines based on the steady
state model, a common feature of al the above analytical work is the assumption that the

machine is equivalent to two magnetically separate wound rotor motors, and different



pole numbers of the rotors which are connected electrically and mounted on a common
shaft. Although this approach is appropriate for conceptual understanding, it is not
adequate for detailed machine and drive system design.

Recently, a detailed, dynamic model has appeared in the literature [19]. This
model was developed for the brushless doubly-fed induction machine with the cage-rotor.
To reduce the complexity of the detailed model so that it is suitable for BDFM drive
system dynamic studies, the two-axis model [20] was developed from the detailed model.
It only considers the fundamental mutual inductance and transforms the equations to a
two-axis rotor reference frame. The two-axis model and the detailed model have been
successfully used to predict the effects of certain trend in machine design [17,18] and to
develop closed speed control systems [21]. However, these models do not include the
expressions of the machine parameters so that the application of the models to predict
different running modes and configurations were limited.

The two-axis model equivalent circuit of brushless doubly-fed machine with cage-rotor
was shown in Figure 1.4[20] where Vg, Vs, igs and igs represent 6-pole stator winding
g-d voltages and currents, while Vg, Vay, ig2, and ig, represent 2-pole stator winding g-d
voltages and currents. Vg, Var, iqr, and ig are rotor winding g-d voltages and currents. The
g-d flux linkages of stator windings with 6-pole and 2-pole are Ags, Ads, Agz, and Agz. L,
Lmz, and Ly, represent the magnetizing inductances of stator windings (6-pole, 2-pole)
and rotor winding, respectively. L and L, are the leakage inductances of 6-pole and 2-

pole stator windings. L, is leakage inductance of rotor winding. Mg and M, are mutual
inductances between stator windings (6-pole, 2-pole) and rotor winding.l's, I';, and I,

represent the resistances of stator windings and rotor winding.
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Figure 1.4. Two-axis dynamic model for the cage rotor machine.
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Recent work has led to more progress. One has presented rigorous analytical
model [22, 23] based on generalized harmonic theory [46]; another [24] described a
time-stepping finite-element model, which can readily represent the effect of saturation in
cage-rotor machine.

For the brushless doubly-fed reluctance machine having either salient or axially
laminated rotor structure, a transient model is presented in [25, 26]. It is developed from
the concept of winding functions and the principles of d-q arbitrary reference frame
transformation.

The g-d equivalent circuit of this machine is shown in Figure 1.5[26]. This model
ignores the influence of magnetic saturation and core loss, which are dominant in the

operation of doubly-fed reluctance machines.
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Figure 1.6. Conventional dlip power recovery system.

1.2.2 The Application of Brushless Doubly-Fed Machines as M otors and Generators

The conventional dlip power recovery system employing wound-field induction
machines (shown in Figure 1.6), has reduced the reguired converter rating, but high cost
and bulky size of wound-field induction machines and the maintenance required for the
dlip-rings, have unfortunately limited their applications.

To avoid the disadvantages of the system, dlip power recovery system with
brushless reluctance machine has drawn much attention recently. It has the same
advantage of substantially reducing the inverter power rating. Furthermore, since
brushless doubly-fed reluctance machines have both field and armature windings on the
stator and reluctance rotor does not carry currents, brushes and rotor copper loss are
completely eliminated. Therefore the system has a ssimpler and more reliable structure,
less maintenance cost and higher efficiency than the conventional system. Besides, recent
research have explored the potential of applying the brushless doubly-fed machine to

variable speed generating systems, such as wind power generation.



In papers [28-31], the concept and implementation of field orientation control of
brushless doubly-fed reluctance machine for variable speed drive and generating system
are presented. The stator flux orientation is employed to achieve decoupled control of
torque and active/reactive power through the secondary currents, so variable speed drive
and generator operation with decoupled active/reactive power control can be achieved.

To apply this system to restricted applications where accessibility to the rotor
shaft is prohibited, the literature [30] presents a sensorless control scheme. It will further

enhance the reliability and reduce the cost of the drive.

1.3 Research Motivation

The brushless doubly fed reluctance machine with simple saliency on the rotor is
considered. It appears to be highly attractive due to its structural simplicity, high
efficiency, lower manufacturing cost, and compatibility with existent production line
[14].
Some expected advantages of ASD or VSG system with this machine are listed

below:

(1) Its ability to operate in induction and synchronous machine modes with the
possihility of sub- and super-synchronous speeds operations.

(2) With a rotor structure optimized for minimum core loss, a double-fed reluctance
machine may have better efficiency than an induction machine of the same rating.

(3) Controllable power-factor and low harmonic distortion of the utility supply.

(4) Robust machine construction.



(5) Operation as an induction motor in the event of converter failure.
Literature survey yields some important information of this machine:

(a) In recent years various efforts have been made to establish proper dynamic model and
explore the design variations of the doubly-fed brushless machine with both cage-rotor
and reluctance rotor. When the voltage, applied to one or both stator windings, is
increased, the machine will naturally saturate. The performance anaysis is less accurate
if the model neglects the effects of iron loss and saturation. To solve this problem, a
model [24] considering the effect of saturation has been presented for the application of
the cage-rotor structure. The reluctance machine with saliency rotor has more iron loss
and higher saturation than cage-rotor machine, so it is necessary to develop a model
including the effect of iron loss and saturation. At present, the dynamic model devel oped
for saliency rotor machine ignores these effects. Hence we need to look for a new model
whose equations consider the general case which includes the influence of sequences of
the stator windings and the saturation of the air-gap flux linkage on self and mutual
inductance. We hope that this generalization can provide a more accurate insight into the
machine design and performance analysis.

(b) While alot of work is being done on the analysis and control of doubly-fed reluctance
machines used in adjustable-speed drive application, relatively little attention has been
paid to their use as stand-alone generators. The idea of using doubly-fed reluctance
machines as generators was inspired by the fact that these machines can run at high
speeds where the efficiencies of prime-movers (turbines) are relatively high. Also, since
the reluctance generator is run with a prime mover, there is no need for specia starting

arrangement. These advantages look very attractive for some applications such as



aeroplane power systems, marine generators for gas-turbine drives and electrical vehicle
generator systems. Hence, it is significant to explore the potential of this machine as
stand alone generator and use it to develop new DC power generation schemes.

One important characteristic of doubly-fed reluctance machine is its capability of
operating in synchronous mode with one set of stator windings connected to a DC source.
Little attention has been paid to its synchronous drive performance. The field orientation
control strategy is now used in induction motors for achieving precise and fast dynamic
speed and/or torque responses. Doubly-fed reluctance machine has been shown to be
effective in variable-speed drive and generating system with the two sets of windings
connected to AC sources. We hope the field orientation control of the doubly-fed
reluctance machine in the synchronous mode can also achieve the same performance
level as the induction machine.

The motivation for this work was inspired from the above discussion. With the
use of PWM converter and digital signal processor, we hope that the proposed research
will promote the doubly-fed reluctance machines to find more applications in industry,
military and power system due to its low cost, high reliability and flexible control

methods.



CHAPTER 2

PROPOSED RESEARCH

The research work will include these topics:
1. Modeling of a doubly-fed reluctance machine

This topic will deal with the modeling and analysis of the doubly-fed reluctance
machines with simple salient or laminated rotor structure having 2P; poles and two stator
windings with pole numbers given as 2p; and 2q, respectively.

An experiment machine, supplied by the Advanced Motor Development Center of
Emerson Motor Co. will be used for this research. Its stator winding arrangement and
rotor structure are shown in Figure 1.1(a) and (c). The stator windings are distributed in
36 slots. When viewed from one set of terminals (a, b, c), it is a 6-pole winding
construction and a two pole, three-phase winding construction from the other set of
terminds (A, B, C).

The concept of the g-d harmonic balance is used to determine voltage equations.
The electromagnetic torque and the contributions of the control and power windings to
the mechanical output power is determined using the Manley-Rowe power-frequency
relationships. The influence of the sequences of stator currents and machine windings are
included in the analysis permitting the elucidation of the different possible modes of
operations. The resulting model includes saturation effects and core losses, which is
shown in Figure 2.1. In this equivalent circuit, Ry and Res represent the core loss
resistances of power windings and control windings, respectively. The inductance
parameter, L, Ls, and Ly, change with the air-gap flux linkage. Based on this model, the

parameters of the experimental machine will be measured.
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Figure 2.1. Q-d complex equivaent circuit of doubly fed reluctance machine.

To vdidate the modeling approach, the results of steady-state calculation and

dynamic simulation will be compared with the experimental results from this machine.

2. The performance characteristics of a doubly-fed self-excited reluctance generator

Proposed self-excited generators are shown in Figure 2.2. A three phase capacitor
banks will be connected to 6-pole winding, called control winding, and the load
(impedance or rectifier) are connected to 2-pole winding, called power winding. A g-d
equivalent circuit model accounting for saturation of the magnetic paths and saturation-
dependent core and harmonic |oss resistance will be used to predict experimental results.
The experimental measurement and computer simulation will show the steady state and
dynamic performance characteristics of this generator system.

3. Synchronous operation of a doubly-fed reluctance generator

Proposed synchronous generator system is shown in Figure 1.3. For this generator

system, control winding (6-pole) will be fed with direct current source, while the power

winding (2-pole) will be connected with impedance load and rectifier load.
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Figure 2.2. Self-excited doubly-fed reluctance generator systems.

Saturation effects, core, and harmonic losses will be included in the dynamic and steady
state models of generator system. Its performance characteristics will be investigated by
experimental measurement and computer simulation.

The operation performance of the doubly-fed synchronous reluctance generator as
a controllable power source for DC loads will be investigated. System schematic diagram
of feeding an impedance load and feeding a battery was shown in Figure 2.3. The system
consists of a doubly fed reluctance machine, a DC-DC buck converter, a three-phase
rectifier and a three-phase capacitor bank. Figure 2.3(a) shows the generator run by a

source of mechanical power and feeding an impedance load, where a battery is used as
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Figure 2.3. Doubly-fed reluctant synchronous generator systems. (a) With DC-DC buck
converter,(b) with boost converter.

starting source. The generator scheme for battery charging is shown in Figure 2.3(b). The
power winding will deliver the dc power to the load, with the control windings acting as
the vehicle for excitation. The excitation process will be established by connecting the

generated dc voltage to the machine's control windings through the buck converter. This generator scheme
is envisaged for stand-alone applications requiring regulated dc voltage or current and in charging battery
in electrical automotive applications. The dynamic and steady state models of generator topologieswill be
set forth and used to calculate steady state performance characteristics. Its performance characteristics
including steady-state
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and dynamic will be shown through the computer simulation and experimental measurement.

4. Field orientation control of a doubly-fed reluctance machine in the synchronous mode

The dynamic equations of the doubly-fed synchronous reluctance machine in the

rotor reference frame are:

Vgp=Tplgp+ PAgp+ @ Agp (2.1)
Vap=Tplap+ PAdgp- W Agp (22
Vgs= Islgs+ PAgs (2.3)
Vias= slas+ P A as (2.4
Te=15(p1+g)Lm[ laplgs- lop las] (2.9

where voltage equations of power winding and control winding are (2.1) to (2.4), and
torque eguation is (2.5). lqs and lgs are the g-d control winding currents while I and lgp
are g-d power winding current. L, is mutual inductance. By connecting the control
winding to a DC current source I, the following equations are obtained:
Vgs= (2/3) Ve, Vius= 0
ls=1s, les=0
Because of 145 =0, torque equation can be expressed as
Te=15(p1+ q)Lmlaples
The air-gap flux is regulated using |4 while I4, controls the instantaneous torque
of doubly-fed synchronous reluctance motor.
The field orientation principle defines conditions, which has been yielded from
the derivation above, for decoupling the field control from the torque control. A field-

oriented doubly-fed synchronous reluctance machine will emulate a separately-excited dc



motor. To investigate the performance of this machine running in a wide speed range,
constant torque will be hold below the base speed while the field-weakening operation
conditions must be used to achieve constant power output above the base speed.

Below the base speed, the voltages of the primary winding rise linearly with
speed, 145 will be kept constant to maintain the constant magnetizing flux while I4, will be
used to control the instantaneous torque with setting Iq, = 0.

Above the base speed, the voltages of power winding are kept at rated value while
the control winding current, lqs, is equal to rated value. To maintain the constant output
power and maximize the output torque, I, and |4, need to be regulated at the same time.
Thisis called constant-power, field-weakening operation.

Figure 2.5 shows the block diagram of two control systems. The space vector
pulse width modulation (SV-PWM) technique and hysterestic current control technique
will be used to control voltage source inverter, which will provide an adjustable
frequency voltage source for the power windings. The control windings will be supplied
by a DC current source. In control scheme |, a novel nonlinear controller is used and its
principle as well as design procedure will be described. 1P controller with no-overshoot
performance is used in control scheme I, its design procedure will also be given. Its
steady state characteristics will be calculated and dynamic performance will be

demonstrated using computer simulation program.
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The research work will make contribution in these areas:



(1) A dynamic model of doubly-fed reluctance machine considering the effects of core
loss and saturation will be presented. It will provide a more accurate model for the
performance eva uation and the design of doubly fed reluctance machine.

(2) The performance characteristics of doubly-fed self-excited reluctance generator and
doubly-fed synchronous reluctance generator will be investigated and anaysis
methods will be presented. An innovative DC power generator scheme using doubly
fed reluctance machine with salient rotor structure will be investigated. It has
potential for use in stand-alone applications and in electric automobiles.

(3) Two field orientation control schemes for a doubly-fed synchronous reluctance
machine will be investigated for high-performance operation both in the constant
torque and constant power region. The simulation results will supply valuable

information for realization and application of the control systems.



CHAPTER 3
MODELING OF A DOUBLY-FED RELUCTANCE MACHINE

3.1 Introduction

This chapter mainly deals with the modeling and analysis of the doubly-fed
reluctance machine. First, the concept of winding functions is used to derive the machine
inductances. The influence of the sequences of stator currents and machine windings are
included in the analysis permitting the elucidation of the different possible modes of
operations. Conditions for the development of average electromagnetic torque are
developed which aso give insight into the machine design criteria. The electromagnetic
torque and the contributions of the control and power windings to the mechanical output
power are determined using the Manley-Rowe power-frequency relationships. The
resulting model, including saturation effects and core losses, is used to unveil the inherent
oscillatory instability of the machine and to predict the steady-state performance and

dynamic characteristics for its motor or generator systems in the following chapters.

3.2 Stator and Rotor Structure of the Experimental Machine

The modd set forth in this chapter applies to doubly-fed reluctance machines with
simple salient laminated rotor having 2Pr poles and two stator windings with pole
numbers given as 2p; and 2q, respectively. pi, g, and Pr, respectively, represent the pole-

22



pair number of the power windings, control windings, and rotor. The experimental
machine used for this research has stator winding arrangement and rotor structure shown
in Figure 3.1. Figure 3.1(8) shows the stator winding connection diagram of the machine
distributed in 36 slots which when viewed from one set of terminals (a, b, and ¢), is a
three-phase, 6-pole winding construction. From the other set of terminals (A, B, and C), a
non-triplen two-pole, three-phase winding construction is observed. For any three-phase
balance ac power supply, these two symmetrical sets of three-phase windings are

electrically independent of each other.

6 +nf2n-a)i2P G, 6 +m2n+a)/2P
@ (b)
Figure 3.1. Stator and rotor structure of the experimental machine.

(a) Stator windings.
(b) Rotor structure.



3.3 Machine M odel

In the analysis that follows, classical assumptions are made in order to obtain closed-
form equations for machine inductances. The permesbilities of the stator and rotor iron
parts are assumed to be infinite; the stator winding distributions are approximated by
their fundamental components; and the air-gap length is assumed to take a constant value
01 over the rotor arc and g, elsewhere as shown in Figure 3.1(b). Saturation effects will
be included in section 3.7.

The stator windings are supplied with three-phase voltage vectors Vagc and V gc.
Since the frequencies of the supply voltages can be positive or negative (positive or nega
tive current sequence), they are defined as kauy, kst , respectively, for the 2p; and 2q
windings where K3 and K, are either +1 or -1. The stator voltage differential equations
expressed in terms of the phase currents and flux linkages are, therefore, expressed as

[27]

Vasc = Ip lasc + PAasc (32
Vape = I'slape + PAasc (3.2
where
Aasc =L ac | asc + L agcane | abc (3.3)
Aac =L apc I abe + L e | ABc (3.4)
Vi =V Va Vo] (35)
lasc =[1alglc] (3.6)

Ve VoV, Vo] (3.7)



ITabc:[IaIb Ic]

LAB LAC

LAa
LBa
Lea

— T
LABCabc - LabcABC -

(3.8)
(3.9)
(3.10)
LAb LAc
Ly Le (31
LCb LCc

The per-phase resistances of the stator windings are r, and rs, respectively, and the

derivative d/dt is given as p. The phase voltag

es, currents, and flux linkages of each set of

three-phase stator windings are transformed to their respective g-d-n synchronous

reference frame equations using the matrix

defined as follows:
Vgdnp = T(Bp)Vasc
Vgdns = T(Bs)Vanc
lqanp = T(6p)l aBc
lgdns = T(Bs)l anc
Agdnp = T(Bp)Aasc
Agdns = T(Bs)Aanc

and

transformation T(Bp) and T(6s), which are

(3.12)
(3.13)
(3.14)
(3.15)
(3.16)

(3.17)



cosbp cos(Bp - 2?“) cos(6p + 2?“)
T(6p) :i siné, sin(ep—%“) sin(8, +2?")
1

1 1
2 2 2 (3.18)

B = [ Kauwydt + 6, (3.19)

cosd, cos(b, - %T) cos(é, + %T)

T(6)=2sng, sn@,-L) sin@,+7) (3.20)
3 3 3
1 1 1
2 2 2
6, = [Kwdt+6, (3.21)

where 6,, and By, are initial angles of the synchronous reference frames. Substituting
Equations (3.18-3.21) into Equations (3.12-3.17), the resulting g-d-n voltage and flux

linkage equations are given as

V qdnp = Fpladnp + PAgdnp + K3 WpAgdnp (3.22)
Vqdns = Tplgdns + PAgans + K4 WA gdns (3.23)
Aqanp = L pplqanp + Lpslqans (3.24)
Agdns = Lsslgan + Lsplganp (3.25)
where
0 10 0 10
Wp=wp -1 0 0|, Wg=ws|-1 0 O (3.26)

0 0O 0 0O



—

qdp anp

ddp Ldnp (3 27)

-

qup
Lpp = T (gp) LABCT (gp)_l = qup
anp

—
—

ndp nnp

L maq L mad L man
Lo =Lps = T(Op)L apcancT(®) ™ =| Lingg Limag  Lman (3.28)
L mnq L mnd L mnn

qus qus ans
L$:T(es)LabcT(es)_l: qus des I-dns ' (3-29)

L ngs L nds L nns

3.4 Calculation of Inductance Using Winding Function Theory

The g-d-n machine inductance matrices Ly, Lg and L are calculated using the
winding function approach [48,49]. According to this method, the mutual inductance

and "j" in any machine (mean airgap radius is constant) is

between and winding

calculated by
on
Lij =Horl [97™(®6/m)Nj(®8;)N; (¢.6;)dp .
0

The average air-gap radius is r, motor stack length is |, and the inverse gap-length is
represented by g™ (,6:m). The angle, @, defines the angular position along the stator inner
diameter while the angular position of the rotor with respect to the stator referenceis 6.

and "j" are given, respectively, as Ni(¢, 6,) and

The winding functions of winding
N;(® Bm). The term Ni(¢, B:m) or Nj(@, 8rm) is called the winding function and represents,
in effect, the MMF distribution along the air-gap for an unit current in winding "i" or "j".

If this winding is located on the stator, the winding is only a function of the stator



peripheral angle ¢ while if the winding is located on the rotor the winding must be
expressed as a function of both ¢ and the mechanical position of the rotor 6,

Winding functions representing the six and two pole windings are drawn in Figures
3.2 and 3.3, respectively. Although the winding functions for the mixed-pole machine
have substantial space harmonic contents as shown in [14,50], they are represented here
by their fundamental components since only these components, as shown in Figure 3.4,

have the greatest effect on energy conversion.

Na(®)
e

211

Figure 3.2. Winding function for 6-pole phase A.

h et

A

v

T T

Figure 3.3. Winding function for 2-pole phase a
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Figure 3.4. Fundamental components of the winding functions.

These components of the phase windings accounting for the winding sequences are

expressed as
N, =N, cos(p(¢-¢,)) (3.30)
N, =N, cox(p(g-¢,) - K, 2 (3:31)
Ne = N, cos(p(p-,) + K, 2) (3:32)
N, = N, cos(q(¢-@,)) (3.33)
N, = NSCOS(q(¢—¢q) -K, 2?72) (3.34)
N, = N cos(q(¢- %) + KZZ?H) . (3.35)

By using the synchronous reference frame T(6,), the g-d components of phase

winding function Na, Ng and N are expressed as
qu = N p COS( p(¢_ K1¢p)) (336)

Ng = N sin(p(g-K.g,)) . (3.37)

v



By using the synchronous reference frame T(8s), the g-d components of phase
winding function N5, Ny and N, are expressed as

Ngs = N;cos(a(g-K.@,)) (3.38)

Ng = Nysin(a(g-K,g)) - (3.39)

K1 and K, the signs of the winding sequence, aswell as N and N; are defined as

K -1 clockwise (3.40)
Y72 711 counterclockwise '
4 4
N =—NK,_, N = N,K,, . 3.41
p Cpm 1" Yap Cqm 2" an ( )

In Equation (3.41), N; and N are the numbers of series connected turns per-phase of
C, and C, circuits for the power and control windings, respectively. The fundamental
winding distribution factors are defined as Ky, and Ky, respectively. The initial angular
displacements between the fundamental components of the winding functions and the
stator reference are @, and @,

The air-gap function from Figure 3.1(b) is expressed as
6, O+ (en-a)sgs6,+ T (n+a)

r r

9(0.6,) = (3.42)

9, erm+%(2n+a)srp<6 +%(2n+2—a)

= 7rm
r r

wheren =0, 1, 2, 3, 4..2P-1 and the rotor pole pitch is a. With Equations (3.30-3.42)
substituted in Equations (3.27-3.29), expressions for inductances comprising Lyp, Lss, and

Lps are obtained. They are expressed as

3 2 B
Lo = (Zjﬂorf _[ 97(2.6,) qupd¢ (343
0



3 2m B
Loy = [zjﬂordg (2.6,,) N3dg (3.44)
0

3) A
qup = qup = [ZJHOM J(;g 1((p:erm) quNdpd(p (345)
Lanp =Lngp =Ldnp =Lndp =Lnp =0 (3.46)
_(3 T 2
qus - E Horﬁ jg ((p:erm) Nqsd(p (3-47)
0
_(3), T 2
Lags =| -, ot [97(®8rm ) Nl (3.48)
0
3 21 4
qus = qus = [ZJUOM jg (qz erm) Nqudsd(P (3-49)
0
ans = ans = I-dns = I-nds = I-nns =0 (3-50)
3 21 1
qum = [ZJHOM Jg ((P, erm) quNqsd(p (3-51)
0
3 21 1
L doim =[2]uorf [97H(®8rm) N gpN gsde (352)
0
3 21 4
qum = [ZJHOM Jg ((P, erm) quNdsd(p (3-53)
0
3 21 4
qum = [ZJUOM Jg ((Pr erm) Ndeqsd(P (354)
0
anm = anm = I-dnm = I-ndm = I-nnm =0. (3-55)

The expressions for these inductances are given in Appendix 3A. All inductances of

the zero-sequence winding components are zero.



To realize the electric-mechanical energy conversion, the frequency of the speed
voltage in a given phase must be the same as the frequency of the current flowing in the
same phase. To reduce the pulsating torque, the self-induced voltages must also have the
same frequency as those of the currents. By checking g-d component expressions of
inductance L, Ls, and Lps in Appendix 3A, we can see that all g-d components are equel
to constant, if the combination of the pole-pair numbers: p;, g, and P;, and the relationship
of frequencies among wy,, wx, and wm , are satisfied as expressed in Condition | and
Condition Il. The constant g-d inductance components make sure that the requirements of
the electric-mechanica energy conversion and reducing the pulsating torque are satisfied.

Condition |

(Kyp + Ka)aw, = Kyw, + K@,

Kb+ K0 _ even = 2m, Kk oKa odd =2n+1
R R
2Kipy 288~ od = 2241

8P odd = 2k +
- 1

r r

_ 3l s 1 1
Lagp = Lo = TO szm[ +j

9 9
_ 34t 1 1
Logs = Lags = 20 stm){ % +£sz
_ _ 3usrlp, Nsz 1 1 | (Kyp — Ko
Lyag = ~Lp = 72| = = = |[@in| iR 2T
(K +Ka)lg g 2R

Condition Il

(Kypy = K, = Kyw, = Ky,



Kip +KyQ =odd =2n+1 K.p — Ky

= even = 2m
ZKiP _ g = 2k 41, 2X29 2 odq = 2741
dep = qup = 3/120” Ns”a[gl-i-glj
1 2

qus = des = 3#70” stn-a{l +1j
2 9 O

_ _3wRNN, (1 1) [(K,p - K0
Ligg = Linge = 72| = = = | (@0 R D2V
(K, p, + K,0) 2R

% O ,
where m and n are positive or negative integers. Different operating modes are
established from Condition | and Condition Il for possible values of p;, g, P by
considering different combinations of values of Ki, Ky, K3 and K4. In general, it is found
that the rotor speed is given as
(P1£0) Wm = Wpt Ws
By substituting the constraint condition, Condition | or Condition II, into the

expressions of g-d inductance elements in Appendix 3A, we can prove that all of them

are constants.
3.5 Calculation of Electromagnetic Torque

The mechanical equation of motion for the machineis expressed as

Jpe m = Te - T|_ (356)



where the load torque is T, the moment of inertia of the rotor and connected load is J and
Te is the developed electromagnetic torque. The electromagnetic torque is calculated

from the magnetic co-energy ., as

T =| 9% (3.57)
e - derm . .

If linearity is assumed (infinite permeability), the co-energy is equa to the stored

magnetic energy given as

@ = Sl Tlia Ld + 5l Tl 1]

+ [I ABC]T[ LABCaer[ I ab!] :

Equation (3.58) is further expressed in terms of g-d-n quantities using Equations (3.12-

(3.58)

3.15) and relationships between g-d inductance elements and a-b-c inductance elements

expressed as follows

I-AA LAB LAC qup qup anp

Lasc =|Lea Les Lgc |[=T(6,) ° Lo Lap Lo [T(6,)
I‘CA LCB LCC anp ndp nnp
L Aa L Ab L Ac L mqq L mad L man

Lascac =|LBa Leb LBec :T(ep)_l Lmdg Lmdd Lman |T(8s)

L Ca L Cb L Cc L mnq L mnd L mnn
Laa Lab Lac qus qus ans

Lae =[Lba Lop Lpc|=T(Bs)™ Lags Lads Lans |T(6s) -
Lea Lop Lo L ngs Lngs  Lons

The developed el ectromagnetic torque becomes

T, = %[I qdnp]T dgrm[l‘ppll qdnp] + %[I qd”S]T (12,”1[L$][I qdnS]

g (3.59)
+ [I qdnp]T w[l'ps:[l qdns]



where

do (Lol =[Lpal =
4 ey
do Ll =lLal =

:
_a

de,, L

All the derivative components of inductance [L ], [Ls], ad [Lys] are listed in Appendix

3B.

The torque is time varying in general since the inductances are time varying and lqgns
| ganp @re constant quantities during steady-state operation conditions. By substituting the
constraint conditions under Condition | or Condition Il into the expressions in the

Appendix 3B, the g-d-n components of inductance [Lpp]', [Ls]' @nd [Lps]" can be obtained.

Theresults are

[Lps) =[Lps] = L:

L qqp
L dap
L nagp

L ags
L dgs

L ngs

agm
dgm

ngm

L qdp
L ddp
L ndp
L qds

L dds

L nds
L qdm
L ddm
L ndm

L anp
L dnp
L nnp

L gns
L dns
L nns

L gnm
L dnm

L nnm

de":m[Lpp] S
d v
derm[LS]—[LS] =[d]
. | Logm O
<o Lpsl =[Lgs] =| Lagm 0
m O O

where



Leem = Lagm = —% Lem(Kip, +K,0) = % Laam (K. P, + K,0) under Condition |
and

. . 2 2 -
Loam = ~Lagm = 3 Logn(Ky P —Ky0) = 3 Lo (K, p, — K,0) under Condition |1 .

Under the Condition | or Condition |1, Equation (3.59) will become

) 0 Lygn O]l
T, =0l Iy O]Egj (Kip+Ky0)| ~Lgw O Of| I
0 0 O

2
= [3J(Klpl + qu) (I quddmI ds Iqququ dp)

or
) 0 Lam O]| Igs
T, =[ly g 0][3J(K1p1—K2q) ~Lgn O Off Iy
0 0 O
2
= (BJ(Klpl - qu) (l quddmIds - Iqququ dp)

The power winding g-axis and d-axis flux linkage are expressed as

Agp= Lagmlop + Laamlas

Adp= Ladgmldp + Ladmlds |
By using these two equations and considering the equality of lggm = lgam, Which can be
proven using their expressions and constraint conditions in Appendix 3B, finaly an
average torgue under Condition | and condition |1 are given respectively as

Under Condition |

3
T = 5(|<1p1 +K,0) Pyl = Ao (3.60)



Under Condition |1

Te - ( 1P~ qu [Adp ® qpldp] ' (361)

It is usual in electric machine analysis to refer all state variables to one set of

windings. If we refer the state variables of the control windings to the power windings,

Equations (3.22-3.25) become
Voao = ol ganp T PAganp + K@y Agnp (3.62)
Viagns = Tl sgns + PAggos + Ko s (3.63)
)‘qdnp =Lpplganp * |-IpsI ‘qdns (3.64)
)‘quns = L‘ssl quns + |-IpsI qdnp (3.65)
where



3.6 Some Design Aspects

Here certain design criteria arising from the derived model equations are briefly
discussed. The selection of the number of poles for the stator windings and the rotor is
based on constraint conditions in Condition | and Condition 1. Simplification of these
equations result in Equations (3.66-3.69) which explicitly caculate the two stator pole

numbers given the number of rotor poles:

Condition |

K.p, = (2m+2n+1)P (3.66)

2
K,q=2M=20-DF (3.67)

2

Condition 11
K,p, = Zm*2n+ DR (3.68)

2
K,q= (2n=2m+DF 2;" *DR (3.69)

It can be easily verified that the pole numbers of our test machine with Pr =2, p; = 1,
g = 3 are generated from Equations (3.66-3.67) whenn=-1land m= 1.

The "effective" leakage inductances of two stator windings are the differences
between the self-inductances and the magnetizing inductances. Figure 3.6 shows the
graphs of the "effective” leakage factors K, and Ks defined as

K :qup_

P L

qum _ Tam

S n(Ttom)

ps

qgm



Lggs —L
K= qgs qam _ .T[cxm Sp_l
L ggm sin(ttom)
N N
where Nps:—p,NSp:—s.
N
s p

It is observed from Figure 3.5 that the |eakage factors are small when the turn number
per pole of the two stator windings are equal with am less than 0.5. Ultimately, the pole
arc factor selected for any design must take into consideration the saturation effect, the
effect of the space harmonic components of the stator windings and the curvature of the
rotor pole.

The leakage inductances of the power and control windings of the experimental
machine are relatively high, this is partly because the machine design was not optimized
and moreover, the magnetizing inductance of this salient-pole structure is theoretically
limited by the practical feasible pole-arc of the rotor that ensures that the rotor and stator
teeth under normal operating conditions are not in deep saturation. However, it is
expected that a doubly fed reluctance machine with an axially laminated or multiple flux

barrier rotor structure have potentially smaller “leakage” inductances similar to those of
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Figure 3.5. Effective leakage factors for values of am and ratio of effective turns per
pole of the power winding, Nps = Np/Ns. (8) Power windings, (b) Control windings.



three-phase synchronous or three-phase induction machine. How to optimize the design of thiskind of
machines for achieving best performance still have alot of work to do.

3.7 Including Saturation Effects

Experimental waveforms of winding currents and air-gap flux linkage show that the
machine has significant space-harmonic current components and is highly saturated at
moderate supply voltage levels. No-load test also reveals that the core lossis significant.

Traditionally, core loss [53,54] has been divided into two components: hysteresis loss
and eddy current loss. Within the iron of the machine, there are many small regions
called domains. In each domain, all the atoms are aligned with their magnetic fields
pointing in the same direction. Once the domains are aligned, some of them will remain
aligned until a source of external energy is supplied to change them. The fact that turning
domains in the iron requires energy leads to a common type of energy loss. So the
hysteresis loss in an iron core of the machine is the energy required to accomplishing the
reorientation of domains during each cycle of the ac current applied to the core. Eddy
current losses are caused by induced electrical currents called eddy currents, since they
tend to flow in closed paths within the core of the machine. Eddy current is proportional
to the size of the paths they follow within the core. Using lamination stator and insulating
resin between each lamination are the effect way to limit the eddy current and its loss.

It is clear that these significant effects must be included in the model to give accurate
performance predictions. There are two ways to represent this part of losses, using shunt

loss resistances or series|oss resistances. These are shown in the equivalent circuit given
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Figure 3.6. Q-d equivalent circuit with shunt core-loss resistances. (a) g-axis equivalent

circuit, (b) d-axis equivalent circuit.

in Figures 3.6 and 3.7. In Figure 3.6, the resulting voltage equations including the shunt

core loss resistances are expressed as
VapTp =MpTplgp * PAgp ~ WpAgp
VapTp =TpTplap + PAap + Wphgp

Vc‘1$Ts = rs:Tsl ;qs + p)\'qs - wsxds



VdsTs = rsTsl ds t p}‘ ds t ws)‘ gs

where

R p R P
Vqs_vqsil Vds_vdsNi
s s
Lo =1 No lys =1 No
s —'gs N, ' 'ds T lds T,
g q NS NS
3Np
I-mzfil-mlz
2 N,

In Figure 3.7, the resulting voltage equations including the series core loss resistances

are expressed as
Vp = (1 + Ryp) gy + PAg — @Ay,
Vdp = (I’p + Rnp) |dp + p)ldp + a)p)lqp
Vo = (1o + Ryo) Lo + PA — @Ay

Vo = (14 Rg) s + PAg + A,
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Figure 3.7. Q-d equivalent circuits with series core-loss resistances. (a) g-axis equivalent

circuit, (b) d-axis equivalent circuit.

Where
)‘qp :Lplqp +Lm|qs
)\dp :Lpldp +Lm|ds

as = Lslos T hmlgp



o Np _ N
Vqs _VquiS ' Vds _Vdsl\TS
Np Np

These two equivalent circuits are interchangeably used in the steady-state calculation
and dynamic simulation, the same results are obtained using any one of them. By
comparing two equivaent circuits, we find that the equivaent circuit in Figure 3.6 is
more complicated and need accompanying computational burden, but the physical
meaning is more clear, while Figure 3.7 is simpler for the equation derivation and

parameter calculation.

3.8 Steady-State Equivalent Circuits

The complex form equations for the g-d equivalent circuits in Figure 3.7, can be
expressed as

Voo = (N * Rp) Tagp + PAgg + ] A, (3.70)

Vage = (Fg + Rio) g + PAgge + j 00 A (3.71)

Aggp =L pl adp + Lml s (372



Nos = Ll gas + Ll g - (3.73)
Under the steady-state, the derivation items, pA gy, and p)\'qu, will equal to zero,
substitute Equations (3.72-3.73) into (3.70-3.71), we can obtain the equations

qup :(rp + Rmp)lqdp + j(*)p(l—p - I-m)lqdp + jwp'—m(lqdp + I'qu) (3-74)

Vads _ (s +Rms) |« 1" o -
e e |qu+pr(Ls_Lm)lqu"'l(*)pl-m(lqdp+|qu) (3.79)

Vadp = T(6p)Vagc, Vaec power winding phase voltages
lqap =T(6p) I agc, | ABc POWer winding phase currents
Vc']dS =T(6) I 'abc, | 4 Control winding phase voltages
lqds = T(B5) I abc, | ane CONtrol winding phase currents.

Using the transformations of T(8s) and T(6,,) and rewriting the Equations (3.74-3.75),

the steady-state equations for phase A and a of the power winding and control winding

are expressed as
Va =t + Rp)la +j60p(Lp = Lm)la + j@plm(la +13)

V. r.+R o ‘ Co '
f:%la+j0Jp(Ls_Lm)|a+]prm(|A +1a) .

According to these two equations, the steady-state equivalent circuit is shown in

Figure 3.8. Thisisthe situation considering the series core |0ss resistances.



o W—W—Tioi- ry
- -—
l.l'l. I ::
Yo Lm % Va/s
Y
c‘ £ 3
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Figure 3.9. Steady-state equivalent circuit with shunt core-10ss resistances.

Using the same way, we can derive the steady-state equations and equivalent circuit

for the situation considering the shunt core-loss resistances. The steady-state equations
are expressed as
ToVa =Tola +iep(Lp—L)la +iopln(ia +13)

ToVa
S

Toare ' . '
= SSS|a+]wp(Ls_Lm)|a+J(’~)me(|A+|a)



Rmp T. = Rms )

- ’ S ' '
rP+RmP rs"'Rms

p

The steady-state equivalent circuit with shunt core-loss resistance is shown in Figure

3.9.

3.9 Calculation of Machine Parameters

The inductance and resistance values for the steady-state equivaent circuit can be
found by a set of blocked rotor tests. For example, when the parameters of the power
windings are tested, the rotor is clamped in the locked position, and an adjustable voltage
source with 60Hz frequency is connected to the power winding and adjusted from O to
the line-line rated voltage. Measurements are made of the voltage, current, and input
power for power winding, and open circuit's voltage for control winding. The control
winding has no connection with supply.

To test the parameters for the control winding, control winding is connected to
adjustabl e voltage source while the power winding has no connection with any supply.

After collecting these test date, the parameters can be caculated for two kinds of
steady-state equivalent circuits.

According to the angular frequency relationship among power winding, control
winding and rotor
Wy ~ W =Wy,

and since rotor is blocked,



we can obtain

w =0, w=ws, and s= s =1 .
p

Winding resistances, r, and rs, can be directly measured by using the multiple function

meters.

The other parameters' calculation is based on the equivalent circuits with series core-

loss resistance (Figure 3.8) or with shunt core-loss resistance (Figure 3.9).

A. Equivaent Circuit with Series Core-loss Resistances (considering turn ratio)

1.0pen-circuit control winding, 1,=0

For the given input power, voltage, and current for power windings, and open-circuit

voltage for control windings,

v
12 1= 2 =4(1p + Rng) + (@)
A
P3(p
Rp= SIT =1+ Ry
A
v
weLm :Ii
A
We can obtain,
Rmp =Rp = 1p
1
Lp=—1Zp P~ (1 +Ryp)?
(*)e
v
Lm _ili_
We 1A

2. Open-circuit power windings, |5 = 0.



For the given input power, voltage, and current for control winding and open-circuit

voltage for power winding,

12,1= 2 =+ R+ @)
- .
=Zl=r,+R, .
Ro= (50 R
We can obtain
Re =R -,

Ls :;\/l Zs |2 _(rs + Rms)2 .

By using these equations, the calculation results can be used to look for approximate
polynomial equations relating the machine parameters to the air-gap flux linkage

magnitude. These equations are given as

L,, =—0.44)A2, +0.085\,, +0.0164

L, =-0.36A%, +0.0906\ , +0.0373

L =-0.55\2, +0.09A ,, +0.0385 (3.76)
R,, = —4.058 ~1.474, +1.217

R, =7.24R -425) +158 .

The calculation results and approximate polynomial equations for these parameters

are plotted in Figures 3.10(a)-(€).
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Figure 3.10. Machine parameters using steady-state equivalent circuits with series core-
loss resistances. (a) Self-inductance of the power winding, (b) Series core-loss resistance
of the power winding, (c) Self-inductance of the control winding, (d) Series core-loss
resistance of the control winding, (€) Magnetizing inductance.
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Figure 3.11. Approximate steady-state equivaent circuit for the parameter calculation.

(&) For power windings, (b) for control windings.

B. Equivaent Circuit with Shunt Core-loss Resistances (considering turn ratio)

1.0Open-circuit control winding, 1,=0
To calculate parameters for the power winding, its input power Psy, voltage Va, and

current 14, and control winding open-circuit voltage V, are measured. The approximated



equivalent circuit, obtained from Figure 3.9 and shown in Figure 3.11(a), is used to
derive the expressions of the parameters.

Input reactance of the power windingsis

vV, .
[Iaj =1, +R /X, X, =awl,

N\ 2

VY[, ReXi ), X
! P 2 2 2 2
Ia RmP+XP RmP+XP

=(rp + Rop)+ iXon

where
2 2
R RmpXp _ XpRmp
=__m7p f=— P
> Rimp + X5 ° Rip + X5

Rop and Xoa can be calculated by the equations

_ P
32

2 2
X = ViA — ﬁ
o Ia SIi

Open-circuit control winding voltage will be

r

op p

Rmpjxm

V' =y —,
A Rmp *+ 1 Xp

and X, = wel 1y

hence,

Va|__RmpXm

R X}

Ia



core-loss resistance Ryp, self-inductance L, and magnetizing inductance L, are

expressed as

2 2
- XoA + Rop

mp Rop

Ro R

L op mp

>(oA We
L iﬁ Xp
" We IA XoA

2.0pen-circuit power winding, 1 =0

To calculate parameters for the control winding, its input power P, voltage V5 and
current |, and power winding open-circuit voltage Va are measured. The approximated
equivalent circuit shown in Figure 3.11(b) is used to derive the expressions of the
parameters.

Input reactance of the control winding is

m R X, X = al,

where

' 2 'p'2
Rmsxs R XsRms

Ros = oa = v 2
Rins + X<

Rins + X<

R, and X o, can be calculated by the equations



open-circuit power winding voltage will be

. RpgiX
Vp =l —msiimang X = el
RmS +JXmS

Hence,
R mSX m
JRZ +X2

core-loss resistance R, Self-inductance L, and magnetizing inductancel ,,are

Val

Ia

expressed as

Xs
X oa

By using these equations, the calculation results can be used to look for approximate
polynomial equations relating the control winding's parameters to the air-gap flux linkage

magnitude. These equations are given as
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Figure 3.12. Machine parameters using steady-state equivalent circuit with shunt core-
loss resistances. (a) Self-inductance of the power winding, (b) Self-inductance of the
control winding, (c) The magnetizing inductance, (d) The shunt core-loss resistances for

the power winding and control winding.



L, =-0.44\2, +0.085A ,, +0.0164

L, =-1.35\%, +0.145\ ,, +0.0327

L'y =—-0.552)2, +0.091\,, +0.0385 (3.77)
R, = -5022% +1865/,, +132

R_=-8218 +2014.21_+88.2 .

The calculation results and approximate polynomial eguations for these parameters
are plotted in Figures 3.12(a)-(d).
By comparing two groups of the machine parameters calculated from two different

steady-state equivalent circuits, we can see that power winding self-inductance L,,

control winding self-inductanceL's, and magnetizing inductance L, are very close, but

series core loss resistances (R s, R mp) &€ smaller than the shunt core loss resistances.

3.10 Manley-Rowe Relationships

The concept of power conservation at each frequency which governs the
operation of a multi-frequency, dissipationless, linear, and time-invariant circuits is
generally not applicable to circuits or systems with time-varying or nonlinear inductances
(frequency converters). In such circuits, the powers delivered to or drawn from these
nonlinear or time-varying inductances by the individual spectral frequency components
of the operating signals are, in addition to the energy conservation law, governed by
further principles which control the distribution of the energy exchanged between the

nonlinear or time-varying inductances and the remaining part of the circuit or system.



Power relations for nonlinear resistive and storage elements excited by independent
harmonic signals of different frequencies were published by Manley-Rowe [57] and
Pantell [58]. These relations were applied to the first time by Penfield [59] and more
recently by Russell and Pickup to elucidate the real power transfer mechanism from the
stator circuit to the rotor circuit and the shaft [60].

The Manley-Rowe average rea power/frequency relationships for a
dissipationless circuit with nonlinear or time-varying inductances excited by two sources

of independent angular frequencies (w; and wy) are expressed as [57-60]

i i mP(me; +Nw, ) -0 (3.78)
m=0 n=—oo mw:l_ + nwz
i i nP(mw, +Nw,) -0 (3.79)
m=-c0 n=0 mw:l_ + nwz

where P(mwy+nwy) is the average real power flow due to a signal with an angular
frequency of (mw+nwy). Equations (3.78-3.79) do not guarantee that the different
frequencies they generate exist in the circuit under consideration and they give no
information about the frequency components generated by the nonlinear or time-varying
inductances (which are frequency converters) in the circuit.
The complex-variable d-q voltage equations of the doubly fed machine are given as
Vadp = Tpladp + PAgap + jWpAadp (3.80)
Vs = Fslgds + PAgas + ] Whgas - (3.81)
The apparent input power equations for the power and control winding circuits are
given as

3

. 3 . . . .
qudpl ap = E[rpl qdpl ap T pAqdpl ap T pr/]qdpl qdp] (3.82)



3 . _3 . o .
qudsl qds = E[rsl qul qds + pAqul qds + st/‘qul qu] . (383)
Also, the real powers sent by the power and control windings across the air-gap to the

shaft at steady-state are from eguations (3.82-3.83) and are expressed as

3. *
Plwy) = Real[i JonA gap! gap] (3.84)

3. *
P((Dz) = Real[E ]Q)Z)\qulqu] . (3.85)

The Manley-Rowe real power/frequency relationships are now applied to
determine the active power distribution of the doubly fed reluctance machines. These
relationships are only applicable to the input and output real powers (to and from the air-
gap) of the time-varying mutual inductances between the power and control windings.
The independent two angular frequency are w; and zw, and the dependent angular
frequency is wy + zwy, which is the angular frequency of the air-gap power converted to
the developed mechanical power. Assuming that power input into the time-varying

inductances is positive and output power is negative, use of Equations (3.78-3.79) results

in
Play) | Play +203) _ (3.86)
o w + yAO,)
P(zip) | Plug +265) _ (3.87)

0 Wy + 20
where P(wy) isthe real power contributed by the power winding circuit to the air-gap, the
contribution of the control winding circuit is P(zay) and P(wy+ay) is the active power

converted to mechanical power to produce the el ectromechanical torque. From Equations



(3.88-3.89) which are deduced from Equations (3.86-3.87), the following observations

are deduced

Plzwp)| 20 _ (388)
Pl@) | w

P(w) 1 | Paw)

- , -9 (3.89)
P(w +20p)| 1+0" [P(wy +2wp)| 1+0

The ratio of the contributions of the control and power windings to the devel oped
mechanical power is the same as the ratio of their source frequencies. Hence, if the
control winding circuit is used to affect a small change of shaft speed around the
synchronous speed of the power winding frequency in such applications as pumps and
compressors, arelatively small rated inverter is required (compared to the power winding
power requirement) confirming the experimental observation in [30]. However, in high-

performance drive applications where extended speed range of operation is desirable, the

WsWp

Figure 3.13. Air-gap power contribution of power (Py) and control (Ps) windings
normalized with developed mechanical power as afunction of control winding frequency.



power requirement of the inverter feeding the control winding circuit may indeed exceed
that of the power winding circuit when wy, is greater than oy,

Figure 3.13 and Equation (3.89) show the contributions of the control and power
winding circuits to the developed mechanical power. We can see that with increase of
control winding frequency, the relative active power contribution of the power winding
decreases to the point when it equals that of the control winding when wy, = wy after
which frequency the control winding active power contribution predominates. Hence, a
doubly fed reluctance motor drive requiring a large-speed operation range is likely to be
very expensive in view of the increase of inverter active power rating.

The electromagnetic torque of the machine is defined as the ratio of the devel oped
mechanical power to the shaft speed, wym. From Equations (3.86-3.87), we have

Te - P(a‘l + Za‘z) - P(a‘l) ﬁ - P(a‘l) (p]_ + q)
Wm W W W

_ P(za,) @, _ P(za,)
w, zw,

rm

(p,+q) . (3.90)

Since power is invariant to reference frame transformations, the real power
transferred from the power and control winding circuits across the airgap are given by

equations (3.84-3.85). Hence, the el ectromagnetic torque is given as

3 : R 3 . .
Te = 5( p+ Q) Real [J/]qdpl qdp] = 5( Pt q) Real [qusl qu] ' (3'91)



3.11 Transient and Oscillatory Behavior

The starting transient, dynamic response, and waveforms of the machine operating as a motor can
be simulated using Equations (3.92-3.102) with assumed power and control winding voltage sources.

8, +8, -6, =0 (3.92)
W, +@, = w, = (p,+ 9w, (3.99)
Vap = Tplap +Agp ~ Wphap (3.94)
Vip = Tpldp +}‘dp ~ Wphgp (3.95)
Vc}s = I’;I gt qu - ws)\lds (3.96)
Vc'is = rsll ds + )'"ds + ws)\'qs (3'97)
1 .
R -
p.+q
T, = §(Klpl + qu) [/]dpl o~ Ap! dp] (3.99)
2
101 1]7TAa A
PYN HESNE SR | ™ (3.100)
Lﬁp L|s I-m LlS pr
A A
S IR T . (3.102)
pr Lls I-m L|s L/P
B4, (3.102)

To obtain Equations (3.100) and (3.101), flux linkage Adm, Agm, A"ds, Adp, A" gs, @Nd Agp are

defined as
Adm =Lm(|dp+|clj)

Aqm = Lm(I qp + |qs)



+L I

m'gs

Agp =Ll

ap p*ap

}\dp = Lpldp + Lmlds
Ags =Lslgs *Lmlgp
}‘ds = leds + I-mldp-

According these expressions, the current Iy, lgp, I'ds, @nd I’ ¢s Can be represented by the

flux linkage and are expressed as follows

R
ap ' 2
Ll - L2

_ Adp Lls - Lm/‘.ds
dp ' 2
LL, - L2

_Awly ~Lidg,
L -L

We define the inductance leakage as

Ip? L's_Lmsz

L -L,=L

p m =
Hence, L L~ L% can betransferred as
LpLs - L?n = L}sLlp + |-m(LIp + Llls) .
By substituting the expressions of Igp, lgp, I'as, @d I'gs into the expressions of Agm and
Agm, We can obtain

L L| ' |-mLIp
qm = ' e ' AqS + ' ' AQP
I‘IpLIs + Lm(LIp + Lls) |‘IpLIs + Lm(LIp + Lls)




and

/‘dm = ' ' Ads + ' ' Adp
I‘IpLIs + Lm(LIp + Lls) |‘IpLIs + Lm(LIp + Lls)

1 1 1 1
= 1— + 1— .
1 1 1L A 1 1 1 L /]dp
—_—t—+— Is —t—+— Ip
|-m Llp Lls |‘m Llp Lls

Finally, Equations (3-100) and (3-101) are obtained from above derivation.

However, it is required to determine either the reference frame angle of the control or
power winding circuit and to properly account for saturation effect. These are achieved
by the alignment of the air-gap flux linkage on the g-axis such that the d-axis air-gap flux
linkage and its derivative are forced to be zero every time. When these constraints are
applied to Equations (3.93, 3.95, 3.100-3.102), Equation (3.103) results from which wy,

can be determined

0. = —(wp +wg)

= (3.103)
P Lishgp +Liph

gs
where

Wp = VdpLZs + VdsLép - Lépwr}‘qs
Wp :)‘dp (Ta - I-zfs-rb)

Lm@Lm

-, . .
Ta= Bl byl

ol m
DL,

Tp = . D=L,Le-L%,.



Figures 3.14 and 3.15 show the simulated no-load starting transient of the experimental
machine in which the control winding circuit is supplied with a three-phase inverter with
a constant VoltsHz control scheme. During the initia starting period, the control
windings are shorted after which the inverter connected to the control winding circuit has
its frequency ramped linearly and levels off at 10Hz. It is significant to note that after
reaching a steady-state operating condition, the rotor experiences a bounded oscillation
around the average speed. However, when the frequency of the inverter is ramped to 15
Hz and kept constant at that frequency as shown in Figure 3.15 (showing only the steady-
state waveform), the rotor speed oscillatory component is continuously increasing. After
some time, a new operating speed is found with a lower average speed and a different
frequency of rotor speed oscillation. A jump phenomenon has occurred. These simulation
results have been confirmed in the laboratory. Figures 3.16(a) and 3.17(a) present
experimental power winding current waveforms when inverter frequency is 10HZ and
15HZ. Figure 3.16(b) and Figure 3.17(b) show the significant power spectra of the
power winding current confirming the presence of the side-band current components
when the control winding frequency is 15Hz. The lower side-band current components of
the control and power windings give rise to a negative damping torque leading to the

machine oscillatory rotor motion.
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Figure 3.14. No-load transient of rotor speed and torque when inverter frequency = 10

Hz. (a) Therotor speed of no-load, (b) The eectromagnetic torque vs. rotor speed.
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Figure 3.15. No-load transient of rotor speed and torque when inverter frequency = 15

Hz. (a) Therotor speed, (b) Electromagnetic torque vs. rotor speed.
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Figure 3.16. Experimental waveforms showing machine oscillatory motion with inverter
frequency=10Hz. (a) Phase 'a power winding current, (b) Power spectra of the power

winding current.
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Figure 3.17. Experimental waveforms showing machine oscillatory motion with inverter
frequency=15Hz. (a) Phase 'a power winding current, (b) Power spectra of the power

winding current.



3.12 Synchronous M otor

With the power windings connected to a balanced three-phase voltage source
having a frequency of wy, and the control winding connected to a DC voltage source as
shown in Figure 3.18, the doubly-fed reluctance machine is running in synchronous
operation condition. The detailed information about the synchronous operation is referred
toin Chapters5and 7.

The power winding and control winding g-d equations of the doubly-fed synchronous

reluctance machine in the rotor reference frame are:

qu = Rpl ap + p/]qp + wp/]dp (3.104)
Vip = Ryl + PAg, — WA, (3.105)
y Power Windings Control Windings
LAM—VV_ e v
I I
Ap
oﬂw_/\/\/\_, )
V
|Bp - dc
OV&/\M_/\/\L
lep '

Figure 3.18. Schematic diagram of the doubly-fed synchronous reluctance motor with

DC excitation.



where

Torque equation is expressed as
3 . .
Te = [ZJ( P, + q) Lm(l dpl as I qpl ds)

Under the steady-state condition and considering the following conditions:

The following equations are obtained

LN T
® L3N, J(p +a)L,l,

V,=R]I,-wlL,|

ap P ap p—p’dp

Vg = Rilg —w, (Ll + L)

The peak value of power winding voltage is expressed as
Vi =Vg +Vg

Substituting equation (3.114) and (3.115) into (3.116) yields
c,0g+C,0,+C, =0

Where

_ 2 2
Ca _wil‘p-"Rp

(3.108)
(3.109)
(3.110)

(3.111)

(1.112)

(3.113)

(3.114)

(3.115)

(3.116)

(3.117)



C, = 2a2L, L.

m-p's

C, = (w,L,l

p dp)2 + (R _a)pl‘mlé)2 _Vrr?

Pl dp
Then I, can be solved using equation (3.117) and expressed as

- + 2_
I, = G G ~4CC, (3.118)

® 2c

a

and

— _Cb B Cb2 _4CaCc
lp = o : (3.119)

a

Only Equation (3.118) is used in the calculation because the solution of Equation (3.119) leads to poorer
power factor results.

The phase voltage and current of power windings are

2 2
+
R

pa \/E
2 2
V,, =122 Vi Voo
V2

The active power and apparent power as well as power factor can be computed

using following equations:

3
k= E(lqpvqp + ldpvdp)

S =¥l
P
f=—o
P S

By applying a given constant load to the shaft of the synchronous motor and
varying the control winding current from underexcitation to overexcitation and recording

the power winding current at each step, the curves of Figure 3.19(a) are obtained. The



power winding phase current is plotted against the dc control winding current for 2 N.m,
4 N.m, and 8 N.m load torque values, respectively. As shown in Figure 3.19(b), the
power factor is plotted against the dc control winding current for various given loads.
Note that both sets of curves show that a slightly increased control winding current is
required to produce unite power factor as the load is increased (points 1, 2, and 3). As

load isapplied, not only doesthe power winding current rise, but isalso necessary to

1 800
1\ 2\ 3 -
Te=8N.m
08 \ T on 600 ] /
o= m /
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Figure 3.19. Doubly-fed synchronous reluctance motor characteristics. (a) Motor power factor vs. power
winding current, (b) motor power vs. control winding current, (c) power winding current vs. control

winding current, (d) g-axis current of power windings vs. control winding current.

increase the control winding current. Figure 3.19(c) show the curves of power winding

input power against the control winding current. Note that slight input power increment



for each load value is necessary to balance the losses of increment of control winding and
power winding as increment. Figure 3.19(d) shows the cures of g-axis current of power
windings against the control winding current, where we can see that the unity power
factor is achieved when the maximum g-axis current of power windings is obtained. We
also note that, the higher the load torque, the higher the magnitude of maximum g-axis

current of power windings (see points 1, 2, and 3).

3.13 Conclusion

This chapter presents an accurate model of the doubly-fed reluctance machine,
which consider the core-loss of the machine. The g-d equivaent circuits with series core-
loss resistance or shunt core-loss resistance are given. The Manley-Rowe power-
frequency relationships are used to determine the relative contribution of each stator
winding circuit to the developed mechanical power. The machine inherent parameters are
obtained by using the steady-state equivaent circuits and experimental test. These
parameters and the model are successfully used to exposure the inherent oscillatory
instability of the doubly fed reluctance machine in the motoring mode by computer
simulation and experiment. They also will be used in the following chapters to investigate
the steady-state characteristics and dynamic performance of some application systems

with the doubly-fed reluctance machine.



CHAPTER 4

PERFORMANCE CHARACTERISTICS OF DOUBLY-FED
RELUCTANCE GENERATOR

4.1 Introduction

The idea of using doubly-fed reluctance machines as generator was inspired by
the fact [50, 40, 36]:
(1) These machines can run at high speeds where the efficiencies of prime-mover
(turbines) are relatively high.
(2) As the reluctance generator is run with a prime-mover, there is no need for a special
starting arrangement.
(3) In stand-alone generator applications with regulated turbine speed, an automatically
regulated load frequency is achieved if two stator windings are connected in series.
(4) According to the frequency relationship (o), + % = ) between the power winding
and control winding, the frequency w, of the generated voltage in power winding can be
controlled by regulating ws and active power (from battery source, solar system, for
example) and reactive power provided to the load using a DC/AC PWM inverter in the
secondary winding as the rotor speed wy varies. So the dual-winding reluctance
generators have a better controllability than a squirrel-cage induction generator that
required a rectifier-DC/AC-PWM inverter system to control the load voltage with no
facility to augment the power provided by the shaft to meet excessive load demand.
(5) The dual-winding machine can be use as a generator for wind-power transfer. With
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wind as the power source, the frequency and current in the control windings are
manipulated using current-regulated voltage-source, pulsewidth-modulated (V SI-PWM)
inverters to track the power speed profile of the wind turbine for maximum power
capture.

This chapter explores the use of a dua-winding reluctance machine as an
autonomous generator system in which reactive power is supplied to sustain the load.
Two stand-alone generator systems considered in this chapter are shown schematically in
Figure 4.1. In Figure 4.1a, the generator feeds balanced 3-phase load impedance. 3-
capacitors are connected across the power and control windings to provide reactive power
to the generator. In Figure 4.1b, power winding is connected to a rectifier that feeds an
impedance load and control winding has the same connection as the system in Figure
4.1a. Section 4.2 and 4.3 give the derivation of the generator load model and the
generator steady-state model. Calculated, measured generator steady-state characteristic
curves and waveforms are included in Section 4.4 and 4.5. The dynamical simulation
results of the self-excitation and de-excitation are given in Section 4.6. Conclusions are

drawn in Section 4.7.

4.2 Model of Generator loads

The phase voltages and phase currents are balanced. The phase voltage and
current for phase A of the power winding circuit are defined as
V, =V, c086, +a,,) = Real [\/qdpejgp]

(4.1)

lpo =1,0086, +a,,) = Real[l ,€'”] .
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Figure 4.1. Schematic diagram of stand-alone generator systems.
(a)With impedance load (Top), (b) with a loaded 3-phase diode
rectifier (Bottom).

Similarly, the phase-a voltage and current of the control winding are giving as

Vas = Vs COS(HS + asl) = Real [\/quej 95]
4.2

|, =1.cos(6, +a,) =Realll ,&'%] .

qds

The phase voltage equations of the load and capacitor circuits from Figure 4.1(a)

are expressed as

PV, = - 4.3)



1
pVAP == (I Tt IAo) (4-4)
Co

VAP = Lo pl Ao + ROI Ao * (45)
Substituting Equations (4.1) and (4.2) into Equations (4.3)-(4.5) and using harmonic

balance principles, the following complex-form equations are obtained:

. e .
pqus == C(;d - Ja)quds (46)
q
1 .
PVogo = N [ [NV 4.7
P
qup = Lo pl qdp + Rol qdp + Ja)pl qdoLo (48)

where

2
[N - _[N : N
C=l 5| Cor Vds:(p)\/d’ Ids:{ SJI ds
q (NPJ q q NS qap q Np q

From Figure 4.1(b), the phase-A capacitor voltage, voltage and current equations of the

rectifier and connected load are

1
PVae = _E(IAP + IAr) (4.9
q
IAr:SaIId’ IBr:SDIId’ It:r:St:IId (410)
Vi =SV SV, + SV, (4.11)
_1
PV —E(ld =1,) (4.12)

d

Pl =2 (Vs = R1L) (4.13)



1
ply =—(Vy —Vyu) - (4.14)
Ly

Assuming that the filter inductor current and filter capacitor voltage are DC quantities,
the switching functions of the rectifier are approximated by their fundamenta

components and given as

S, =Acos(6, +a,,), S, =Acos(g,+a,) (4.15)
S, =Acos(6, - f+a,,), S, =Acos(f,-B+a,) (4.16)
S, =Acos(g, + B+a,), S,=Acosl@,+L+a,) (4.17)
where
Y]
7 3

With Equations (4.1), (4.2), and (4.15)-(4.17) substituted in Equations (4.9)-(4.11) and
applying harmonic balance technique, the following equations resullt:

1

pqup = Ci (I qdp - Sqdl I d) + J a)pqup (4 18)
p
V, = Real (V,,Sya.) (4.19)
where
Sa =A™, S, =AM, (4.20)

We will show that the loaded rectifier (based on the fundamental component
analysis) appears like a resistor (R.) connected across the capacitor C, (see Figure 4.2).

The effective resistance is given as

_r
R=p5R- (4.21)

The following equations are obtained from Equations (4.19) and (4.20):



Sy =Acosay,, S, =Asna,
Sy =Acosa,, S, =Asna,

Iy =Sy la ly =Suly
V, =S Vg + SuVyp -
Under steady-state condition,

Vo =V, la=1 Vg =R,

Vo =14R =5, 1 R,

vV, =14R =5, IR .
Hence,

Vi =S\Vo + SV =R (S8, +SuSu)ly

and

V,=V,=RI,=RI .
Now we can obtain

R7ss F}s Sy

vy T S

Because 0s, are approximately equal to ap, we can assume S, =S, and S, =S, to

obtain:

12
SuSy +SuSy =A= 5

qval

Finally, the expression of the effective resistant R is obtained in Equation (4.21).



Figure 4.2. Effectiveresistance R,..

4.3 Steady-State Generator M odéel

The generator system in Figures 4.1(a) and 4.1(b) can be described by following

g-d equations:

Ve =Ryl + PA, + WA, (4.22)
Vo = Ryl + PAgy — WA, (4.23)
Vo = Rilgs + PAg — WA (4.24)
Ve = Rllge + PAg + WA (4.25)

_1
pVy, = c (1 = 1o) =W Vy, (4.26)

p

1
PV, = C—(—I w " la) T OV, (4.27)

p



LoPlgo + Ryl + @,Lol e =V,

p—o'do ap

Lopldo+Ro|do_le :Vdp

p—o"qo

. 1 . .

qu =——1 as + wsvds
Cq

- 1

des == E I rljs - wsvc;s

q
where

qu = LPICIP + Lmlqs

Ads = Lplds + Lmlds

A =Ll + Lyl

Ads = leds + Lmldp

RP:rP+RCP

R =1 +R..

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)
(4.33)
(4.34)
(4.35)
(4.36)

(4.37)

Since some parameters of machine are dependent on the airgap flux, the steady-state

system equations are easily solved if the current state variables are replaced with flux

linkages. By using Equations (4.34) and (4.35), the current states can be expressed with

flux linkages as

AL —L )

- ap s m”gs

oL 1)

_ (Adp L's - Lm/‘ds)
d T 4 12y
P (L -

(4.38)

(4.39)



(AL -A_L)

—Mas—p “p™m

Tl

o (Adst _Adme)

cLL-L2)

Substituting Equations (4.38)-(4.41) into Equations (4.23)-(4.31), the following equations with flux

linkages as state variables are obtained:

p/]qp =Vop ~ wp/]dp +T$1/]qp + BsslAlqs
PAy, =V, + WAy, + Ty, + B Ao
pAqs :Vqls + a)sAlds + T$2A.qs + B$2qu

p/]ds :les - wsA}Js +T552Avds + Bssz/1ds

1 .
PV = E(Tﬂqu + le/]qs - Iqo) — WV,

p

1 .
dep = ? (TslAdp + Bﬂ/‘ds - Ido) + wpvq

p

p

V., RI
—_a _ o _
plqo L L wpldo
Vd Rol o
pldo > - Ld _wplqo

(4.40)

(4.42)

(4.42)
(4.43)
(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

The complex form for Equations (4.42)-(4.49) are expressed as Equations (4.50)-(4.53):

PAgy =Vagp + 10 A + TaAg + B/

pA'qu :Vc;ds - ]wsA +T582A'qu +B A

qds

CoPVasp = (TaAgy + leAqus ~ ) +jw,C

Lo pl qdo = (qup - Rolqdo) + ja)pLolqdo

qds

ss2” 'qdsp

(4.50)
(4.51)
(4.52)

(4.53)



+ By Ay) — J WY, (4.549)

s'qds "

CqVqlds = (TSZAquS
In the steady-state, all differentia items of Equations (4.50)-(4.54) are equal to zero. The
following equations are obtained and used to describe the steady-state performance of the

generator system in Figure 4.1(a):

0=V,y + WAy * TesAgep + BarAges (4.55)
0 =V[;ds - jws/i'qu + Tssz/fqu + BoAys (4.56)
0=(TgAw * le/fqu o) + 10,C Ve (4.57)
0=Vgp ~Rlgw) * 10, Lol o (4.58)
0=(T 52/‘.qu + B A) ~ ja)SVq'ds (4.59)

where

R L R L

Tﬁl:— Ip s « = Ip m
LL -2 LL - L%

RiLP - &Lm

T,=-——F—"—, B =— .
=L -l = oLL -0
Equations (5.60)-(5.61) are obtained from Equations (4.58)-(4.59) and expressed as

Vv
lggo == 2—— - (4.60)
(R - jw,L,)

' (Ts/‘s+BszAd)
qus: 27" qd: qdp .

4.61
j a)SCq ( )



Substituting Equations (4.60)-(4.61) into Equation (4.56) gives

0= KpyAgp + KA (4.62)

where
Kyi=Bg, + jf):éq , Ky =T, — jw, +j;(r)zch.

Substituting Equation (4.60) into Equation (4.57) yields

Vip = Ay + By (4.63)
where

_ TR-iel) ol BR-jel)
1- jw,C (R~ jw,L,) 1- jw,Cy (R~ jw,L,)

Replacing Vqqp With Equation (4.63) and lqq With Equation (4.60) in Equation (4.55)
yields

0=Kydy + KA (4.64))

qdp qds

where
Ky=A+jw, +Ty, K,=B+Bgy.
Now we obtain a complex-form equation system (Equations (4.65)-(4.66)) of the
generator system in Figure 4.1(a):

0= KllAqdp + Klz/ilqu (465)

0= K, Ay, + Ky (4.66)

qdp qds *

The matrix form of Equations (4.65)-(4.66) is

{Kﬂ Kﬂ}ﬁ*"ﬂ{o} (4.67)
K21 K22 qds 0



As Equation (4.67) is singular, feasible solutions are obtained only when the determinant
of K matrix is set equal to zero. That is
A=K,K,, —k,K, =0. (4.68)
By replacing K,,,K,, K, and K, with corresponding expressions in Equation (4.68), a
complex form equation is obtained and can be separated into real part and imaginary part
A=A+ A, =0. (4.69)
Ag and A, respectively, represent real part and imaginary part of Equation (4.68) and
Appendix 4A gives the expressions of Ag and 4.
To satisfy the condition of Equation (4.69), the Ag and A, both must be equal to

zero. That is

By using the condition A, =0, Equations (4.70)-(4.71) are obtained:
C, +Cafy + Cl + Cuaf + Cye + Gy + Coa) + Coafl + Cyw), +C,0 =0 (4.70)

4
— Saa]l; +tawp + uaa]; +Vaa)§ + Xawp + Ya

4,71
1+ MR e, G, “70

The quantities s, - y,,l, —q,,and C, —C,, are determined by machine parameters and the
values of the electricd components and rotor speed. The expressions of
S, —VY.l,—0q,,andC, —C,, arelisted in Appendix 4B.
The complex-form mutual airgap flux linkage is given as
Agam = Ll ggp + 1) - (4.72)

Combining Equations (4.38) and (4.39) into a complex-form gives



(Ao s = LnAoes)
o= q(dlp_ T ;d (4.73)
p-s m

and the complex-form from Equations (4.40) and (4.41) is expressed as

(Agelp = AgpL)
A TR (4.74)
p—s m

Substituting Equations (4.73-4.74) into Equation (4.72) yields

Agam = EAggp + FAws (4.75)

where

1 1 1. _
E:(L*"'*"'L*-) 1(Llp) !

m Ip Is

1. 1 1 .
F=(—+—+-"7)"(L)™
(L L) (L)

m Ip Is

L, =L, — L,,: The per-phase effective leakage inductance of the power winding.

p
L. =L, — L,,: The per-phase effective leakage inductance of the control winding.

s —

Using Equation (4.62) and Equation (4.75) to obtain a matrix equation (4.76):

{E F} A :qum} : (4.76)
K11 K12 /]qu 0

Now we can obtain Equations (4.77) and (4.78) from Equation (4.76)

K,/
Agp = =20 — (4.77)
EK,, - FK

O
e (4.78)
EK,, - FKy,

With given values of wy, Cp, Cy, and varying the airgap flux linkage from zero to some

reasonable values, the machine parameters are computed from their approximated



equations and the quantitiesof s, —v,,l, —q,,andC, —C,, can also be determined. Then

they are inserted in Equations (4.70) and (4.71) to determine corresponding load

impedance (or load resistance) and the angular frequencies of the power and control

winding currents. The state variables A, Ay, Vadp Vogs» @d lqao are then calculated

qdp !

using Equations (4.77), (4.78), (4.63), (4.61), and (4.58).

4.4 Steady-State Results

The mathematical derivation given in Sections 4.2 and 4.3 are used to obtain the
steady-state results of the generator systems shown in Figure 4.1(a) and Figure 4.1(b).
The results are verified experimentally by running the rotor of the generator at 750 and
825 rev./min corresponding to rotor angular electrical frequencies of 50Hz and 55Hz
respectively. Cq = 90uF and Cp = 166uF are chosen. The Matlab program used to solve
these nonlinear system equationsislisted at appendix 4C. Figure 4.3 gives measured
and caculated steady-state performance characteristics of the generator feeding an
impedance load (generator system in Figure 4.1(a)). We can see from Figure 4.3(a) that
output power isinversely proportiona to the load resistor when the load resistor is bigger
than some vaues; however the output power sharply decreases when the load resistor
continuously reduces in the range, which has the values smaller than those values. Then
the generator loses output power when the load resistor reaches its minimum limited
value that is approximately equal to 12 ohms for this experimental generator system.
Figure 4.3(b) shows that the higher the rotor speeds are, the larger the output power and

load voltage. The maximum power points are clearly seen in thisfigure.
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Figure 4.3. Measured and calculated results of doubly-fed reluctance generator system
feeding impedance loads. (a) Output power against per-phase load resistance, (b) load



voltage against output power, (c) load voltage against load current, (d) power factor
against |oad resistance.

@ (b)
Figure 4.4. Measured generator waveforms (rotor speed =850 rev/min, load resistance
20Q) (10mg/div). (a) Generator line-line voltage (Top)(50V/div) and Generator phase
current (Bottom)(2A/div), (b) control winding line-line voltage (Top)(50V/div) and Phase
current in Cq (Bottom)(5A/div).



The relationships between the load voltages and currentsare
illustrated in Figure 4.3(c), in which the maximum load current
pointsare easily obtained. It is observed from Figure 4.3(a)-(c) that
thereisgood corredation between measurement and calculation
results. Thelittle discrepancies between measured and calculated
results may be dueto the high sensitivity of the machine
performance to magnetic saturation and the presence of significant
current space-har monic components evidenced in the wavefor ms
shown in Figure4.4. In Figure 4.3(d), we can see that power factor
will decrease with increasing load resistance and thereislittle affect

with different rotor speeds.
Figure 4.5 shows the calculated generator characteristics of self-exciting generator

system feeding an impedance load with three different inductance values. Increasing

inductance value causes the increment of outout voltage, generator power factor, and
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Figure 4.5. Calculated generator characteristics of self-exciting generator system feeding impedance load.
(Cy=65uf, C, =45uf, W,, = 1800RPM) (a) Power winding frequency vs. load impedance, (b) load voltage
vs. load impedance, (c) load voltage vs. load current, (d) generator power factor vs. load impedance, (€)
output power vs. load impedance.
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Figure 4.6. Measured and calculated results of generator system feeding a loaded
rectifier (cm = 825 rev/min and wm, = 750 rev/min). (a) Load voltage against output
power, (b) generator voltage against output power, (c) output voltage against load
current, (d) power factor against load resistance.

@ (b)

Figure 4.7. Measured waveforms of generator system feeding arectifier load.

(@ Generator lineline voltage (Top)(50V/div) and generator phase current
(Bottom)(1A/div), (b) output rectifier voltage (Top)(50V/div) and Input rectifier current
(bottom)(1A/div).



output power, asshown in Figures 4.5 (b), (d), and (€), respectively.
The higher the load inductance, the higher the output maximun

voltage, asshown in Figure 4.5(b). In Figure 4.5(a), we notethat the
frequency of power winding voltage and current increases with

increasing the impedance value of load.
Figure 4.6 shows measured and calculated performance characteristics with the generator feeding a

rectifier having aresistive load. Two rotor speeds: 725rev/min and 825rev/min, are choose for the

steady-state calculation and experimental measurement.

The curves shown in Figures 4.6(a)-(d) are very similar to those in Figures 4.4(a)-(c),
because a rectifier feeding a resistive load is equivalent to a resistive load on the
fundamental component basis.

We can see that the higher the rotor speed is, the larger the output power, load
voltage and load current. The maximum powers and load currents relating to two rotor
speeds can be obtained in these figures. The correspondence experiment and calculation
results are fairly good in view of the harmonics imposed on the generator voltages and

currents due to the switching diodes shown in Figure 4.7.

4.5 Power Capability and Parametric Analysis

The active power supplied by the source of mechanical power to the generator
systems in Figure 4.1(a) and Figure 4.1(b) are distributed to the power and control
windings. The distributions of the active power across the airgaps determined by the

Manley-Rowe power/frequency relationships are given as



P(a,) N P(a, +a,) _

w, w, +w,

0

(4.79)
P(@,) , P@,+@) _
, w, +w,

0.

Note that P (0, +u) is the power input to the airgap by a source with angular frequency
given by wy, +ws. It is evident from equation wm = wr/(p;+q) that P (wy, +wy) is the input
mechanical shaft power. Assuming that power input to airgap is positive and power

received from the airgap is negative, the following relationships are derivable from

Equation 4.79:
P(as):gzo_
Plw,) w,
P(ap) &, _ 1
Plw,+w,) w,+w, 1+o
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Figure 4.8. Parametric characteristics of generator feeding aresistive load rotor speed =
900 rev/min. (-: Cpq = 0.4; +: Cpq = 0.6; °: Cyq = 0.8; X: Cyq = 0.9).

() Relative control winding frequency against load frequency, (b) load voltage against
load power, (c) load voltage against relative load frequency.

Hence, the ratio of power transferred across the airgap to the power winding to meet load
demand, power winding core and copper losses is directly proportional to the ratio of the
power winding frequency and angular rotor speeds. Furthermore, it is inferred that
smaller the angular frequency of the control winding, the higher the percentage of shaft
power that can be utilized to meet load demand. In stand-aone generator applications
operated by regulated turbines requiring regulated load frequency, capacitors Cy and Cp
must be chosen to make wy, to be dlightly lower than the rotor angular speed. If an

inverter is connected to the control winding, the frequency of the inverter source voltage



must also be very low to ensure that most of the active power is sent to the power
winding circuit. Figure 4.8 shows how the performance characteristics of the

experimental machine are influenced by the selection of the capacitor C, and Cy. The

steady-state analysis chose Cq=90uF (C('4 =3604F)and rotor speed w,m=900 rev/min,
then different ratios C,, :Cp/C(;, which are 0.4, 0.6, 0.8, and 0.9, are selected. Figure

4.8(a) shows that the ratios of capacity affect the regular range of power winding speed
wy and control winding speed ws. Hence, the maximum frequency of the power winding
current is different and directly relative to the capacitive ratios. The voltage and the
output power does not increase monotonically with the capacitive ratios, which are
shown in Figures 4.8(b) and 4.8(c). Figure 4.8(b) shows the relationship between output
power and load voltage, where we can see that maximum output power curve is obtained
when the capacitive ratio is 0.6. The relationship between load voltage and power
winding frequency is shown in Figure 4.8(c). We aso can see that the maximum load

voltage curve is obtained when the capacitive ratio is 0.6.

4.6 Simulation of Self-Excitation Process

Theelectrical starting transient of the dual-winding reluctance generator system with an
impedance load (shown in Figure 4.1(a)) is simulated. The system are described using following eguations:

0 + W% =(P1+0) Wrm (4.80)
Vep = Rplgp T PAg + WAy, (4.81)
Vip =Rl + PAgp ~ @ Ag, (4.82)

Vs = Riglgs + PAgs — @y, (4.83)



where

Vc;s = Rdsl t;ls + pAds + ws/"qs

1
PVep :?(_qu - Iqo) ~ WV
P
1
dep _7(_| dp Ido) + wpvqp

C

p

Lopl qo + R)Iqo +a)pLo|do :qu

Lopldo+Ro|do_le :Vdp

p-o'qo

pV :_ills-'—wsvc;s

q q
Cq
. 1 ..
pvds =-—1 ds wqus
Cq
qu = Lqplqp + Lqmlés = Llpqlqp + Lm:l(lqp + Iqs)

/]dp =Lyl + Lomlas = Lipalap + Lmd(ldp +14)

Aes = Lol es * Lymlgp = Liggl s + Ling (g + 1c6)

as gs’ s am'ap

A = Lyglas + Ldmldp =lhgles * Lmd(ldp +14)

(4.84)

(4.85)

(4.86)

(4.87)

(4.88)

(4.89)

(4.90)

(4.91)
(4.92)
(4.93)
(4.94)
(4.95)
(4.96)
(4.97)

(4.98)

(4.99)



P .
Agn = Lo {"p + /1"5} (4.100)

Lo L
Ry =1p + R (4.101)
Ry =1, + Ry (4.102)
R =l * Rigg (4.103)
Rrsa =5 * Ry (4.104)
Ruq = —4.0502, —147A,, +1.217 (4.105)
R =7.244, - 4251 +1.58 (4.106)
Ly = —0.4412, +0.085A,,, +0.0164 (4.107)
L,, =—-0.36/%, +0.0906/,,, +0.0373 (4.108)
L, =-0.55/, +0.09],, +0.0385 (4.100)
Rua = —4.05%, =147, +1.217 (4.110)
R =7241, -4.25] , +158 (4.111)
L, =—0.44X,, +0.0851,, +0.0164 (4.112)
L, =-0.36/2, +0.0906/,,, +0.0373 (4.113)
Ly =-0554%, +0.091, , +0.0385. (4.114)

The effect of magnetizing flux-linkage saturation on the machine parameters must be accounted for and a
means must be found to determine either wy, or ws from Equation (4.80) given the rotor speed. If the
magnetizing path is unsaturated, all the machine parameters are constant but vary with magnetizing flux
linkage under saturated condition. The parameter variations are accounted for by choosing areference
frame speed for the power winding (wy,), such that the total magnetizing flux linkage is aligned with g-axis.
The d-axis magnetizing flux linkage and its derivative then becomeidentically equal to zero. These
conditions are expressed as

Agn =0 (4.115)

m
pA,, =0 (4.116)
When the condition (4.115) is enforced in Equations (4.81)-(4.94), all d-axis machine parameters
become constant while all g-axis parameters are dependent on the g-axis magnetizing linkage.

When the conditions expressed in Equations (4.115)-(4.116) are used in Equation (4.100), the
following Equations (4.117) and (4.118) are obtained



Agp === A
dp L|5d d
L .
p/1dp = _% p/1ds '
Isd

(4.117)

(4.118)

Because the machine parameters are dependent on the magnetizing flux linkage, it is necessary to use flux
linkages as state variables in generator system equations. To realize this purpose, the following derivations

aredone.

The derivation from Equations (4.91)-(4.94) yield following equation:

= Rglep = TopaAgp * Bopaes (4.119)
- de I dp :TppdAdp + BppdAlds (4.120)
where
= _ qu qu — qu Lmq
ssql ' 2 ! sl . >
Lobe ~ Limg Logls — Loy
- de I‘Itad _ de Ln‘d
sdl — , ' .2 ! U E——
Loala — Lfnd Loabas — Lfnd
~ Ryl & =Ty + Bodg (4.121)
~ Ryl = Tghes + B (4.122)
where
Te, = ﬁ = M
sq2 ' 2 ! 5502 ; 2
Logls ~ L Logls — Lig
T. = & = M
ssd2 ' ) ssd 2 T
Lpals = L Logla = Lo
Substituting Equations (4.119)-(4.122) into Equations (4.80)-(4.90) yield
PAgp =V + TagiAp ~ DAy + Bgpos (4.123)
PAgp =V * T + DpAg + By (4.124)
PAgs = Vi + TepAes = (@) = @) Ags + BoioAg, (4.125)
PA =V + Tgolas + (W, = @) Ay + By (4.126)
pvqp = lesql/]qp + Bsqul/qu - wpvdp A q (4.127)
Ve = WTadsp *+ BanVides + WO Vg ~ Vil o (4.128)



p|q0:iv —&I -yl g (4.129)

ply = Llonp - E’ Lo + Wl g (4.130)
PVas = Vo Teqees * BugaV oA = (@0, = @0 Vg (4.131)
Ve = Vo TaeoAus + BuoVoAg + (@, = @ WV (4.132)
where
= i B . = Limq
L L L L L - L
- ~Ly - L g
ULl - Ll - L
= _ Lqp = Lmq
Ll Ll - Ly
- Ly - b
T Lely — Ly Ll - L
V= 1, V, = 3
C, C,

Substituting Equations (4.124) and (4.126) into Equation (4.116) yields Equation (4.133), in which wyis
expressed in terms of wy, flux linkages and machine parameters.
a, ta
w, = __(aatay) (4.133)
Llsd/1qp + Llpd/]qs

where

Wy = (VdpL'Isd +Vd'sLIpd - L|pda)rA'qs)
2

. L ,
Wy = Ay (Tanbisg + Bolipa = LB, - L@ Ag) -
Ipd

Equations (4.123)-(4.132) and Equation (4.133) are used for the smulation of the electrical starting
transient of the dual-winding reluctance generator. The self-excitation process of the generator feeding an
impedance load was simulated with values of C;, and C, Selected as 168uF and 360uF, respectively, and a
constant rotor speed of 1500 rev/min.

The simulation results given in Figure 4.9 display the growth of the generator terminal voltage and
current as the magnetizing flux linkage builds up. Saturation effect limits the growth of the magnetizing
flux linkage, which brings the generator to a stable Operating condition. Figure 4.10 gives experimental
results for the self-excitation process corresponding to the simulation results. The simulation results
are similar to the
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Figure 4.9. Self-excitation process of doubly-fed reluctance generator. (a)Power winding

phase voltage, (b) power winding phase current, (¢) magnetizing flux linkage magnitude.

experimental results, which proves that mathematical model used in the simulation program effectively
reflects the true situation.

We also simulate the de-excitation phenomenon of the generator. When the generator is critically
loaded such as when the load impedance is reduced beyond a certain threshold value, the load voltages
collapse (de-excite) dueto arapidly reducing airgap flux linkage. This dynamic processis displayed in
Figure 4.10. Figure 4.10(a) shows the dynamic process of airgap flux linkage when the load impedance
is reduced
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(b)
Figure 4.10. Experimental waveforms of self-excitation process.

(8) Power winding phase voltage, (b) power winding phase current.

beyond a certain threshold value. The collapse process of the voltage and current is shown in Figures
4.11(b) and (c). (The simulation program is listed in Appendix 4C)

| ~ { comment [Gs1]:

4.7 Conclusions

This chapter setsforth the analysis and performance prediction of a stand-alone dual winding
reluctance generator with capacitive excitation in both the power and control windings. A g-d model of the
generator is proposed that accounts for the core and harmonic losses and the influence of magnetic path
saturation on  the machine self and mutual inductances. This should find utility in the accurate prediction
of the dynamic and transient performance of the generator and in the design optimization of stand-alone
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Figure 4.11. Voltage de-excitation phenomenain the generator feeding R-L load.
(a) Airgap flux linkage, (b) power winding phase current, (c) power winding phase
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doubly-fed reluctance generators. Measured performance characteristics compare favorably with the
analysisresults.



CHAPTER 5
SYNCHRONOUS OPERATION OF A DOUBLY-FED

RELUCTANCE GENERATOR

5.1 Introduction

A doubly-fed reluctance machine can realize its synchronous operation when its
control windings are supplied by a direct current (DC) source. The machine can be
working in the synchronous mode as generator or motor. The frequency of load voltage
generated in power winding is directly dependent on the rotor speed in the generating
mode. The rotor electrical angular frequency is proportional to AC supply angular
frequency of the power windings in the motoring mode based on the angular frequency
relationship ) = (p1 +0)m.

Doubly-fed synchronous reluctance motors show potentia in fan, pump,
refrigeration and air-conditioning applications. It is anticipated that the machine will also
find utility as a medium to high frequency generator in stand-alone applications such as
in arplane power systems and marine generator for gas turbine drives [7,14]. The
obvious advantages of this generator system include the absence of brushes, dip rings
and possibility of operating the load at leading or unity power factor by controlling the
excitation current.

In this chapter, the performance of doubly-fed synchronous generator is
investigated when feeding an impedance load and arectifier load. This chapter is

104
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Figure 5.1. Schematic diagram of the doubly-fed reluctance machine with DC excitation.
organized as follow. Section 5.2 gives the derivation of the machine voltage and torque
equations using the concept of g-d harmonic balance technique, including the effect of
magnetic saturation, core and harmonic losses. The operation of the machine in stand-
aone generator mode feeding an impedance load is set forth in Section 5.3. This section
aso contains comparison of experimental and simulation results. The generator
connected to a three-phase rectifier feeding aload is analyzed in Section 5.4. Finally the

concluding remarks are contained in Section 5.5.

5.2 Machine M odél

With the power windings connected to a balanced three-phase voltage source
having a frequency of «} and the control winding connected to a DC voltage source as
shown in Figure 5.1, the voltage equations of the control windings are expressed as

V. =Rl +pA, (5.1

Vbs = &I bs + pAbs (52)



The flux linkages of the control winding are also given as:

Aas:LaaIas+Lab|bs+ Laclcs+LaA|Ap +LaBIBp + IaCICp

Aps = Lialas + Liplps + Licles + Loal ap t Liglep + locl o

/] =L Ias+ch|bs+Lcc|cs+LcA|Ap +LCBIBp +IcCICp

as ca

(5.3)

(5.4)
(5.5)

(5.6)

Where Laa, Lip , Lec @re the self-inductances of the control windings carrying currents las

Jbs s, respectively; Lan, Lac , Loe are the mutua-inductances between the phase-

windings of control windings. The mutual-inductances between the control windings and

power windings are given by Lijwherei = a, b,cand j = A, B, C. I, lop ad I, are the

currents flowing in the power windings.

The inductances are given by the following expression [25]:

L= L., cos(6, +KkB), 5 =2m/3,k =012
k=0 forL,, =L =L,
k=1forlL, =Lg =L

k=2 forlL, =Lg, =Lg

(5.7)



Lo=2L,+L

p "

Lmiz isgiven by

— :uOrINANa
L, =-2PfC "A"a
m gl(q - pl)

Sn(p, + ) ]
where, p1, g, and Pr are the pole pair number of power windings, control windings, and
rotor, respectively. r istheradius of stator. | isthe length of stator lamination. Na and N
are the winding functions of power windings and control windings (see Figures 3.3 and
3.4). g; is air-gap width and « is pole-arc width (see Figure 3.1). (4 is magnetic
permeability.

Three red signds (fa, fn, fo) which could be three-phase balanced voltages,
currents, flux linkages, etc., can be transformed into a complex-form signal (fqq) and zero

sequence signal (f,) using the following equations where 8 is the reference frame angle:

fop = 2€71, +af, +a’f,]

(5.8)

fn: [fa+fb+fc] .

w‘s‘w

It can aso be shown that the origina signals can be recovered from the
transformed quantities using the following expressions:

1

f,=Rel o]+ 1,
|
f, = Rea’f &1+ =,
! V2 (5.9)
i 1
f, = Re[af ,€'’] +ﬁ f,

.2m

J
a=e ® .



Using Equation (5.8) to transform the voltages and currents of the power
windings with balanced three-phase voltage supply to a reference frame with an angular
angle &, (or angular speed of «p), the zero sequence current (l,,) and voltage (Vi) are
zero. The actual phase voltages and currents can be expressed in terms of the transformed
complex-form current (Iqq) by using Equation (5.9), which are given as

V,p = REV,,€"], Vg, =RefaV,€'”], Vg, = Re[aV,,e'”] (5.10)
| =REll €71, 15 =Re[@’l ,,e'"], Iy, =Rdal,e”]. (5.11)

From Figure 5.1, we can see

Vdc :Vas _Vbs (512)
0=V, -V, (5.13)
|+l +1,=0. (5.14)

These phase voltages and currents are transformed into complex-form equations in the stationary reference

frame, which are

2 2
qus = gvdc’ Vns = §Wm +Vbn +Vcn] (515)
_23, 3. _
qus_§[§|a5+?1(lbs_lw)]! Ins_o (516)
Vas = Re[qus]i Vbs = Re[azqus]l Vcs = Re[aqus] (517)
Ias = Re[l qu]’ I bs = Re[a2| qu]’ I cs = Re[al qu] . (518)

Control Winding Mathematical M odd
By substituting Equation (5.7) to Equations (5.1)-(5.3), the following derivation

are done (detailed derivation islisted in Appendix 5A):



= Rslas+ p[LaaIas+Lab|bs+Lac|cs+LaA|Ap +LaB|Bp +IaC|Cp]
3
= Rslas + p{(ELmﬂ +Lls)|as + Lle COS[(pl +q)9rm]|As

2n 2n
+COS[(p1 + q)erm _?]I Bs +C0q(p1 +q)6rm +?]|Cs} .

Defining = %,BX =(p, +9)8,,, and using the following rel ationships:

Real (A) [Real (B) :%[Real(A [B) + Real (A[BY)] (5.19)

1+e¥ +e ¥ =0 (5.20)
the following expression of Vs is obtained

V,, =Rl +p{L +§Lmlz Re(l ., ")} . (5.21)

Substituting equation (5.10)-(5.11) and (5.15)-(5.18) into equation (5.21) yields the g-d
complex-form voltage equations (in the stationary reference frame) for the control
windings given as

2 3 (6. -
qus = 5 dc = &l qds + p[ le qds + E |‘m12| qdpej(gp gr)] ' (522)

Extending equation (5.22) into g-axis and d-axis equations (in the synchronous reference
frame) gives

2 3
gvdc = Rsl as + p(le gs + 5 LleI qp) (523)

3
0=Rlg + P(Lsl g +§Lmlzldp) . (5.24)



Power Winding M athematical M odel

Thephase ‘A’ voltage of balanced three-phase power windingsis also given as (The detailed

derivation is obtained in Appendix 5B):

Vip =Rl + PAy, (5.25)

where the flux linkage is given in Equation (5.26):

Ao = Lanlmo + Laglep + Laclcp + Laalas + Laolbs * Laclos - (5.26)
Using Equation (5.7) to Equation (5.26) and then substituting Equation (5.26) into
Equation (5.25) yield

Vo =R+ PlLaal o + Laslep + Laclcp * Laalas + Lanlos + Lacl ]

(5.27)

= (Rl o + L, Pl o) + Lo, {Re(€%)1  + Re(e'e )1, + Re(e’*e”)1 } .
Replacing the Vap, and 15, with the expression (5.10)-(5.11) which are substituted in
Equation (5.27) and using harmonic balance principle yield the d-g complex-form

equation of the power windings given as

- (6, -6;)
Vo = R)| ]

p" qdp p" adp

+jaw,[L,] +ng2quse
(5.28)

3 o
+ p[Lpqup+§Lle|queJ(€’ 1.

Its g-axis and d-axis form equations from Equation (5.28) are obtained (in the
synchronous reference frame )

3 3
Vop =Rl =@y (Ll + 2 Lol o) + Pyl + 5 Lol ) (5.29)

ap P 2

p

3 3
Vd = Rpldp +wp(Lp|qp +§Ln112|qs)+ p(Lplqd +ELle|ds) . (530)



To combine the mathematical models of control windings and power windingsin
the same system, we chose the power windings as reference windings. After control
windings are referred to the power windings using the winding turns-ratio, the system

Equations (5.31)-(5.34) are obtained as

V=Rl =@, (Ll + Loli) + p(Lylg, + Lol ) (5.31)
Vi, =Rl + @, (Lol + Lolo) + plLylg + Loly) (5.32)
2 - .

3V =Rl + P(Lel g + Lol ) (5.33)
0=Rly+ p(Lly +Llg) - (5.34)

The g-d complex-form equations of power windings and control windingsin the synchronous reference

frame are given as Equations (5.35) and (5.36)

qup = Rpl qdp + pr[LpI qdp + |-ml ;qu] + p[ Lpl qdp + I-ml ;ms] (5-35)
Vqlds = &I ;ms + p[ le ;st + I-ml qdp] . (5-36)

Torgue Equation
The mechanical equation of motion is expressed as
%6, =T -T, (5.37)
where the load torque is T, the moment of inertia of the rotor and connected load is J,
and T is the electromagnetic torque. The el ectromagnetic torque is calculated from the
magnetic co-energy. It can be shown that the electromagnetic torque is given as (see

Appendix 5C)

3 . i -
Te =2 (P * )Ly Ref g€’ 1 (5:38)



Considering the turns ratio between the power windings and control windings and

since 4 = 6, thetime-invariant electromagnetic torque equation is

3 e
Te :E(pl-l-q)LmRe[qudplqu]
(5.39)

3 : ,
= E(pl + q)Lm(Idplqs - qulds) '
Since the core losses in the machine are significant, we use magnetizing flux
dependent series or shunt core-loss resistances: R ,and R to represents these losses.

Considering these factors and using the flux linkage variables, the complex-form

Equations (5.22) and (5.28) of the power windings and control windings are expressed as

With shunt core-loss resistances
Vo Tp =TTl gp + 10 A, + PA

adp'p ~ 'p'p adp qdp qdp

qus = rsTsl qds + pAqu

A, =L I . +L_I|

qdp ~ “—p'adp m' qds

A =Ll +L.I

qds s’ qds m" qdp

where




With series core-1oss resistances

Va = (o + Rip)logp + 10 Aqp + PAggy
Vc;ds = (rs + Rn‘s)l éds + pA‘qu
Aqdp = Lplqdp + Lmlqu

Ay =Ll +L.I

qds s’ qds m'’ qdp

where

The corresponding complex-form equivalent circuits with shunt or series loss

resistors are shown in Figure 5.2 and Figure 5.3.

Figure 5.2. Complex-form equivalent circuit of doubly-fed synchronous reluctance
machine with shunt core-loss resistances.



Figure 5.3 Complex-form equivalent circuit of doubly-fed synchronous reluctance

machine with series core-loss resistances.

5.3 Generator with Impedance L oad

Figure 5.4 shows the schematic diagram of the machine operating as a stand-al one generator
feeding a three-phase impedance R-L load. A three-phase capacitor bank is connected in parallel to the

power windings to provide generator reactive power to sustain the load.
The generator system with impedance load in Figure 5.4(a) can be described by
the following g-d eguations using the synchronous reference frame angle 6,.

L oad Modd

Ve =~ (I 1) twVy,
(5.40)

_7(| dp + Ido) _wpvqp
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Figure 5.4. Doubly-fed synchronous generator systems. (a) With impedance, (b) with aloaded rectifier.

p o’ do ap

L de +R 1, +w Ll =V,
a) =
0 dt qgo

(5.41)
dl do —
Lo dt + Roldo _prolqo _Vdp
Machine Model with series core-loss resistances (Figure 5.3)
Ve =Ryl —a)p(LpIUlp + Lmléjs) + p(Lpqu + Lmlés)
(5.42)
Vdp = Rpldp +wp(Lp|qp + Lmlqs) + p(LpI d + I-ml ds)
20 .. .
gvdc - Rsl gs + p(le gs + Lmlqp)
(5.43)

0=Ryle + P(Lyl g + Lol g)
where

R,=r,+Ry, R =1 +R,



qu = Lplqp + Lmlqs

(5.44)

Adp = Lpldp + Lmlds

A = Ll + Lyl

gs

(5.45)

Alds = Llsltljs + Lmldp .
Since the parameters of the machine are dependent on the airgap flux linkage, It is
necessary to express Equations (5.40)-(5.43) in terms of flux linkages. From Equations

(5.44) and (5.45), we can obtain

| - L5/1qp - LmAqs . — L5/1dp - LmAds
qp ' 2 ! p ' 2
L,L - L2 L,L - L2

C_Lde LAy LAe— L
® oLl - % LL -

Substituting these expressions into Equations (5.40)-(5.43), we obtain the following equations.

pvqp = ycTﬂqu + yc le/rqs - ycl qgo - wpvpd

(5.46)
pvdp = ycTsslAdp + yc le/rds - ycl do + wpvqp
plqo = yLqu _a‘pldo _yLRolqo

(5.47)
pldo = yLVdp +a)p|qo _yLRoldo
pqu =qu + wp/]dp +T$1/]qp + Bssl/rqs

(5.48)

pAdp =V~ wp/]qp +TSSl/1dp + Bm/]lds



PAg = gvdc + T2 Ags + B Agp

(5.49)
pAds = Tssz/rds + B$2Adp
where
— - LIS — Lm
st T 2 1 sl 2
LL, -L2 LL, -L2
_ L Lm
T“Z:L‘L —pLZ' 2L 12
sTp m s—p m
_ rpL's B = rme
SULL - T L -
_ rlg _ L,
T =22 2L -2
sTp m s—p m
=t ,=1
cc, Tt
The g-d complex-form equations of the generator system are expressed as
pqup = ycTslAqdp + yc leAlqu - ycl qdo + ] a)pqup (550)
pl qdo = yLqup + prl qdo - yLRol qdo (551)
pAqu =qup - jwp/‘qdp +T$1/1qdp + B$1Aqu3 (552)
.2 .
pAqu - gvdc + TSZAqu + BSZAqdp . (553)

Under the steady-state operation, the derivatives of the state variables are

identically equal to zero leading to the following system equation:



ycTsl ychl - yC jwp Aqdp 0
0 0 (jw,- Ags || °
- (] h ~ WL Ri’) n s | _ 0 . (5.54)
a—Sl - wp) B$1 0 1 quo 2
B$2 T$2 O 0 qup - EVdC

This equation is nonlinear since the machine inductances and core loss resistances vary
with the magnitude of the airgap flux linkage as shown in Figure 3.11.

The relationship between these parameters and airgap flux linkage magnitude are
empirically determined as

L, =-0.442, +0.085],, +0.0164

L, = -0.364% +0.09064_, +0.0373

L, =-0.551 +0.091,, +0.0385 (5.55)
R, = —4.05/2 ~147A, +1.217

R, =7244 -4.25) +158
where the airgap flux linkage is given as

A A 1. 1 1.
Ao=L [ZH T o =+ ] A =)
oo mm{ L L - [LIp 1 |-|5] m ‘qdm‘_ (5.56)

Is m

If we use the machine model with the shunt loss resistor (see Figure 5.2), similar
derivation is done and the complex-form equations of generator system in terms of flux

linkage are given as

pqup = ycTo/]qdp + yc Bo/]lqu - ycl qdo + (Ja)p - Tc)qup (557)
pl qdo = yLqup + prl qdo - yL R)I qdo (557)
pAqu =TPquP - ijAqu +TPP/1qu + BPP/‘quS (558)



(5.59)

pAlqu :Tqu'ds + T$/]'qu + BesAqdp -

Under the steady-state operation, the following matrix egquation is obtained

ycTo ycBo _yc (jwp_TC) Aqdp 0
0 0 (jw,~nR) n |Ae|_| ©
. 0 (5.60)
(T —iw,) By, 0 T | o 2
By T 0 0 Voo | | "3V
where
_ roLeT, LT,
pp A P - A
.= _ rS’LPTS ,B$ - rlest
A A
LT LmTp

For the machine model with the shunt loss resistor is used, the machine’s parameters are

determined as follows:
0.44)\%, +0.085\ ,, +0.0164

L=~

L =-1.35\%, +0.145\ ,, +0.0327

L =-0.552\%, +0.091\ ,, + 0.0385

50222, +1865\ ,, +132

rmp

s = —8218\2, +2014.2\ ,, +88.2.

To investigate the steady-state performance characteristics of the machine,

Equations (5.54)-(5.56) are numerically solved for fixed values of C, = 45uF, various



values of rotor speed, control winding dc current, and load impedance. Figure 5.5 gives
the generator characteristics when fixed lgc = 4.5A and choosing three different rotor
speeds. In Figure 5.5(a), the curves show the steady-state relationship between the output
power and load voltage while the steady-state relationship between the load voltage and
load current is displayed in Figure 5.5(b). It is observed from these figures that the higher

the rotor speeds, the higher the output power, load voltage and load current.
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Figure 5.5. Calculated and measured characteristics of synchronous generator system
with impedance load for different rotor speeds. (a) Load voltage vs. output power, (b)
load voltage vs. load current.




@R =210 (b) R. = 40002
Figure 5.6. Measured waveforms of synchronous generator system with impedance load (5msec/div). (a)
High output power.Top:generator current (LA/div); Bottom:generator voltage (50V/div), (b) Low output

power. Top: generator current (0.5A/div); Bottom: generator voltage (50V/div).

Figure 5.6 shows the waveforms of the generator when the rotor speed is 900rpm and
feeding a low resistive load (R. = 200hms) or a high resistive load (R. = 400 chms). In
either case: a low resistive load or a high resistive load, the waveforms of voltage and
current are not pure sinusoidal waveforms because of existing harmonic components. The
influence of the dc excitation current on the voltage regulation of the generator is shown
in Figure 5.7. Three different dc current values, 3A, 4.5A, and 6A, are chosen to do the
experimental measurement and steady-state cal culation. The curvesin Figure 5.7(a) show
the steady-state relationship between the load voltage and output power while the steady-
state relationship between the load voltage and load current is displayed in Figure 5.7(b).

It is observed in Figure 5.7 that increasing the excitation current increases the maximum
attainable power and aso the no-load generator voltage. These figures show that the
measured and calculated generator characteristics correlate very well. The discrepancies

between calculations and experimental results are due to the high sensitivity of the
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Figure5.7. Calculated and measured characteristics of synchronous generator system with impedance load

for a constant rotor speed and different control winding excitation currents. (a) Load voltage vs. output

power, (b) phase load voltage vs. load current, (c) power factor vs. load resistance.

operating points to the airgap flux linkage and non-negligible generator harmonic currents seen in Figure

5.6. In Figure 5.7(c), we can see the power factor will not be affected by varying the load resistance or

control winding current.

Figure 5.8 demonstrates calculated synchronous generator characteristics of generator system feeding

an impedance load with three inductance volue. Increasing the load



800 180

160 —~
600 140
s <120 4
\0/400 w® 5 /-
e \ S 100 /
L, = 0.0796H \
200l L, = 0.0796H 80 0= 0.0796 /'
T L,=0.0531H 60 Lo = 0.0531H /'\
~ L, = 0.0265H _
0 40 L, = 0.0265H
0 100 200 300 0 1 2 3
171 In(A)
@ (b)
0.8 180
L, = 0.0265H
\ 160
506 140
e 120 \
('R
04 S 100 // L, = 0.0796H
[ > '
3 /‘\\ L, = 0.0796H // — L, = 0.0531H
Qgol 80
— L, = 0.0531H 60 / .
L, = 0.0265H
0 40
0 100 200 300 0 100 200 300
171 171
(© (d)

Figure 5.8. Calculated synchronous generator characteristics of generator system feeding
impedance load. (W, = 1800RPM, I4. = 4.5A). (a) Load power vs. load impedance, (b)
load voltage vs. load current, (c) generator power factor vs. load impedance, (d) load

voltage vs. impedance.

inductance value decreases the maximun output power, generator power factor, output current, and output
voltage as shown in Figures 5.8(a)-(d). These reductions are obvious in lower impedance values, however,

these reduction gradually disappear with increasing impedance load values.

The starting eectrical transients of the generator system feeding an impedance load are simulated

using Equations (5.50)-(5.53) or (5.57)-(5.59). Figure 5.9 displays



the simulation results. The generator is fitted with an excitation capacitor bank with a
per-phase value of 45uF and is driven at a constant speed of 1800rpm. Saturation effects
are accounted for by updating the inductances and core loss resistances based on the
instantaneous airgap flux linkage magnitude. There is a gradua growth of the load
voltage and current magnitudes, which are respectively illustrated in Figures 5.9(a) and
5.9(b), as the airgap flux linkage is built up until they all reach a steady-state operating

condition.
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Figure 5.9. Simulated starting transient of the synchronous doubly-fed reluctance generator system feeding

an impedance load. (a) Phase ‘A’ terminal voltage, (b) phase ‘A’ generator current.



5.4 Generator with Rectifier L oad

The model of the generator-rectifier system is shown in Figure 5.4(b). The model
of the rectifier load connected to power winding of the generator has been derived in
Section 4.2. This section a so shows that a three-phase rectifier with an impedance load in
steady-state behaves like a wye-connected three-phase resistive load (R.) connected

across the excitation capacitor. The relationship between R, and R, is expressed as
I
R=5R-
Consequently, the analytical approach used for the generator feeding impedance can be
used for the generator with rectifier load.

The rectifier voltage Vg and current |4 can be found using the following equations

1 .
PVoo :E[lqdp =Sald + WV,

q dp

V, =Real[Vyy, Sl -

Figure 5.11 gives the measured and calculated performance characteristics of the
generator feeding a rectifier that has a high impedance load (R.=400 ohms) or a low
impedance load (R. = 5 ohms). Three different dc current values, 3A, 4.5A, and 6A, are
used in the steady-state calculation and the experimental measurement. The curves of
load voltage vs. output power is shown in Figure 5.11(a), where we can see that
increasing control winding dc current increases the maximum attainable power. The load
voltage and load current also increase with increasing the control winding dc current,

which is observed from the curves of load voltage vs. load current shown in Figure



5.11(b). Figure 5.11(c) shows us that the power factor will not be affected by varying the
control winding current or rectifier resistance load. The difference between caculation
and measured results are due to these factors: profound commutation overlap, waveform
distortions and high value of stator leakage inductance. Figure 5.10 shows the measured
voltage and current waveforms of the generator feeding a three-phase rectifier feeding a
high impedance load or low impedance. In either case, waveform distortions are clearly
seen in Figures 5.10(a@) and 5.10(b). Profound commutation overlap is found in the
waveform of the generator voltage as shown in Figure 5.10(b). Like the generator feeding
an impedance load, there is a maximum output power corresponding to each rotor speed

and control excitation current.

(a) R = 40002 (b) R = 502

Figure 5.10. Measured waveforms of the synchronous generator system feeding a three-
phase rectifier load (5msec/div). (a) High impedance load, Top: generator current
(0.2A/div); Bottom: generator voltage (50V/div), (b) low impedance load, Top: generator
current (1A/div); Bottom: generator voltage (20V/div).
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Figure 5.11. Measured and calculated steady-state performance curves of synchronous generator system

with a three-phase rectifier load. (a) Load voltage vs. output power, (b) Load voltage vs. load current, (c)
power factor vs. rectifier load resistance.




5.5 Conclusion

In this chapter, we have presented the modeling and analysis of the doubly-fed synchronous
reluctance generator with a dc control winding excitation. The generator operates essentially likea
cylindrical rotor synchronous generator in which the frequency of the generated voltage is directly related
to the rotor speed and the pole numbers of the windings. Hence this machineis suitable as a medium to
high frequency generator. Steady-state calculation results compare fairly well with experimental results.
The discrepancies between cal culations and experimental results are due to the airgap flux linkage and the
non-negligible generator harmonic currents. The severe commutation overlapsin the operation of the
rectifier also contribute to the differences of calculation and experimental results. The model equations
derived in this chapter can be used with profit to calculate the transient and steady-state performance of the

doubly-fed synchronous reluctance motor fed with either a variable or constant frequency supply.



CHAPTER 6

THE PERFORMANCE OF A DOUBLY-FED SYNCHRONOUS RELUCTANCE
GENERATOR WITH CONTROLLED DC OUTPUT VOLTAGE

6.1 Introduction

The attention in this chapter is focused on the operation of the doubly-fed
synchronous reluctance generator as a controllable power source for DC loads and
for usein battery charging. Using the generated DC voltage at the power winding to
excite the control winding circuit brings these advantages of eliminating the need for
an independent excitation arrangement and the absence of slip-rings and brushes.
This kind of generator systems can be realized by connecting the generated DC
voltage from the power windings to machine control windings through a DC-DC
converter such asbuck or boost converter.

In this chapter, the AC output power from the power windings of the
doubly-fed synchronousreluctance generator isrectified with athree-phaserectifier
and is further processed by either a DC-DC buck or boost converter for output
power or load voltage regulation. Section 6.2 gives a description of the generator
systems investigated, in addition to the derivation of the models of the machine,
shunt capacitors, three-phase diode rectifier and buck and boost DC-DC converters.
In Section 6.3, the steady-state calculation and experimental results are compared
and discussed. Thesimulation of the

129

excitation process for the generator system with exciting source from the power
windings is discussed in Section 6.3. The simulation of the starting transients and
steady-state waveforms of using this generator system for battery charging is also
included in this section. Conclusions are contained in Section 6.4.

6.2 Description and Modeling of Generator Systems

Figures 6.1 and 6.2 show the schematic diagram of the synchronous reluctance
generator systems considered in this chapter.
In Figure 6.1, the generator is connected to a three-phase diode rectifier. The

output of that is further processed by either a DC-DC buck or boost converter. The three-
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Figure 6.1. Schematic diagram of the doubly-fed synchronous generator systems.
(a8)With buck DC-DC converter, (b) with DC-DC boost converter.

phase control windings are connected to a controllable source of DC current or voltage
source while the three-phase power windings are connected to a three-phase diode
rectifier. Delta-connected capacitors are connected across the power winding terminals to
provide reactive power and to enhance the generator real power output capability.

Controllable DC voltage or power is obtained by connecting the filtered output of the
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Figure 6.2. Schematic diagram of the doubly-fed synchronous generator system with dc-
dc buck converter. (a) Feeding an impedance load, (b) feeding a battery.

rectifier to either a DC-DC buck or boost converter. The DC-DC converter controls the
output power or voltage using a constant frequency, pulse-wide modulation control
(PWM) scheme that varies the turn-on time (the duty ratio) of the transistor.

The generator systems shown in Figure 6.2 are further application of the generator
system with DC-DC buck converter in Figure 6.1(a). In Figure 6.2(a), the generator is
excited by feeding the control winding from a battery at first, then the generator generates
output voltage whose filtered rectified dc voltage feeds the impedance load and at the
same time activates the dc-dc buck converter. At last, the battery source is disconnected
when a steady-state operating condition is obtained.

The generator scheme for battery charging is shown in Figure 6.2(b) in which the
filtered dc voltage is directly connected to the battery. For this application, the battery,

which aso acts as the source to the DC-DC converter, excites the generator through the



control windings. When DC output voltage is sufficiently built up, the generator sends

charging current to the battery whose value is determined by the converter duty-ratio and

battery open circuit voltage.

The model equations of the generator schemes shown in Figures 6.1 and 6.2 are

presented in the following subsections.

Synchronous Reluctance Generator

If we use the complex-form equivalent circuit shown in Figure 5.2, which has the

shunt core-loss resistances R, and R.., the complex-form g-d equations of the generator

in the synchronous reference frame rotating with angular speed « («p is the angular

speed of the generated voltage) are given as

Voo Tp = ToTpl g + 10,4

qdp " p p'p qdp

Vs = FeTol g + PAges

s's' qds

A = Lolap * Lol
Ags = Lelggs + Lol g
where
Ry .. R

2
3N N
LmZE "y R"S:[I\ij R
N _ 2N
qus = N qus! qus §vadc

(6.1)
(6.2)
(6.3)

(6.4)



or the model equations of the generator can be described by the following equations if

we use the complex-form equivalent circuit shown in Figure 5.3, which has the series loss

resisters R and R ;.

qup = (rp + Rﬂp)l qdp + jwp/]qdp + p/]qdp (6'5)
Vqlds = (rs + Rrrs) I zlqu + pAlqu (66)
Ao = Lol oo + Ll o (6.7)
Ags = Lol ige * Lol o (6.8)
where
2 2
N . N
=] —>|r, L,=| =2 L
NS NS
- 3 Np - Np i
Lm_E SLml2! Rns_l\TS Rrrs
CN, L2
| qds N I qds? qus = . Vdc'
p s

In these equations, p=d/dt, Vg, and lqqp are the complex-form generator terminal voltage

produced by the power windings and current flowing through them, respectively, the

referred control winding complex-form current and flux linkage are I.and Ay,

respectively. The quantity Vs is the input voltage to the control winding while Np and Ns
are the effective per-phase, per pole turn numbers of the power and control windings,
respectively. A, is the complex g-d flux linkage for the power windings. The measured

self and magnetizing inductances of the windings and core-loss resistances of the

machine used for this work are shown in Figure 3.11 (series |oss resistors) or Figure 3.17



(shunt loss resistors). The relationship between these parameters and airgap flux linkage
magnitude are empirically determined in equation (3.86) (seriesloss resistors) or equation
(3.87) (shunt lossresistors).
Shunt Capacitor, Rectifier and Load

The complex-form g-d eguations of the shunt capacitors (C,) connected across the power windings
isgiven as

1
pqup = E (_l qdp qu | d) + pr qdp - (69)

(o]

Also, the equations describing the input-output voltages and currents of the rectifier, filter

elements and the load are defined as

V, =Real (V,,,S.s,) (6.10)
1
ply == (Vo ~Ve) (6.11)
v, :i(| -1,-1) (6.12)
p co Cd d [¢] c .
1
plo :fwco - Rolo) (613)

0

where
- i(o+6) - io
Sqdl - AI € ’ Sqdv - A\/e

ign(y/z)/(/,z/z) :icos(”)

Sov and S are, respectively, the complex-form g-d voltage and current switching
functions of the rectifier, 1is the commutation angle, Vyis the rectifier output voltage, 1o

is the load current with the filter inductor current and filter capacitor voltage represented



as g and Vq,, respectively. The quantity Cgyis the filter capacitor, Ly is the filter inductor
with the impedance load represented as R, and L.. The initial angle between the power
and control winding axes is g and the power factor angle of the generator at the power
winding terminalsis & The conjugate is presented by *.
DC-DC Buck Converter

The model of the DC-DC buck converter feeding aresistive load or battery shown
in Figure 6.1(a) and Figure 6.2 are derived in this subsection [81-82]. The output voltage
and power are controlled by varying the turn-on time of the transistor d;T that is
regulated by changing the magnitude of the reference voltage compared to a constant
frequency saw-tooth waveform. T is transistor’s switching period. Figure 6.3 (a) gives a
typical converter inductor current and converter switching functions corresponding to the
three converter operational modes given in Figures 6.3 (b-d). The switching functions of
transistor and diode are S, and S, respectively, which take values of unity when the
devices are turned on and zero when they are turned off. The switching function when the
transistor and diode are not conducting at the sametimeis Ss.

Mode |: Transistor ison: 0 #t #d, T

The voltage equations are given as

Lpl, =V, -V, (6.14)
C.pV,, =1, (6.15)
V,-RI _+RI, =0 (6.16)

where I is the inductor current, V, is the output filter capacitor voltage, the current

through the output capacitor is le and the load resistance is R,.



Mode Il: Diodeison: diT #t #(di+ d)T

The voltage equations from figure 6.3 (c) are expressed as

Lpl, =-V, (6.17)
C.pV,, =1, (6.18)
V,-RI -RI,=0. (6.19)

Mode I11: Transistor and diode are off: (d;+ dp) T#t #(di+ do+d3) T

The voltage equations from Figure 6.3(d) are given as

Ce pVCO = Ie (620)
V,-RI,=0. (6.21)
The equations of the three modes of operation are averaged using the switching functions

and are given as

LI (S§+S)=VeS ~Ve(S+S) (6.22)
C.PV,, =1, (6.23)
Voo “RIL(S+S)-RI.=0. (6.24)

Boost DC-DC Converter

The model of the DC-DC boost converter feeding aresistive load shown in Figure 6.1(b) is set forth in this subsection.
Figure 6.4(a) shows the inductor current of the boost DC-DC converter with the switching functions and the three modes of operation
of this converter are shown in Figure 6.4 (b-c). The voltage equations are derived below

Mode |: Transistor ison: 0 #t #d, T

The voltage equations from Figure 6.4(a) are

L,pl, =V, (6.25)
CE pVCO = IE (6'26)
-V, -RI,=0. (6.27)

Mode ll: Diodeison: diT #t #(di+ do)T



The voltage equations of this mode from Figure 6.4(c) are expressed as

Lpl, =V, -V, (6.28)
Ce pVCO = I e (629)
V,-RI +RI_=0. (6.30)
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Figure 6.3. Buck DC-DC converter. () Converter inductor current and switching
functions, (b) circuit when transistor is on, (c) circuit when the diode is on, (d) circuit
when both transistor and diode are off.
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Figure 6.4. Boost DC-DC converter. (a) Converter inductor current and switching

functions, (b) circuit when transistor is on, (b) circuit when diode is on, (c) circuit when

both diode and transistor are off.



Mode I11: Transistor and diode are off: (di+ dp) T#t #(di+ do+d3) T
The model equations from Figure 6.4(d) are expressed as

CePVeo =1

V,-RI =0.

Finally, the equations for three modes are combined and are given as

LopIL(S.L+SZ):_ ooSZ +Vcd(S.L+SZ)

CE pVCO = IE

Vo ~RI(S+S+S)-RI,S =0.

Lead-acid Battery
From [61] and Figure 6.5, the dynamic equations describing the |ead-acid battery are given as
V,
—1 __bp
Cb[ ppr =1 b 5
Ry
\%
— _ Vbl
Cbl pVbl - Ib Rb
1

Vc :pr +Vb1 + Ib(Ros + Rot) .

|
1l ™ & P
Cor
p

Co

Figure 6.5. Equivalent circuit representation of alead-acid battery

Appendix 6A contains the definitions of the different resistors and capacitors in Equations (6.18)-(6.19).

6.3 Steady-state Characteristics of the Generator Systems

(6.31)

(6.32)

(6.33)
(6.34)

(6.35)

(6.36)

(6.37)

(6.39)



During steady-state operation, the g-d state variables of the generator, shunt capacitor and rectifier equations are constant.
Also, the average inductor voltages and capacitor currentsin the rectifier output filter and the DC-DC converters are zero. Hence
averaging the converter equations (6.22)-(6.24) and (6.33)-(6.35) and setting the derivatives of the generator, rectifier variables and

shunt capacitors to zero, the models of the generator systems are obtained as following

The Model of the generator system with buck converter in Figure 6.1(a)

qupT =T Tp qdp ] qdp

2

3VdT p —rTquS

S
Sqdl Iy =

I qdp

V Real [\/qdp Sqdv] = Vcd

Vyyd, =V (d, +d,) =0
V,, =R (d, +d,)

The Model of the generator system with boost converter in Figure 6.1(b)

Vo Tp =TTl

p’ qdp Jw Aqdp

2
3

Sala=

=V T p—rTquS

qup
V, =Real[V,;,S,0,] = Vi
V. (d, +d,) -V, d, =0
V,-Ri,d,=0.

The Model of the generator system in Figure 6.2(a)

Voo Tp =ToTol g + 10, A0
%\LTSE— O
Sala = o

V, =Real[V,,,S,;,] =V,
ly=1,+ )

o [

VCO = RDIO

(6.40)

(6.41)

(6.42)



d1vc0 = Vs :
The Model of the generator system in Figure 6.2(b)

Vo Tp =TT,

qdp

S [/
~_ N .

%VSTS Nir’ = rsTsl qds

S

qdl I d | qdp

V, =Real[Vyy,Su] =V (6.43)

Voo :pr +Vb1 - Io(Ros + Rot)
V,

bp

R

dlvco = VS
where the average of the switching functions S, S, and S are dy, d,, and ds, respectively and are related by

d, +d, +d, =1. (6.44)

| L and | ¢ are, respectively, the averaged inductor current and input converter current. VS is the averaged converter output voltage

while VOo isthe capacitor voltage. When the DC-DC converters operate in the conti nuous-current conduction mode (CCM), ds is

equal to zero. Under steady-state operation, the state variables of the generator, rectifier, filter and the average of the states of the DC-
DC converter are constant and their time derivatives become zero. With these constraints enforced on Equations (6.40-6.43), it can be
easily derived that the effective resistance seen at the input of the loaded DC-DC buck converter and the phase resistance presented by
the load at the output of the machine terminals are respectively given as [62,63]

Buck DC-DC Converter

R, 77

Rn_EfE

(6.45)
Boost DC-DC Converter

N
R,=R(1-d,) o (6.46)

Hence,  When the converter operatesin (CCM) mode, Equations (6.40)-(6.44) can be numerically solved given the duty ratio d;
and load to determine the characteristics of the generator system.



However, when the operation is in the discontinuous condition mode (DCM), ds needs to be determined from Figure 6.3(b-
d) for the buck DC-DC converter. The average inductor current expressed in terms of the load, input and output voltages is given as
[64]

~ - (d, +d,)
- 1 2
I, =V, —V,)dT—"=. (6.47)
2L,
Using Equation 6.40 or 6.42, the equation below from which d; can be determined is obtained:
d2 +d,(d d? -2d 2L, |-
s +dy(d, —2) +| 1~ 1_21_.'_ =0 (6.48)
Similar analysis for the boost converter using Figures 6.4(b-d) and Equation 6.41 or 6.43, the equation for ds is given as
2L
d;=1-d, - 0 (6.49)
TRd,

Using the same method of deriving Equations (6.45) and (6.46), the output load resistances referred to the input of the DC-
DC converter using Equations (6.40-6.43) are given as

Buck DC-DC Converter

R(@A-dy)’

R, = i (6.50)
1
Boost DC-DC Converter
1-d, -d,)?
R, =RD((1_(lj % 2) _ (6.51)
3

These converter input resistances are further referred to the input side of the three-phase diode rectifier using equation (6.40)-(6.43)
and are expressed as

Buck DC-DC Converter

Ry(l_ds)z i

(6.52)
df 12

R =
Boost DC-DC Converter
2
_R(@-d,-d))* 7
2 .
a-d,)? 12
It is observed that the converter load appears as a duty-ratio dependent resistor. For a given load, converter switching
frequency and other converter parameters, it is determined whether the converter operatesin the CCM or DCM mode by using
Equation 6.48 or 6.49. Then with known d, d, and ds, the steady-state equations from any generator system model expressed by

Equations (6.45-6.46, 6.52-6.53), are numerically solved with the empirica equations of the generator parameters given the control
winding excitation voltage, rotor speed, and the load resistances of the DC-DC converter.

Ro

(6.53)

Figures 6.6 and 6.7 show both steady-state calculated and measured characteristics of the generator system withaDC-DC
buck converter while corresponding results are displayed in Figures 6.8 and 6.9 for the system with DC-DC boost converter. Two
control winding currents, 2A and 4A, are chosen in the experimental measurement and the calculation. The rotor speed is set at 1200
rev/min. These two converters operate in the continuous-conduction current mode of operation.

Figures 6.6(a) and 6.8(a8) show the curves of load voltage vs. duty ratio. Load voltages of both have maximum values when
the duty ratio is close to 0.5, and decrease when the duty ratio deviates that value. The load voltage of boost converter is much higher
than that of the buck converter.

Figures 6.6(b) and 6.8(b) show the curves of effective input resistance of converter vs. duty ratio. Their effective input
resistances are inverse-proportiona to the duty ratio, the higher the duty ratio, the lower the effective input resistances.



Figures 6.6(c) and 6.8(c) show the curves of load power vs. duty ratio. The load powers of both have the maximum vaues
when the duty ratio is close to 0.5, and then they decrease when the duty ratio leaves that value. They both have the same maximum
output powers.

Figures 6.6(d) and 6.8(d) show the curves of converter input voltage vs. duty ratio. The converter input voltages of both are
inverse-proportional to the duty-ratio. Boost converter input voltage is higher than one of buck input voltage.

The steady-state characteristics of the generator system with either DC-DC buck converter or DC-DC boost converter,
which are displayed in Figure 6.7 and Figure 6.9, are similar each other. The curves of generator output power vs. duty ratio are shown
in Figures 6.7(a) and 6.9(a)). Per-phase generator voltage vs. duty ratio are shown in Figure 6.7(b) and 6.9(b). Figures 6.7(c) and
6.9(c) show the curves of per-phase generator voltage vs. per-phase generator output power.

Thereis good agreement between measured and calculated steady-state performance curves. Since the rectifier output
voltage also depends on the load impedance that in turn is influenced by the duty-ratio and the generator load performance, we can see
the output voltage profiles of these two converters differ remarkable from those of the converters fed with a constant voltage source.
Figures 6.10 and 6.11, respectively, for the buck and boost converters give measured waveforms of the converters operating in the
continuous-current mode.

The steady-state performance of the generator system (shown in Figure 6.2(a)), that is special because of its excitation
depending on the generated output DC voltage from the power windings, is shown in Figure 6.12. Two rotor speeds, 900rev/min and
1350rev/min, are used in the experimental measurement and the ca culation.

Figure 6.12(a) and (b) show the curves of duty-ratio vs. generator per-phase terminal voltage or DC load voltage.
Changing the duty-ratio during the range from zero to near 0.2 can regulate these voltages. Figure 6.12(c) shows the curves of per-
phase terminal voltage vs. generator output power while the curves of duty-ratio vs. control winding DC current are shown in Figure
6.12(d). The higher the rotor speed, the higher the attainable maximum control winding DC currents and generator output powers.

It is observed from the Figure 6.12 that it is necessary to keep the duty ratio not less some values near 0.2 so that the
generator system (shown in Figure 6.2(a)) avoids the collgpse of the generator terminal voltage.

Overal, there are good agreements between measurement and calculation results. Thelittle differences must be due to the
presence of factors not accommodated in the derived models: significant harmonic componentsin the generator and input rectifier
currents in addition to the non-negligible over-lgp commutation of the rectifier diodes which can be seen in Figure 6.14.
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Figure 6.6. The steady-state characteristics of the generator system with DC-DC buck converter in the Figure 6.1(a). (Rotor speed =
1200 rpm). (a) Load voltage vs. duty retio, (b) effective input resistance of converter vs. duty ratio, (c) load power vs. duty ratio, (d)

converter input voltage vs. duty-ratio.
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Figure 6.7. The steady-state characteristics of the generator system with DC-DC buck converter in the Figure 6.1(a) (Rotor speed =

1200 rpm). (a) Generator output power vs. duty ratio, (b) per-phase generator voltage vs. duty ratio, (c) per-phase generator voltage vs.
generator output power.
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Figure 6.8. The steady-state characteristics of the generator system with DC-DC boost converter in the Figure 6.1(b) (Rotor speed =
1200 rpm). (a) Load voltage vs. duty ratio, (b) effective input resistance of converter vs. duty ratio, (c) load power vs. duty ratio, (d)
converter input voltage vs. duty-ratio.



)
[LH | | BBOAT | (b} s mOGET |

_"_.-'
P
W (W)

L e b . |

L] v A
O (duly rale) 0 [Suiy ralic)

(€]

L

joat - m s T ey~ M -
'

Ygam {¥)

Figure 6.9. The steady-state characteristics of the generator system with DC-DC boost converter in the Figure 6.1(b) (Rotor speed =
1200 rpm). (a) Generator output power vs. duty ratio, (b) per-phase generator voltage vs. duty ratio, (c) per-phase generator voltage vs.
generator output power.

Figure 6.10. Measured waveform of the generator with DC-DC buck converter in the Figure 6.1(a). (Rotor speed = 1200 rpm, duty-
raio = 0.6)

(@ Top: Generator phase current. Bottom: Generator line-line voltage.



(b)  Top: Input converter current. Bottom: Converter inductor current.

Figure6.11. Measured waveform of the generator with DC-DC boost converter in the Figure 6.1(a). (Rotor speed = 1200 rpm, duty-
raio = 0.6)

(@ Top: Generator phase current. Bottom: Generator line-line voltage.
(b) Top: Input converter current. Bottom: Converter inductor current.
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Figure 6.12. Measured and calculated steady-state characteristics of the doubly-fed
synchronous reluctance generator feeding an impedance load (RL=400Q).(Figure 6.2(a))
(a) Duty-ratio vs. generator per-phase terminal voltage

(b) Per-phasetermina voltage vs. generator output power

(c) Duty-ratio vs. dcload voltage

(d) Duty ratio vs. control winding dc current.

6.4 Simulation of Generator System

For a complete understanding of the generator system in Figure 6.2, the starting
transient of the generator system assuming that the root speed is constant is simulated and
shown in Figure 6. 13. Three starting stages are: (1) a battery is connected to the control
windings while the converter is turned off. (2) after 0.4 seconds, the converter is turned

on with the battery still connected for another 0.4 seconds and (3) finaly, the battery is



disconnected with only the converter supplying the excitation current to the control
windings. It is observed that the generator easily excites and the period taken to achieve
steady-state operating condition depends on the battery voltage and the converter duty
ratio. The simulated steady-state waveforms and corresponding experimental results are
now displayed in Figure 6.14. Figure 6.15 gives the simulation results of the generator
system when the converter duty ratio is reduced while operating at a stable steady-state
point. In view of the low excitation current, the generator voltage collapses indicating
that for a stable operation, a minimum converter duty ratio requirement for a given rotor
speed and load must be met to sustain the generator operation.

The electrical excitation process of the generator charging a lead-acid battery
shown in Figure 6.2(b) is simulated and the simulation results are shown in Figure 6.16.
With the generator shaft running at a constant speed and the converter turned on, the
generator excites, building up the generator DC output voltage. The battery initialy
provides an average current flowing into the converter and, after the generator voltage

has sufficiently risen, an effective current flows into the battery to chargeit. Figure
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Figure 6.13. Starting transient of the generator system shown in Figure 6.2(a). Rotor
speed = 1350 rpm, duty ratio = 0.6, load resistance = 400 ohms. (a) Control winding
current, (b) DC load voltage, (c) line-to-line generator voltage, (d) generator phase ‘&

current.
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Figure 6.14. Steady-state waveforms of the generator system feeding impedance load.
Rotor speed = 1350 rpm, load resistance = 400 ohms, duty ratio of converter = 0.6.
(a) Generator line-to-line voltage, 50V/div, (b) phase‘a generator current, 2A/div.
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Figure 6.15. Generator de-excitation due to reduced DC-DC converter duty ratio.
(a) DC load voltage, (b) control winding current, (c) generator loine-to-line voltage, (d) generator phase current.
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Figure 6.16. Electrica excitation transient for the doubly-fed synchronous reluctance

generator charging a lead-acid battery. (a) Current flowing into the battery, (b) generator

DC voltage, (c) phase ‘@ generator current, (d) control winding current.
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Figure 6.17. Measured steady-state waveforms of the generator charging a 24V battery.
Average charging current = 0.7A. (a) Battery current, (b) generator line-line voltage,
10V/div, (c) generator phasse current, 0.5A/div, (d) variation of charging curent with
converter duty ratio for 900 rpm and 1350 rpm.

6.17(a)-(c) display measured steady-state waveforms of the generator charging a 24V
battery when the rotor speed is 1350rpm and the duty ratio of the DC-DC converter is
0.25. The average charging battery current is fixed at 0.7A. Finaly, Figure 6.17(d) shows
the measured variation of the average charging current as a function of the duty ratio of
the converter for two rotor speeds. From this graph, it is concluded that there is a
maximum average charging current achievable below which there are two possible duty

ratios that result in the same average charging current.

6.5 Conclusion



The modeling and analysis of the doubly-fed synchronous reluctance generator
with a DC excitation , which can be an outside source or a self source from DC output of
power windings, are presented. The generator systems successfully use buck or boost
DC-DC converter connected to the power windings as the DC source regulators. The
generator system characteristics are predicted based on the proposed models and the
results of which compare favorably with measured results. The excitation process of the
generator systems feeding an impedance load or charging a battery are simulated and
discussed. The computer simulation results show that the excitation process is fast and
reliable. These generator systems have a potential for use in stand-alone applications and

in electric automotive applications.



CHAPTER 7
FIELD ORIENTATION CONTROL OF A DOUBLY-FED SYNCHRONOUS

RELUCTANCE MACHINE

7.1 Introduction

Doubly-fed reluctance machines having two stator windings (power and control
windings) have received renewed attention in the last few years in adjustable-speed
drives where efficiency optimization and energy conservation are desirable. In many low
performance drive applications, the three-phase power windings are connected to the
utility supply, while the rotor circuit is connected to either an inverter controlled ac or
converter controlled dc sources. With controlled ac source connected to the control
winding, the machine operates either in the synchronous, sub-synchronous or super-
synchronous modes permitting large speed operation range. The feasibility of the doubly-
fed reluctance machine with controlled ac power and control winding excitations for
accepted field orientation-type performance have been demonstrated [73,74].

This chapter proposes anovel high-performance control of the doubly-fed
synchronous reluctance in which the control winding is connected to a controlled current
DC source. The power windings are connected to a voltage source inverter (VSl), which
can be a current-controlled VSI or voltage-controlled VS, to regulate the axis currents,
voltages, and the frequency in the power windings. The drive system operates exactly
like a DC machine possessing the same ease control.  Two control schemes are
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investigated and the main focus are their operation characteristics in awide speed range
including the constant torque control below the base speed and constant output power
above the base speed with maximum output torque.

In section 7.2, the field-orientation principle isintroduced. It also gives the
steady-state operation characteristics of the systems below and above the base speed.
Two control schemes are described in section 7.3. Section 7.4 gives the design
procedures of integral plus proportiona (IP) controller, which presents mathematical
algorithms to obtain the parameters of the IP controller with non-overshoot performance.
The theoretical derivation isaso included in this section. A novel input-output
linearization technique and Butterworth method are set forth in Section 7.5, which is used
in the design of the control scheme I. Sections 7.6 and 7.7 give the detailed description of
both voltage-controlled and current-controlled VSI. In sections 7.8 and 7.9, the
dynamica simulation results of two control systems are given and discussed. Findly, we
draw conclusionsin Section 7.10.



7.2 Field Orientation Principle

In general, an ectric motor can be thought of as a controlled source of torque. Accurate control
of theinstantaneous torque produced by a motor is required in high-performance drive systems, e.g., those
used for position control. The torque developed in the motor is aresult of the interaction between current in
the armature winding and the magnetic field produced in the field system of the motor. The field should be
maintained at a certain optimal level, sufficiently high to yield a high torque per unit ampere, but not too
high to result in excessive saturation of the magnetic circuit of the motor. With fixed field, the torqueis
proportional to the armature current.

Independent control of the field and armature currents is feasible in separately-
excited dc motors where the current in the stator field winding determines the magnetic
field of the motor, while the current in the rotor armature winding can be used as a direct
means of torque control. The physical disposition of the brushes with respect to the stator
field ensures optimal conditions for torque production under all conditions.

The Field Orientation Principle (FOP) defines conditions for decoupling the
magnetic field control from the torque control. A field—oriented doubly-fed synchronous
reluctance motor should emulate a separately-excited DC motor in two aspects:

(1) Both the magnetic field and the torque developed in the motor can be controlled
independently.

(2) Optimal conditions for torque production, resulting in the maximum torque per unit
ampere, occur in the motor both in the steady-state and in transient conditions of
operation.

The power winding and control winding g-d equations of the doubly-fed synchronous

reluctance machinein the rotor reference frame are



Vp =Ryl + PA, + WA (7.2)

Vg =Rl + PAg, — @Ay, (7.2)

VO;S =RI ;15 + p/TUIS (7.3)

Vie = Rlge + PAgg (7.4)
where

qu =Ll + LmI('qs (7.5)

Ap = Lol + Lol (7.6)

A = Ll + Ll g (7.7)

Ag=Ll +L,| i - (7.8)
Torque equation is expressed as

T, :Gj(pﬁq)l_m(ldplgqs—|qp|;js). (7.9

The relationship of the rotor speed w, load torque T, and electrical torque Teis

% pw =T, -T, . (7.10)

r

Jistherotor inertia, and P; is equivaent pole numbers of the rotor and equal to py+q.
If the control winding is connected as shown in Figure 7.1, the control winding currents

lass lbs, les, @nd current source |s have the relationships given in Equation (7.11)



Control Windings

Current
source

Figure 7.1. Control winding connection.

while the relationships among control winding voltages Vas, Vis, Ves, and Vg are given in

Equation (7.12):
1
(7.12)

Vbs :Vcs’ Vdc :Vas _Vbs :Vas _Vcs
(7.12)

V +V, +V,_ =0,

After performing abc-qd transformation as well as considering the turns-ratio, control

winding g-d axis voltages and currents become

Vq's = Evdc
3 (7.13)
V=0
and
l,=0
(7.14)

Hence, the torque depends on the control winding g-axis current I"qs and the power

winding d-axis current lgp. It is



Tesz Iyl (7.15)

2 midp’gs*
In field orientation control, I is used to control magnet flux similar to Lugl , while lg

is used to control the torque.

We drive the motor in a wide speed range. From zero speed up to its base speed,
the power winding voltage rises up to its maximum value at base speed and then limits to
that value at higher speed. This speed range is called constant torque region. Maximum

constant torque is achieved when the control winding dc current I is set at the rated

value, with the d-axis power winding current I, set to the rated power winding current.
At the same time the g-axis power winding current is set equal to zero. Above base speed,
the power winding voltage is kept at rated value while airgap flux linkage need to be
decreased to realize the constant power output. This goal is realized by regulating the

power winding g-axis current lq, and d-axis currents |4, with the control winding current

I;ls set at the rated value. The output-power is constant above base speed, hence it is

called constant-power or field-weakening region. To obtain maximum torque (and hence
power) at any speed above base speed within the voltage and current rating, maximum
torque field-weakening control strategy is used.

There are two operating modes above the base speed. The operating conditions
for two modes are listed as follows [ 79-80]:

Mode I: current and voltage limited region:

Vi =Vg +Ve (7.16)

e e (7.17)



where Vym and | pm are the voltage and current rated peak values, respectively. Vg, and Vo
are the g-d components of power winding voltage; |4, and g, are the g-d components of
power winding currents.
Mode Il: Voltage-limited region:
Vi =Vg +Ve (7.18)
ol +1d (7.19)
Maximize T.at each value of speed.
where Teis electrical torque. Vpm and Iy are the voltage and current rated peak values,
respectively. Vg, and Vg, are the g-d components of power winding voltage; lqp and lgp
are the g-d components of power winding currents.
Under the steady-state, the power winding g-d voltage equations are

V. =RI_+wlL.| (7.20)

ap p’ap p=p’dp

V,, = Rolg —@yLyl — Lyl

p P pplop  “migs - (7.21)
The peak value of power winding voltage Vpm is constant. It can be obtained from
Equations (7.20) - (7.21) and expressed as
V2 =V2 +V2
p ap dp (7.22)

=Rl +@,Lylf+(Rlg — Ll — Lol f
when the machine is running below the base speed, power winding g-axis current I, = 0
while the d-axis Iqp is set to be equal to the power winding pesk rate current lpm. At the
same time, control winding current I’ 4 is equal to the rated dc current I’ (considering

turns ratio). Hence, the base speed aas Can be caculated using Equation (7.23), which

is obtained from Equation (7.22):



Wy =~ 4 V2 (7.23)

where

S, =212, +L217

P pm

S =-2L, Rl
_p2 2 2
S =R Vo

A simplified equation of thas iS Obtained by ignoring resistance R, (Ry,=0):

\Y

pm

Woase = 2,2 212
1lelpm+Lm|S

Mode | operation

By extending Equation (7.22) and using the current constraint condition (Equation

(7.17)) in mode |, we can obtain

lp — i e (7.24)
where
T =V~ (R4 I~ L7

T, =20 L RI.

p—m'p's
T, = 2a2L,L,1..

Substituting Equation (7.24) into Equation (7.17), the following equation is obtained:

(T2+T2) [qup - 2T, 1. U, +(T2-T212)=0.

bb" pm

Its solutionis



ﬂ (7.25)
o :

a

| :—L.}
2Ta

qap

where

Ta = Tctz: + bea

Tb = _ZTaaToc
T, =T2-Tal 2.

Equations (7.24) and (7.25) are used to obtain the power winding g-axis and d-
axis current 1, and 14, when the machine is operated in the Mode | region. The simplified
equations of Equations (7.24) and (7.25) are obtained by ignoring the resistance R,
(Rp=0):

| Ve @5 1)
@ 20%L L I

p~m=p-"s

p—m=p's ' pm m

202L, L.

p—m™=p"s

| A2 LI —VE -2 (12 +1 )
dp '

Torque is obtained by substituting the expression of |4, into torque Equation (7.15).

Mode |l operation

Substituting Equations (7.20-7.21) into the voltage constraint condition (Equation
(7.18)) to yield
aallj +bb0O, +cc=0
where

_ p2 2
aa_Rp-"win



bb = -207L, R |

m” p Qs

oc = Pl 12 + (RE+aPL2)I2 + 262, L1l = V2,

m=p s’ qp
Its solutionis

_ —bb ++/bb”* - 4aalec

2aa

4o
where |y, is dependent on variable I . Igp can be expressed as a function of variable g, :
g = F(lg)

Hence, from Equation (7-15), the torque equation can be expressed as

3P,

T, = 2r Lol f(lg) -

To obtain the conditions of achieving maximum output torque, the torque equation is

differentiated with respect to |4, and then forced to zero, that is

dT, d
e =——(f(l =0.
a, OIqu( (Ip))
The solution of thisequation is
WL LI,
=-_FTrs (7.26)

| _rr 7>
ap 2 2
R+ L,

Using equation (7.26) to replace variable |4, in cc, |4, is obtained and expressed as

_ LRI+ ] + R

7.2
dp er’ + C()i sz ( 7)

Hence, in mode |1, if I4, and I, are selected using Equations (7.26) and (7.27), not
only the maximum torque is achieved, but aso the voltage constraint condition is
satisfied. The simplified equations of Equations (7.26) and (7.27) are obtained by

ignoring the resistance R, (R,=0)



a)P LP
By substituting the expression of |4, into Equation (7.15), the torque is given as

3P I-ml szm

eT o w,L,

Boundary speed w,

At boundary speed point . between Mode | and Mode |1, the power winding g-axis
and d-axis current lqp and lgp , calculated from Equations (7.26) and (7.27), also satisfy
the current constraint condition in Mode |. By substituting Equations (7.26) and (7.27)
into the current constraint Equation (7.17), the expression of the boundary speed point is

obtained from
Ciaf, + 2C.Cya, +(C - CF +2C.Co)a, +(2C,C. - Caf, +C2 =0 (7.29)
where

C,=12L-L%%12% C,=2RL%I2 -L2R2IZ—-L2V2;

pm™—p p s’ PPPm m-p°s p~pm’

C.=12R:-RV2: C,=2/, L RIL; C =2V L R’

pm*"p p~ pm? pm=m® *p s=p’ pmmps
The simplified equation is obtained by ignoring the resistance R, (Ry=0):

\Y

pm

Wy, = .
212
I-ml s )

(L2

p Pm
The performance curves for wide speed range (below the base speed and above
the base speed including Mode | and Mode Il), shown in Figure (7.2), are computed using

Equations (7.23) through (7.28). Three different control-winding currents are used to



obtain these curves. Unit speed is equal to 377 rad/s. It is observed from Figure 7.2 (b)
and 7.2(c) that Mode | region with constant rated current and constant rated voltage is
narrow, however it increases when the current winding current increases, and so do the
maximum speeds for this mode.

We can also see from other figures that, below the base speed, the d-axis power
winding current is set to the constant rated values and the g-axis power winding current is

equal to zero. Total power winding current and torque are held constant, but power
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Figure 7.2. Performance curves for extended speed range, maximum output torque
operation. (a) Torque, (b) power winding phase voltage, (c) power winding current, (d)
output power, (€) power winding g and d axis currents, (f) power factor.
winding voltage and output power increase with increasing vaue of rotor speed. The

larger are the control winding currents, the larger the output torque; Above base speed,
the d-axis power winding current lq, decreases almost linearly with speed for a range,
after which it tends to a constant value as the speed increases. The torque decreases
amost linearly with speed, giving an amost constant output power characteristic. Figure
7.2(e) shows that there is aredistribution of the power winding axes currents with the

winding current | set at its rated value above the base speed. The controllers need

accurately reflect this redistributing characteristic in the command axis current values. In
Figure 7.2(f), we can see that increasing rotor speed or control winding currents will

increase the power factor of the motor control system.

7.3 Description of Two Control Schemes

Two control schemes, with current-controlled or voltage-controlled voltage source inverter, are
investigated. Figure 7.3 gives the schematic diagram of the field-orientation control schemel. The two

inputs are the reference rotor speed and the power winding g-axis current, which is set to zero for constant



torque operation and non-zero values for constant power operation. The three-phase power winding
currents, measured and transformed to the rotor reference frame using the rotor angle measured with an
encoder, arefed to anon-linear controller. The nonlinear controller generates reference g-d voltage

components that are transformed into three-phase voltage reference for the VSI.

Il 1y, @
@ o lopr M - ——
linearization Power Control
] = Windings Windings
" V Ia
W Ky Vo, ] : Is

Igp

TR o

('ol'
+ + Vo, PWM g,
T Jmu%

I

Figure 7.3. Control Scheme |: Field-orientation control of doubly fed synchronous
rel uctance machine with voltage-controlled voltage source inverter (VSl).
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Figure 7.4. Control Scheme Il: Field-orientation control of doubly-fed synchronous

reluctance machine with current-controlled voltage source inverter (VS!).

The output of the VS| are used to drive the doubly-fed synchronous reluctance motor that has

control winding connection shown in Figure 7.1.

Figure 7.4 gives the schematic diagram of the field-orientation control of doubly fed synchronous
reluctance machine with current-controlled voltage source inverter. The three-phase power winding current
are measured and used as a feedback signals for the current control of the VSI. Therotor angleis measured
using an encoder and rotor speed is calculated using the integer. Below the base speed, fiel d-weakening
controller is switched off, and the reference g-axis current is set to zero. However, the reference g-axis
current is non-zero val ues above the base speed. The field-weakening controller is switched on at thistime.
The speed error inputs to the I P controller that generates the reference d-axis current, its values limited in
some range set by the saturation controller. The reference g-d currents are transformed to the reference

three-phase power winding
currents that compare with the three-phase feedback currents to obtain switching-time of
the VSI's transistors. The output voltage of the VSI drives the doubly fed synchronous

reluctance motor its control winding fed by a current source.

7.4 Design of the | P Controller

The Integral plus proportional (IP) controller is applied here because of its novel features[65]:

(1) IP controller can eiminates the current overshoot problem and has zero steady-state error. Thisis very

useful for the protection of the electrical devices needing frequent stopping and starting.



(2) IPcontroller can aso eliminate the speed and position overshoots for step changes without sacrificing
the load torque response due to aload torque change.

The literature [66,67] presented a design procedure of |P controller that can be used for athree-order
induction motor servo drive system. By using this design procedure, the parameters of the | P controller can
be quantitatively decided and the control system can obtain no overshoot position response. We use the
similar theoretical method to derive the design procedure for a second-order speed control system with non-

overshoot speed response.

For a stable single-input single-output (SISO) nth order system expressed by

H(s)

2 n-1 n
_b,tbS+bS +2...+bn_ls =3 h . 7.29)
a,+aS+aS* +..+S" = S+ U

For awhite noise input with variance UXZ , the variance E, of the impulse response, or what is called the

impulse energy of the output, can be determined to be [68 ]

Eozii hh, Dzn: h (7.30)

J'=1i=1iui+,uj i=1 S+,Ui ’

in which the impulse energy contribution corresponding to the eigenvalue 44 is defined as [68]

n h.
e DZ% (7.31)
i1 M .uj

For astable linear system described by Equation (7.29), the variance Eo must be finite and

positive, i.e., from Equation (7.30),

O<(g+e+..+te) <o . (7.32)
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Figure 7.5. Block diagram of IP speed control system.

The speed control loop of the control scheme Il is described by the block diagram Figure 7.5,
where K; istorque coefficient, and aand b can be expressed by the system viscous damping coefficient B

and the inertia constant J. they are expressed as

3
K, = 5( P+ ALl (7.33)
a= E (7.34)
J
1
b==. 7.35
3 (7.35)

The transfer function speed control loop can be found from Figure 7.5 as

i (s) K,Kb
¢ = : (7.36)
W (S), , S +(B+KK,)bE+KKb
Second-order system in Figure 7.5 can also be expressed as
0O _h o, h o3
wl’ (S) T, (5)=0 S+ /'Il S+ /'12



The relationship of coefficients between Equations (7.36) and (7.37) can be found as following:

h+h,=0 (7.38)
Mty = bty + oy = K KB (7.39)
W+, =(B+KK)b. (7.40)

The unit-step response of transfer function is

y(t) = 211(1— et ) + 222(1— e"’?‘) ) (7.42)

For observing the overshoot, let d(y(t))/dt = 0 and 0<z4< /s, then

d)(/jit) = he "t +het =0 (7.42)

It is obvious that the overshoot of its step response will not occur if one of the following casesis satisfied:
®h >0h,>0;

@h <0,h, <0;

@h >0h, <0,k >-h;

@h <0,h,>0,-h >h,.

When any one of these conditions are satisfied, Equation (7.42) is equal to zero only at t = o, hence

overshoot will not occur.

For a second-order system, the expressions of 14 and (4, are obtained from Equation (7.31) as

follows

_W _ hh

el —_
20yt

(7.43)



_ R hh,

SN (7.4)
20,

&

By using the non-overshoot conditionsin Equations (7.43) and (7.44), the conditions (1-4) are

transferred into corresponding conditions listed as follows

(@ If h,>0andh, >0,0r h, <0,h, <0,then g >0ande, >0;
(0 1fh>0h,<0and h >-h,,or h <0,h,>0and —h >h,, thene;>0, e,<0and e;+e,>0.

To match the general requirements for the speed drive, the following specifications are prescribed:

0] The tracking steady-state error of speed is zero.

(i) To avoid any overshoot in the command tracking response, the energy contributions of e; and e,
corresponding to z4 and 14 are set according to the condition (a) and (b). For convenience of
formulation, condition (b) is chosen. Accordingly, the relationships of e; and e, are set to e; = Ki&,
and K;<-1.

(iii) The response time t, is defined as the time for the unit-step response to increase from 0 to 90% of
itsfinal value.

Based on these prescribed specifications, and using the related equations, the following nonlinear equations

are constructed:
£t 5, 10) :ﬁ_i_lzo (7.45)
M
) = K = i - AT K (746)
s Tou mtu, 24
(L . hy) = 0.9 {hl a-e*y - e‘“z‘p)} =0. 7.47)
H H

To satisfy the condition of 0< t4< 15, let 1, = 14+ ¢? and modified above nonlinear equations, we

can obtain



fl(ul,c,hl)=ﬂ— L ;—1=0 (7.48)
Mo fhtce

2 ’(1- K K.h?
o) =t -RE=K)_Kh g (749
21 ptc 2 +2c

fs(ul,c.n):0.9{“(1—6’%)— L 2(1-8_“‘1”2)‘“)}0 (7.50)
Hy H+c

where c isafinite positive constant. The unknown parameter hy, £4, and ¢ in Equations (7.48) through
(7.50) can be solved using the Matlab program. Then the parameters of the controller K, K, can be found

from following Equations (7.51) through (7.53):

My = fhy +C? (7.51)
K, = Fate (7.52)
Kb
{(/J1 ;uz) _ B)}
Kp = —K . (7.53)

The Matlab program using to obtain these parameters for non-overshoot performance is

listed at Appendix 7C.

7.5 Nonlinear Controller Design

Inthelast few years, nonlinear control theory has been used in some electrical machine control
systems [75-78]. The main reason of using nonlinear control techniques isto improve the existing control
system and achieve high performance. Linear control methods rely on the key assumption of small range
operation for the linear model to be valid. When the required operation range is larger, alinear controller is

likely to perform very poorly or to be unstable, because the nonlinearities in the system cannot be properly



compensated for. However, nonlinear controller may handle the nonlinearities in large range operation
directly. Thetechnological breakthroughsin digital signal processor (DSP) have made it possible to

implement complex nonlinear control algorithmsin the application of the electrical machine control.

In control scheme |, nonlinear controller isused to generate
referencesignals Vg, and Vg, for the voltage sour ceinverter with space
vector pulse width modulation technique. The principles of nonlinear
control input-output linearization with decoupling are used to design
the controllers[71,72,73]. Theliterature[73] has successfully used this

control techniqueto control a doubly-fed reluctance machine with
axially laminated anisotropic rotor and single-phase control windings

fed by a dc source. The same control techniqueisused in control scheme

Finding a direct and simple relation between the system output and the control input constitutes
the intuitive basis for the so-called input-output linearlization approach to nonlinear control design. Let us

use an exampl e to demonstrate this approach [72].

Consider athird-order system
X, =SinX, + (X, +1)X,
X, = X15 + X
%3 =X +U

Yy=X .



To generate a direct relationship between the output y and the input u, let us
differentiate the output y
y=% =sinx, +(x, +1)x; .
Since yis still not directly related to the input u, let us differentiate again. We now obtain
=0 +Du+ f,(X, Xy, %)
where
FL06, %50 %) = (4 + X5 )(X; +€08X, ) + (X, +1)X; .
Now an explicit relationship between y and u has been found. If we choose the control
input to be in the form

1
X, +1

u=

(V_ fl)

where vis anew input to be determined, the nonlinearity above equation is canceled, and
we obtain a simple linear doubly-integrator relationship between the output and the new
input v,
y=v

The design of a controller for this doubly-integrator relation is simple, because of

the availability of linear control techniques. For instance, let us define the error as
e=y(t) -y, (t)
where yq(t) is desired output. Choosing the new input v as
v=y, —ke-k,é

with k; and k; being positive constants, the error of the closed loop system is given by

é+k,e+ke=0



which represents an exponentially stable error dynamics. If initialy e(0) = ¢&(0) =0, then

e(t) =0, perfect control is achieved;otherwise, e(t) convergesto zero exponentialy.

Therefore, the basic approach to design an input-output linearilized controller includes three steps:
(d) Repeatedly differentiate an output function until it is explicitly related to the input.

(b) Choose the input to cancel the nonlinearities and guarantee tracking convergence.

(c) Study the stability of the internal dynamics.

The input-output linearization and decoupling process ensures linear relationship between
input and output variables with output-input pairs decoupled each other. The total number
of differentiation for all the outputs is called the relative order, while the internal
dynamics are comprised of n-r states (n istotal number of the system dynamic states).

In the dynamic system described by Equations (7.1) through (7.10), the input
variables are Vg, and Vg, are chosen as the input variables while « and I, are chosen as
output variables. From Equations (7.1) and (7.10), and using the condition l4 = 0 because
of the control windings connected with a DC current source, the following differentia

eguations are obtained

I, = L RpI w | (7.54)
=7 VYoo [ ‘o %lw :
L L,
ZR Zwl |
17 :Zvdp+(—"Jldp+2a),lqp+”“qs (7.55)
L, L, L,

2
where Z = 3R llm -
2J

Equations (7.54) and (7.55) are combined as a matrix equation (7.56):



ZR
.. — 0 -—LPl, tZw )t ——F
@ |_|L, Vip L L
= + p p . (7.56)
I 1]v R
ap 0o — ap ——P] -w Id
qap r-ap
L, L,

This equation is linearized and decoupled and made to take the form of Equation (7.57)

where Yqp and Yy, are new input variables.

1) K, 0]Y, F(t 0
e L
IQP 0 Ka qul 0 Fz(t)
Equating Equations (7.57) and (7.56), input variables Vg, and Vg, are determined and
given as

Vo] _| K.Yy + 2 (RO -BO)
{Vp} =| 7z adk V1 . (7.58)
LKy + Ly (R0 - B,(0)

qap

If Equation (7.58) are equated to the power winding g-d voltage Equations (7.1) and

(7.2), Equations (7.59) and (7.60) are yielded

Ly Ly
Vi = Lplg = 7 KoY * 7 F(t) (7.59)
Vi = Loplg = L K.Y, + LR() (7.60)

Hence, Equation (7.58) issmplified as
V, V, -—Blt
vl e
The quantities Vg and Vyq are selected to be dependent on controlled and state variables
to ensure that Equations (7.59) and (7.60) are linear and decoupled from each other.
Cascaded IP (integral-proportional) controller structure is adopted and shown in

Figure 7.6. With expressions for Vgg and Vgq from Figure 7.6 and substituting Equation



(7.10) into Equations (7.59-7.60), the following transfer functions are obtained (with the
disturbance load torque ignored):

I K

. (7.62)
2

lg  LS*+KSS+K,

Lo = KaKoZ (7.63)

W LS +KS+ZK K S+ZKK, '

The reference speed and reference g-axis power winding currents are «’ and Iqu,

respectively. The parameters transfer functions Kq, Kq and Ka-Kj, are chosen to optimize
the closed-loop eigenvalue locations using the Butterworth polynomial [71]. The

Butterworth method locates the eigenvalues uniformly in the left-haft S-plane on acircle
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Figure 7.6. Integra proportinal linear and decouping controller structure. (8) Q-axis

power winding current loop; (b) rotor speed loop.



of radius wy,, with its center at the origin. The Butterworth polynomials for a transfer
function with a second-order denominator is given as
S?++/2Sw, +a? =0 (7.64)
comparing Equations (7.60) and (7.58), we have
K, = Ll K, =v2aL, . (7.65)
For atransfer function with athird-order denominator, the Butterworth polynomidl is
S*+2w,S* +2aS+w’ =0. (7.66)

From Equations (7.66) and (7.63), the parameters of the speed control loop are given as

c 0-p

Kb:%,K =20, K, =%, (7.67)

To realize non-overshoot current response, the parameters of second-order current
control loop described by Equation (7.62) can be computed using the same procedure
described in section 7.3. However, we need to use the design procedure described in the
references [66,67] to obtain the parameters of a third-order speed control loop with non-
overshoot speed response.

The third-order speed control loop transfer function expressed in Equation (7.63),

also can be transferred as

KoK.Z - h o, o h
LS +K S +ZK K S+ZK K, s+u, s+p, s+i,

where
h+h+h =0

h (4, + )+ (py + ) + (g + 14,) =0
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K,K.Z

LP

Mooy =

To obtain py, Y2 and Pz so that we can compute the parameters of non-overshoot speed response for this

third-order speed control loop, the following nonlinear equations can be constructed:

fl(ﬂlv//z’//s'hz'hs) = _(hz + |’13)(/12 +/13) + hz(/’ll +/13) + h3(/11 +/12) =0

(ot ptohoh)y =~ ) R By g
H H, M

(ot ooy = 09—~y - gy Popy oy Py iy = 0
H H, Hs

]
fo (ks s s, 1 0) = €, — Ky =0

ot b, T, 1) = & — K, (€, +€) =0
e =Ke K >0

g =Ky(ete) K,<-1

Mo = 1+ C

M= i+ G+

where Cg and C32 arefinite positive constants. The detailed derivation and its physical meaning for this

nonlinear equation system are described in the reference [66,67].



After solving this nonlinear equation system, the parameters of the controllers can be computed

using the expressions as follows:
Ko = Lo(uh + phy + i)

K = (Eabty + fobls + pufls)
b
Z(/’ll + /'12 + /’13)

- Ml .
Z(/’ll + /'12 + #3)

d

A Matlab program used to obtain these parametersislisted at Appendix 7D.
7.6 Voltage Source SPWM-Inverter

A voltage source inverter using space-vector pulse-wide modulation technique
[47][69][70] is applied for the control scheme Il. The performance of this inverter is

simulated using Matlab/Simulink.
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Figure 7.7. Circuit diagram of athree-phase VSI.



A diagram of the power circuit of the inverter is shown in Figure 7.7. The circuit
has a bridge topology with three branches (phases), each consisting of two power
switches and two freewheeling diodes. The inverter is supplied from an uncontrolled,
diode-based rectifier, via a DC link that contains as LC filter in the inverted I
configuration. In the circuit, the power switches in a given branch must never both be in
the ON-state, since this would constitute a short circuit. On the other hand, if both the
switches are in the OFF-state, then the potential of the corresponding output terminal is
unknown to the control system of the inverter. Since only two combinations of states of
the switches in each branch are allowed, a switching logic variable can be assigned to
each phase of the inverter. In effect, only eight logic states are permitted for the whole

power circuit. Defining the switching variables as

S = 0 if AisOFF and A isON
1if AisON and A isOFF

g, -0 if BisOFF and B isON
1if BisON and B' isOFF

S, = 0 if CisOFF and C isON
1if CisON and C isOFF

the instantaneous values of the line-to-line output voltages of the inverter are given by

Vab =Vdc(3 - Sz) (7-68)
Vie =V (S, = Sy) (7.69)
Vo =V (S - S) (7.69)

where Vdc isthe DC supply voltage of the inverter.



In balanced three-phase systems, the line-to-neutral voltages can be calculated

from the line-to-line voltages as

V, =50 V) (7.7)
v, = %(\/bc ~Va) (7.72)
Vc = %(Vca _Vbc) (773)

hence, after substituting Equation (7.68-7.70) in Equation (7.71-7.73), the line-to-neutral

voltages of the inverter are given by

V, =25 -5, -S) .74
Y, =5(25,-5,-5) (7.75)
V=225, -5-S,). (7.7

By performing abc-qd transformation for Equation (7.74-7.75), we can obtain

V3

Vo V(838 5 8) + (L V)(S, - 8). .77

The output voltages can be represented as space vectors in the stator reference frame.
Each vector corresponding to a given state of the inverter are listed in Table 7.1. The
space vector diagram of line-to-neutral voltages of the VSI are shown in Figure 7.4. The

relationship between the space vector and three phase voltages are expressed as

V =V, (t) +alV, (t) + a® [V, (t) (7.78)



2

where a=e 2. Va(t), Vi(t), and V(t) are three phase output voltage:

V, (t) =V, cos(at + @) = \%[e"“‘““’) +e @] (7.79)
. 2 . N Zr
Vy(0) =V, con(e + 9= 20y = S e g Ty (7.80)

) 2 ; 2
O I (G )
+

V() =V, cos(ax+<o+%”> :V—Zm[e 1. @8y

gisinitia phase angle of the three phase voltages and V, is the peak phase voltage. The
magnitude of output voltage is adjustable if the modulation index M, 0#M 4, is used and
Vmisreplaced by MV, . Substituting Equations (7.79) through (7.81) into (7.78), we can

obtain

Table7.1. Inverter statesand Spave Vector

S1,92,S3 i v
0,0,0 0 J, =0
0,01 1 -
Vl = _V;C - ]\/ngdc
0,140 2 _
Vl = _Vdc + jﬁvdc
2
0,11 3 J, =V,
1,0,0 4 J, =V,
1,01 5 _
V5 = Vdc - jﬁvdc
2 2
1,10 6 _
VG = Vdc + jﬁvdc
2 2
1,11 7 v =0




Y :gMVmej",a —at+@. (7.82)

When a changes from 0 to 277 V rotates one circle in Figure 7.8 and three phase output

voltages finish one period. In Figure 7.8, we can see the non-zero base vectors divide the

cycle into six, 60° —wide sectors. The desired voltage vector, V", located in a given
sector, can be synthesized as alinear combination of the two adjacent base vectors, V; and

V; , which are framing the sector, and either one of the two zero vectors, i.e..

V= Lvi + Evj + va . (7.83)

TS TS TS
T1, T2, and T, are, respectively, the working time of state V; , V;, and V,. V; is either V,, or
V7. Tsisthe switching interval of the power switching components. Assuming that space

vector V* locates in the sector as shown Figure 7.8, we can obtain the following equation

Vy/ VAV, =0

Nl
N

e

T, Ty

(b)

Figure 7.8. Schematic of the space vector PWM. (@) lllustration of the space vector
PWM strategy, (b) pulse patterns of symmetrical three-phase modulation.



by substituting Vi = V4, V; = Vg, and V,=V7, whose values are looked up in Table 7.1,

into Equation (7.83):

V3
2

1
VSV T oT)+ (VT O

This equation is equivalent to Equation (7.82), which can be extended as follows:

NE
2

v

MV, cosa + (f MV, sina) .

Hence, by equating their rea parts and imagnary parts, we can construct the equation

system as follows:

J3 1

TM —cosa =T, +=T,
2 2

B, 3

TM—sing =—T,.
2 2

T1and T, can be easily obtained by solving this equation system and are expressed as
T, =TMsin(60° - a)
T,=TMsina.

When V* locates in any sector, the general expression to calculate the state working time
T,, T2 and Toare given as Equation (7.84):

T,=TM sin(60° -a’)

T,=TMsina (7.84)

T,=T,-T,-T,.
If 0sa<60°,a =a;

If 60°<a<360°,0 =a-NBO°,N=0,1,..6



\/a/m .

dc

whereV, is peak phase voltage and modulation index is expressed as M =

If the over-modulation mode (T, + T, > Ts) occurs, the time duration should be

scaled as Equations (7.85) and (7.86) to generate the best approximate of the desired

voltage vector.
. T
T =T,0——, (7.85)
T +T,
. T
T,=T,3——, (7.86)
T +T,
T. =0. (7.87)

The symmetrical pulse patterns of zero-vector for one sampling period areillustrated in Figure

7.4(a). The state sequence corresponding to each sector islisted in Table 7.2.

Table 7.2. State Sequence of Each Sector

State sector State Sequence
L. |4-6-7|7-6-4]
Il. |6-2-00-2-6|
[l [2-3-7[7-3-2]
V. 3-1-0|0-1-3]
V. [1-5-7[7-5-1]
VI. 5-4-0|0-4-5|




Thetimeintervals Ty, T,, and T, are used to calculate the reference output voltages V.,V and V. of the

VSl

In Sector |:
T:Lvdc :VaDhTs’ T2Vdc :VbETs'

T, T,

Va% = ?lvdc; VbE = .ITZVdc; ch = _(Va?) +Vb§)'
In Sector I1:

V=DV Vo = Ve Vi = (V).
In Sector I11:

Tlvdc =V DT TZVdc = VCETS

bc's?

Vie = %Vdc; V= %Vdc; Vi = ~(Voe +Vaa)-

ca
S S

In Sector |V:

T:LVdc = _VaETs' T2Vdc = _VDT

bc's®

ca

Vi =V V=g V=0 )

S S

In Sector V:

T:Lvdc = VCET s; TZVdc = VaETs

V,, = %Vdc; V= %Vdc; Voe = (Vo +Vio)-

S S



In Sector VI:
T:Lvdc = _VbETs; T2Vdc = _VCET s”

Vie = _%Vdc; Va = _%Vdc; Vi = ~(Vie +Vaa)-

ca
S S

V.,V and V] areline-to-line voltages and phase voltages V.V, and V,” are given as

VD — a?) _ch
@ 3
0 _\y0
Vo Voe =Va (7.88)
3
Ve ch _VbE
Cc 3 *

In Figure 7.3, the control signals Vg, and Vy, are used to computed the modulation M and initial

phase angle @, then the interval times T, and T, are obtained from Equation (7.84). Finally, Equation (7.88)
are used to compute output phase voltages VaD,VbD, and VcIj of the VSI. Figure 7.9 shows the simulation
waveforms of power winding phase voltage and current whose frequency is equal to 60Hz with 5KHz

switching frequency.
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Figure 7.9. Simulation of the voltage-controlled PWM-V SI. () Power winding voltage waveform, (b)
power winding current waveform.

7.7 Current Control in Voltage Source Inverters

A block diagram of a current-controlled VSl that is used in control scheme 1 isshownin Figure

7.10. The output currents, lo,, |y, and |, of the inverter are sensed and compared with the reference current
signals, | aD, IbD, and ICD. Current error signals, Al,, Aly, and Al,, are then applied to the hysteretic current
controllers, which generate switching signals for the inverter switches.

Theinput-output characteristic of the phase-A hysteretic current controller is shown in Figure
7.10. The width of the hysteretic loop, denoted by h, represents the tol erance bandwidth for the controlled
current. If the current error, 41, is greater than h/2, i.e., current |, is unacceptably lower than the reference
current, | aD , the corresponding line-to-neutral voltage, V,, must beincreased. This voltage is most strongly

affected by the switching variable a, henceit isthis variable that isregulated by the controller, and is set to

alogic variable 1 (equivalently, “on” state of a power switch component) in the

+ |
Tvde Inverter ® ( DFM
: RN
Lrmhs | o
Y+ Iph
OO
Al gy, .
e
OO
Al
a Hysteretic Current Controller
i (b)

(o Hysteretic Current Controller

-h/2) h/2 Al input-out characteristic
a




Figure 7.10. Block diagram of a current-controlled V SI.
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Figure 7.11. Simulation of the current-controlled VSI. (a) Phase current with 2% tolerance bandwidth, (b)
phase current with 10% tolerance bandwidth, (c) phase voltage with 2% tolerance, (d) phase voltage with
10% tolerance, (€) transistor switching signal (on=*1", off = ‘0") with 2% tolerance bandwidth, (f)
transistor switching signal (on=*1', off =‘0") with 10% tol erance bandwidth.



described situation. Conversely, an error less than —h/2 resultsin a = 0 (equivalently, “off” state of a power
switch component) in order to decrease the voltage and current in question. No action is taken by the
controller when current |, stays within the tolerance band. The other two controllers operatein asimilar

manner.

Thewidth, h, of the tolerance band affects the switching frequency of the inverter. The narrower
the band, the more frequent switching takes place and the higher quality of the currents. Thisisillustrated
in Figure 7.11, depicting simulation waveforms of power winding current and voltage for an inverter
supplying the power windings of the machine at values of h equal to 10% in Figure 7.11(a) and 2% in
Figure 7.11(b), of the amplitude of the reference current. Figure 7.11(c) and (d) show the transistor
switching signals with 10% tolerance bandwidth and 2% tolerance bandwidth. It is obvious that the

narrower the bandwidth, the higher the switching frequency of transistor.

7.8 Simulation Results Below the Base Speed

The simulations below illustrate the control performance of two control schemes presented in this
chapter. The parameters of IP controller in control scheme |l and nonlinear controller in control scheme|

arelisted in Appendix 7A.

Thetypical examples of constant torque application below the base speed are actuators and servo
systems, which require maximum torque availability at all speeds to ensure maximum dynamic response.
Toinvestigate the performance of doubly-fed synchronous reluctance motor drive system below the base
speed, the following simulation are used to demonstrate the dynamic response to step speed change and
step torque change. The control winding current is chose as 8 A. Theload torqueis4 N.m from0to 1.5s

and changesto 8 N.mfrom 1.5st02.2s.



Figure 7.12 illustrate the dynamic response of the motor drive for a step change of the reference speed
from zero to therated e ectrical base speed. Because we use non-overshoot design procedure to obtain the
control parameters for two-order speed control loop (control scheme 1) and for three-order speed control
loop (control scheme), there is no overshoot speed responsein the simulation results, which can be seenin
Figure 7.12(a). In Figures 7.12(b) to (d), we can see that, the torque and power winding d-axis current
increase quickly to reach their maximum values, then they begin to decrease when the speed closes on the
base speed, and at last the torque reaches an constant torque that is equal to 4 N.m load torque for this
simulation example. When the speed reaches the base speed. The d-axis power winding current generating
the corresponding torque also reachs its steady-state value. The g-axis current of the power winding aligns
to the zero value so that the field orientation requirements are satisfied. The power winding g-axis and d-

axis flux linkages, which are decided by q axis and d-axis current componenets, areillustrated in Figures

7.12(e) to (f).

Theresponse to change load torque from4 N.mto 8 N.mat t = 1.5 sisdisplayed in Figure 7.13. The
step change of the load torque causes a speed dip as shown in Figure 7.13(a), but it recoversits value after a
short transient because power winding d-axis current sharply increases to generate abigger electrical
torque against the change of load torque. During this process, power winding g-axis current has alittle
ripple around the zero value and aligns to zero value after a short transient. Figures 7.13(b) to (d) show this

dynamic process. The dynamic response of the power winding g-axis and d-axis flux
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Figure 7.12. Dynamic response to a step-change of speed. (a) Reference and actual speed, (b) torque (c)
power winding d-axis current, (d) power winding g-axis current, (€) power winding d-axis flux-linkage, (f)
power winding g-axis flux-linkage.
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Figure 7.14. Profiles of the phase current and voltage during the simul ation process.

(a) Phasecurrent, (b) phase voltage.

linkages areillustrated in Figure 7.13(e) to (f). They are affected by the change of the g-axis and d-axis

current components.

The profiles of the power winding phase current and voltage are displayed in Figure 7.14. We can see,
from 0to 1.5 s, the voltage and current sharply increase and reach the steady-state values corresponding to
a4 N.mtorqueload. They increase a 1.5 s due to change load torque from 4 N.m to 8 N.m. Finally they

reach new steady-state values corresponding to 8 N.m torque load.

7.9 Simulation Results Above the Base Speed

Some industrial and commercial applications require motors to operate over awide speed range
and rotating in both directions. A familiar exampleis the electric vehicle traction that requires high torque
for low-speed acceleration and constant power (reduced torque) for high-speed cruising. To obtain

constant power control above base speed, field-weakening techniques are used.

Thefollowing three cases demonstrate the dynamic process of a doubly-fed synchronous

reluctance motor drive systems, which operatein a 2.5 times base speed range and rotate in two directions.

Case 1. We simulate the dynamic process of the control system with two-stage speed step-change:
2.5 times the base speed from 0 to 2.5 s and the base speed from 2.5 sto 4 s. The control winding current is

choseas8 A. A 4 N.mload torqueis used from O to 1.5 s and then changes for 8 N.mfrom 1.5sto4s.

Figure 7.15(a) shows the speed response to this two-stage speed step change command. The
torque, d-axis and g-axis currents of the power windings are illustrated in Figures 7.15(b) and 7.15(c),
where we can see that the torque and its control current, |g,, sharply reach their maximum values which

cause the speed to quickly increases. While the g-axis current, Iy, is align to zero below the base speed and



shapely changes to a negative constant value above base speed because of the field weakening control.
Then the speed increase is slowed down with the decrease in torque and g-axis current. Finally the speed
reach its command value, torque and current also reach their steady-state values. Att = 1.5 s, the load
torque is changed from 4 N.m to 8 N.m, which causes the rotor speed alittle dip but it is recovered quickly
because the d-axis current | 4, and its corresponding torque quickly increase to new valuesto resist the

change of speed.

Att=25s, the speed command proceeds to second stage by changing the speed command from
2.5 times the base speed to the base speed. The speed change causes the torque and torque control current,
| p sharply falling down to their minimum values, which farther causes the rotor speed to quickly decrease.
When the speed closes on the speed command, the torque and d-axis current | 4, beginincreasein inversely
proportional to speed. The g-axisis still kept in some negative values before the speed falls down to the

base speed and then change to the zero again.

The d-axis and g-axis flux linkages of power windings are shown in Figures 7.15(e) and 7.15(f),
which are dependent on the d-q current components of power windings and control windings. Figure 7.16
givesthe profile of phase current and voltage of power windings during the whole transient process. In
Figure 7.16(a), we can clearly see that there are three transient stages in the whole transient process of

phase current I,

(1) FromO0to 1.5 s, speed command is equal to 2.5 times the base speed and load torque is set to
4 N.m.. Phase current I, of the power windings goes through its first transient stage. During
this transient stage, transient current sharply increases to maximum value and then slowly
decreases to a steady-state value. The frequency of the current increases step by step and then
reaches 2.5 times the base frequency.

(2) From 1.5sto 25 s, speed command is equal to 2.5 times the base speed but load torque is
changed from 4 N.m to 8 N.m. Phase current |,, of the power windings goes through its
second transient stage. During this transient stage, the transient current quickly increases and
reaches to a new steady-state value, which can generate a new eectrical torque to balance the

new load torque. The current frequency is kept constant.
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Figure 7.15. Dynamic response to a wide speed range of 2.5 times base speed. (a) Reference and actual
speed, (b) torque (c) power winding d-axis current, (d) power winding g-axis current, (€) power winding d-
axis flux-linkage, (f) power winding g-axis flux-linkage.
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Figure 7.16. Profiles of the power winding phase current and voltage during the simulation process.
(a)Phase current, (b)phase voltage.

(3) From25sto 4 s, speed is changed from 2.5 times the base speed to 0.5 times the base speed
and torque is kept at 8 N.m. Phase current |, of the power windings goes through its last
stage. During this transient stage, the transient current increases to some value and then
decreases and finally reaches to a new steady-state value. The current frequency decreases to
the base current frequency.

Case 2. We simulate the dynamic process of the control system with trapezoid speed command.

During the whole simulation process, a4 N.m load torque is used and control winding current is chose as 8

A.
Asshown in Figure 7.17(a), the command speed is seperated into six stages:

(1) The speed slopes up to twice the base speed from zero in first second.
(2) Thespeed iskept constant at twice the base speed for 1.5 seconds.
(3) The speed slopes down to 0.5 times the base speed from 2.5st03.5s.

(4) The speed iskept constant at 0.5 times base speed for 1 second.
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Figure 7.17. Dynamic response to a trapezoid speed command. (a) Reference and actual speed, (b) torque
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Figure 7.18. Profiles of the power winding phase current and voltage during the simulation process. (a)

Phase current, (b) phase voltage.

(5) The speed slopes up to twice the base speed again in thetime of 4.5 sto5.5s.
(6) Thespeed is kep constant at twice the base speed for 1.5 seconds.
The rotor speed follows the speed command very well and reaches the desired steady-state speeds: twice

the base speed or 0.5 times the base speed.

Figures 7.17(b) and (c) illustrate the dynamic process of d-axis current of power windings. The
up-slope speed causes the torque control current |4, and its coresponding  torque increament while the
down-slope speed causes them decreament. When the speed reaches its stady-state values: 0.5 times the
base speed and 2 times the base speed, |4, and its corresponding torque also reach their teady-state values.
Figure 7.17(d) displays the dynamic process of g-axis current of power windings, which isalign to zero

when speed is below base speed or becomes negative value when the speed is above the base speed.

Figures 7.18(e) and (f) illustrate the dynamic process of d-axis and g-axis flux linkages of power
windings. Their profileslook similar to those of the d-axis and g-axis currents of the power windings

because they are mainly dependent on theses currents.

The dynamic process of the phase current and voltage of the power windingsis shown in Figures
7.19(a) and (b). we can clear seethat there are six transient stages corresponding to the six-stage speed

command.



Case 3. We simulate the dynamic process of the control system with a two-direction trapezoid
speed command. During the whole simulation process, a4 N.m load torqueis used and control winding

current is choosen as8 A.
Asshown in Figure 7.19(a), the speed command is seperated into six stages:

(1) The speed slopes up to twice the base speed from zero in first second.
(2) Thespeed is kept constant at twice the base speed for 1.5 s.
(3) The speed slopes down to negative twice the base speed from 2.5st04.5s.
(4) The speed is kept constant at negative twice the base speed for 1.5 seconds.
(5) The speed slopes up to twice the base speed in thetime of 6 sto 8 s.
(6) The speed is kep constant at twice the base speed for 1.5s.
The rotor speed follows this speed command very well either in clockwise direction or counter clockwise

direction. The steady-state rotor speeds can also be obtained in both directions.

Figures 7.19(b) and (c) display the dynamic process of the torque control current l4, and
electrical torque. When the speed command is on its up-slope sides, |4, and torque increase quickly and
then keep at some values until the rotor speed closes its desired speed. At the monent of the rotor speed
reaching its stedy-state val ues, |4, and torque quickly decrease and hold at some values which generate an
electrical torque to balance the load torque; When the speed command is on its down-slope sides, lg,

and
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Figure 7.19. Dynamic response to a two-direction trapezoid speed command. (a) Reference and actual
speed, (b) torque (c) power winding d-axis current, (d) power winding g-axis current, (€) power winding d-

axis flux-linkage, (f) power winding g-axis flux-linkage.
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Figure 7.20. Profiles of the power winding phase current and voltage during the simulation process.
(a)Phase current, (b)phase voltage.

torque decrease quickly and then keep at some values so that the rotor speed quickly decreases and closes
its desired speed. At the monent of the rotor speed reaches its steady-state values, |4, and torque quickly
increase and reach their steady-state values for balancing the load torque. By comparing three cases, thisis
noted that, if the trapezoid speed command is used, the change of the torque control current 14, and torque
arenot as sharp as those of the step change speed command. Hence, using the trapezoid speed command is

agood way to avoid the too big command current Idp*.

Figure 7.19(d) shows that g-axis current Igp is align to zero below the base speed or isalign to the

negative values above the base speed because of the field weakening contral.

The g-axis and d-axis flux linkages of the power windings areillustrated in Figures 7.19(e) and

(f), they are dependent on the g-axis and d-axis currents of both the power windings and control windings.

Figure 7.20 illustrates the profiles of the phase current and voltage of the power windings during
the whole dynamic process. It is observed from Figure 7.20(a) that there are six transient stages

corresponding to the speed command.

Above simulation results have demonstrated the dynamic performance of control scheme Il (using
IP and hysteretic current control). The control scheme | (using linearization control) also has similar
simulation results. Figures 7.21 and 7.22 give the evidence that the dynamic performance is the same as

one of control scheme |l in case 3.
A few factors cause transient difference between control scheme | and control schemell in case 3:

(1) Two control schemes use different controller. One uses IP controller, the another uses
linearization controller;

(2) In control scheme I, the voltage-controlled PWM-V S| is simulated using average voltage of
switching period to replace true pulsating voltage, hence it is approximate simulation.
However, the current-controlled PWM-V SI in control scheme Il is simulated directly using

true pulsating voltage. The simulation waveforms are shown in Figure 7.9 for voltage-



controlled PWM-V SI and Figure 7.11 for current-controlled PWM-V S|. Figure 7.20(b) shows
the true phase-voltage waveform (pulsating voltage) while Figure 7.22(b) just shows the
approximate phase-voltage waveform (average voltage of switching period).

(3) The higher switching frequency is used in control scheme Il. 5 KHz switching frequency is
used in current-controlled PWM-V'SI while 2 KHz switching frequency is used in voltage-

controlled PWM-V SI.
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Figure 7.21. Dynamic response to a two-direction trapezoid speed command for control schemel. (a)
Reference and actual speed, (b) torque (c) power winding d-axis current, (d) power winding g-axis current,
(e) power winding d-axis flux-linkage, (f) power winding g-axis flux-linkage.
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Figure 7.22. Profiles of the power winding phase current and voltage during the simulation process for

control scheme |. (a)Phase current, (b)phase voltage.

Although the dynamic responses of the control scheme Il have more harmonic components, they should

much close to the true results.

7.10 Conclusion



This chapter demonstrates the application of field orientation principlein a doubly-fed
synchronous reluctance machine with dc control windings. The simulation results prove that this machine

can be controlled like a separately excited dc motor.

The machineis controllable in awide speed range including constant torque region and constant
power region. The expressions to determine maximum torque and obtain field-weakening operation
performance above base speed are given and satisfactorily used in the simulation. A design procedure and
programs to quantitatively decide the | P parameters for a second-order speed loop are given, which can be
used to obtain the performance of the non-overshoot speed response. The novel design methodology using
input-output linearlization technique and Butterworth method are used for designing a nonlinear controller
for the machine. The simulation results show that the prescribed control performanceis achieved for IP

controller and nonlinear controller.
Current-controlled PWM-V S| and voltage-controlled PWM-V S|, which are used

as a controllable source to supply the power winding of the machine, are described in details and their

performance is successfully simulated using Matlab/Simulink.

Control scheme | with voltage-controlled PWM-V S| and control scheme |l with current-controlled
PWM-V S| are also simulated using Matlab/Simulink. They both demonstrate the similar performance.

Their effectiveness shows that they are worth to be verified by the experiment.



CHAPTER 8

CONCLUSIONS AND SUGGESTION FOR FURTHER WORK

8.1 Conclusion

The research work on this dissertation has focused on modeling, simulation,
and application of adoubly-fed reluctance machine.

A accurate mathematical model, which considers the core-loss of the machine,
and its corresponding dynamic g-d equivalent circuits with series cores-10ss resistance or
shunt core-loss resistance are presented. The machine inherent parameters are obtained
by using its steady-state equivalent circuits and experimental measurement. Based on
this mathematical model, the mathematical models of a few generator systems were
described. Some generator systems investigated in this dissertation include:

(a) Self-excited doubly-fed reluctance generator systems.

(b) Doubly-fed reluctance synchronous generator systems.

(c) Regulated DC power generation systems using doubly-fed synchronous reluctance
machine.

Their dynamic performances were simulated using MATLAB/Simulink and ACSL
program. The steady-state characteristics of these generator systems were obtained by
simulation and experimental measurement. The potential applications of these generator
systems had been revealed from the results of dynamic simulation and steady-state
calculation.
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The application of field-orientation principle in a doubly-fed synchronous reluctance
machine with dc control windings was investigated. The simulation results prove that this
machine can be controlled like a separated-excited dc motor in a wide speed range
including constant torque control below the base speed and field weakening control
above the base speed.

Two control schemes were investigated in the field orientation control system of
doubly-fed synchronous reluctance machine. One had I P controller and current-controlled
voltage-source inverter, and another had linearization controller and voltage-controlled
PWM voltage-source inverter. The design procedures to obtain the parameters of
controller were given.

The research work has made contribution in these areas:

(1) A dynamic model of doubly-fed reluctance machine considering the effects of
core-loss and saturation was presented. It provided a more accurate model for the
performance evauation and the design of doubly fed reluctance machines. An
approach to determine machine parameters from measurement was also provided.

(2) The performance characteristics of doubly-fed self-excited reluctance generator
and doubly-fed synchronous reluctance generator as well as an innovative DC
power generator scheme using doubly fed reluctance machine, were investigated
and analysis were presented. These works revea ed their potential applications.

(3) Two field orientation control schemes for a doubly-fed synchronous reluctance
machine were investigated for high-performance operation both in the constant
torque and constant power regions. The simulation results have provided valuable

information for realization and application of the control systems.



8.2 Suggestion for Further Work

The research work revealed some inherent disadvantage of this experimental machine
with simple salient laminated pole rotor structure. The disadvantages include:

(1) The inherent oscillatory instability of this class of reluctance machine when fed with
variable-voltage, variable frequency source under open-loop control.
(2) Its core losses, saturation effect, and leakage inductances are relatively high.

To eliminate these inherent disadvantages, proper rotor structure and optimization
designs are necessary. An axially laminated rotor structure will drasticaly reduce the
effects of these disadvantages.

The simulation results have demonstrated that two field-orientation control
schemes of doubly-fed synchronous reluctance machine are effective and robust. To
verify the theory set forth and the effective of these two control schemes, experimental
work will be necessary.

We hope that the proposed further research will improve the performance
of this kind of machine and promote its applications in industry, military and power

system given itslow cost, high reliability and flexible control methods.
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Appendix 2A

The parameters of the experimental machine are:
Number of power winding pole pair, P=1

Number of control winding pole pair, g =3



Power winding per-phase resistance, Rp = 1.439 Ohms
Refered control winding per-phaseresistance, Rs' = 0.723 ohms

Theratio of the effective power winding to control winding turns, Np/Ns = 0.5.
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Appendix 4A

AR = le(_wpw L C B - ROBSZ) +T51(Ro (Tsz +wsch) +wpwsL0Cqus2)

s —o0~q —ss2
+(1-w.C,L,)(-B,By + WiC Ty + T, Ty — w,w,C.Ty;)

+w,C R, (-w,C,B,By + W.C,w, +T,w, +w,C T Ts,)

s~7q —ss2

AI = Bl(_a)ZCq BSZRO + wp Lo Bsz) + Tsl(RowsCZTssz - wp Lo (rsz + a)sch ))
+(1- wﬁCpLo)(—w C,Bs:Ba t+ a)SZan)p +T,0, + WC, T, )

s~’q —ss2
- a)pCpRo (_BSZ le + wschTsl + TsZTsl - wsa)pchSZ
aa= _Cqu Lo (Tsl + T$2)
ba=C,L, (2T + T,)C,w,

ca= LOCq (leB$2 - TslTssz) + Cq (Tsl + Tssz)
- CpLo (T T, —BuBy) + qurZTssl

da=L,C,w (TyT, — ByBy,) = (2T +T)Cow,
ea=(TyT, —ByB,)+ an),2T$1

fa=C,C,

ga=-2C,C.w,

ha=C C,(By,Ba ~ T Twz) *+ (TC, + T,,.C,) + C,Coaf
ia=wC,C, (TyTs ~ BuBs,) — 2Ty Cow,

ja=(TaT, — ByB,) + T.Coaf

la=-C,C,(Ty +Tg,)
ma=2C,C,T.w +C,C.T,

SS

20



na= Cq (ByBer —TaTe) + Cp(leBSZ ~Tale) = CquTslwrz
qa= qur (rslTSZ - leBssz)
sa= —Cqu L,

ta=2C C L w

pCqlor
ua=-L,T,C, +C, = C,C L, (B,By ~ T, Te) ~ L, T,.C, —~C,C, L&}
va=2L,T,C.w - 2C,w +C,C,Lyw (By,By ~ T Tw)

xa = L, (ByB,, ~ T,T,,) — LiT.C,af +C (B, By ~ T, Tw) +C oo + T,
ya=-C,w, (Bg,Bs ~ T2 Tsw)

C =-f,s,
C,==(ft,+9,8)

C;=al, - fu,—g;t.-hs,

C,=am, +bl, - fv,-gu, -ht, ~is,

Cs=an, +b,m +cl, - f,x, —g.v, ~hu, —it, - j.s,
Cs=a,0, +b,n, +cm +d,|, - f.y, —g.x, —hyv, —i,u, — .t
C, =bo, +c,n, +dm +el, — gy, ~hx, —iv, ~ j.U,
G, =C,0, +d,n, +em —hy, —i X, ]V,

Gy =d.0, ten, —i,y, ~ j.X

ClO :eaoa - jay

a



Appendix 4B

Matlab Program

%Double-fed generator steady-state analysis.
%Power winding denoted by “1” and control winding denoted by “ 2.
€2=90.e-6;rr1=1.4392;rr2=2.8933;10=0.00015;
for num=1:1:3

if num==1;c1=168.e-6,wr=377*2* 45/60;
ktt=0.185;

%kit=0.2;

end;

if num==2;c1=168.e-6,wr=377*2*50/60;
ktt=0.207;

%ktt=0.244;

end;

if num==3;c1=168.e-6;wr=377*2*55/60;
ktt=0.215;

%ktt=0.27;

end;

for x=1:1:41;

lamx=(x-1)* ktt/40;



lamm=lamx;

lam(num,x)=lamx;
rm2=7.24*lamm”"2-4.25*|lamm+1.58;
|s2=-0.55*lamm”2+0.09* |amm+0.0385;
Im=-0.44*lamm”2+0.085*|amm-+0.0373;
rm1=-4.05*lamm"2-1.47*lamm+1.217;
Is1=-0.36*lamm”2+0.09* |amm+0.0385;
ri=rrl+rmi;

r2=rr2+rm2;

I1s2=1s2-Im;

[Is1=Is1-Im;

e=1/((VIm+1/11s1+1/11s2)*11s1);
f=1/((MYIm+1U1s1+1/11s2)*11s2);
tsl=-1s2/(Is1*1s2-1m"2);bsl=Im/(Is1* |s2-Im"2);
ts2=-1s1/(1s1*1s2-1m"2);bs2=Im/(Is1*|s2-Im"2);
tssl=-r1*|s2/(Is1*|s2-Im"2);bssl=r1*Im/(Is1*1s2-Im"2);

tss2=-r2*|sL/(Is1*|s2-1m2):bss2=r2* | m/(Is1* | s2-ImP2);

aa=-Cc1*c2*|o* (tssl+tss2);

ba=c1*|0* (2* tssl+tss2)* c2*wr;

ca=lo* c2* (bsl* bss2-ts1* tss?) +c2* (tssl+tss2)-c1* | o* ((tssl* ts2-
bss1* bs2)+c2* wr2* tssl);

da=lo* c2* wr* (ts1* tss2-bsl* bss2)-(2* tssl+tss2)* c2* wr;



ea=(tss1* ts2-bss1* bs2)+c2* wrh2* tssl;

fa=cl*c2;

ga=-2*cl*c2*wr,

ha=c1* c2* (bss2* bssl-tss2* tssl)+tsl* c2+ts2* c1+cl* c2* wr/2;
ia=wr* c1* c2* (tssl*tss2-bss1* bss2)-2* ts1* c2* wr;

ja=(ts1*ts2-bs1* bs2)+ts1* c2* wr2;

la=-c1* c2* (tssl+tss2);
ma=2* c1* c2* tss1* wr+c1* c2* tss2* wr;
na=c2* (bsl* bss2-ts1* tss2)+c1* (bssl* bs2-tss1* ts2)-c1* c2* tss1* wr2;

oa=C2* wr* (ts1*tss2-bsl* bss2);

sa=-c1*c2*|o;

ta=2*c1*c2*|lo*wr;

ua=-lo*tsl* c2-lo*ts2* c1+c2-c1* c2*1o* (bss2* bssl-tss2* tssl)-c1* c2* [ o* wr/2;
va=2*|o*ts1* c2* wr-2* c2* wr+c1* c2* | o* wr* (bss2* bss1-tss2* tssl);

xa=lo* (bsl* bs2-ts1*ts2)-10* ts1* c2* wrh2+c2* (bss2* bssl-tss2* tssl) +c2* wrh2-+ts2;
ya=-c2*wr* (bss2* bssl-tss2*tssl);

awl=-fa*sg

bwl=-fa*ta-ga*sa;

cwl=aa*lafa*ua-ga*ta-ha* sa;

dwl=aa* mat+ba*la-fa* va-ga* ua-ha*ta-ia* sa;



ewl=(aa* nat+ba* mat+ca*la-fa* xa-ga* va-ha* ua-ia* ta-ja* sa);
fwl=(aa* oatba* nat+ca* mat+da*la-fa* ya-ga* xa-ha* varia* ua-ja*ta);
gwl=(ba* oat+ca* nat+da* matea*|a-ga* ya-ha* xa-ia* varja* ua);
hw1=(ca* oat+da* na+ea* ma-ha* ya-ia* xa-ja*va);

iwl=(da* oat+ea* na-ia* ya-ja* xa);

jwl=(ea* oa-ja*ya);

cw=[awl bwl cwl dwl ewl fwl gwl hwl iwl jwl];
wl=roots(cw);

for mm=1:1.9;

if imag(w1(mm))==0,test1=1;else test1=0;end;

if real(wl(mm))>1,test2=1;else test2=0;end;

if real(wl(mm))<wr,test3=1;€else test3=0;end;

kw=test1*test2* test3* mm;

if kw>0,km=kw;

end;

end;

wwl1(num,x)=wi(km);

ww2(num,x)=wr-ww1(num,x);

ro(hum,x)=-

(sa* ww1(num,x)"5+ta* wwl(num,x) 4+ua* wwl(num,x)"3+va* wwl(num,x) 2+xa* wwl
(num,x)+ya)/(la* ww1(num,x)"3+ma* wwl(num,x)"2+na* wwil(num,x)+oa);
ao=ts1* (ro(num,x)-wwZ1(num,x)*o*j)/(1-ww1(num,x)"2*c1*|o-

ww1(num,x)*c1* ro(num,x)*j);



bo=bs1* (ro(num,x)-ww21(num,x)*lo*j)/(1-ww1(num,x)"2* c1*|o-
wwl1(num,x)*cl* ro(num,x)*j);

k11=bss2-bs2/(-ww2(num,x)* c2*j);k12=-ww2(num,x)*  +tss2-ts2/(-ww2(num,x)* c2*j);
lamqds1=(k12*lamx)/(e* k12-f*k11);
lamqds2=-(k11*lamx)/(e*k12-f*k11);
k21=ao+ww1(num,x)*j+tssl;k22=bo+bssl,;
lamgdssl=(k22*lamx)/(e* k22-f*k21);

lamqdss2=-(k21*lamx)/(e* k22-f*k21);

vqdsl(num,x)=ao* lamqdsl+bo*lamqds2;

vp(num,x)=sgrt(real (vqds1(num,x))"2+imag(vgdsl(num,x))"2);
igds1(num,x)=-ts1*lamqdsl-bsl*lamqds2;

ip(num,x)=sgrt(real (igds1(num,x))"2+imag(igdsl(num,x))"2);
vads2(num,x)=-(ts2*lamqds2+bs2* |lamqdsl)/(ww2(num,x)* c2*j);
igds2(num,x)=-ts2*lamqds2-bs2* lamqds1;

vs(nhum,x)=sgrt(real (vqds2(num,x))"2+i mag(vgds2(num,x))"2);
is(num,x)=sgrt(real (iqds2(num,x))"2+imag(iqds2(num,x))"2);
igdo(num,x)=vgds1(num,x)/(ro(num,x)-ww1(num,x)*1o0*j);
io(num,x)=sgrt(real (igdo(num,x))"2+imag(igdo(num,x))"2);
po(num,x)=3*io(num,x)"2* ro(num,x)/2.0;
rro(num,x)=21.0/ro(num,x);

f2(num,x)=ww2(num,x)/(2.0* pi);
f1(num,x)=ww1(num,x)/(2.0*pi);

end;



end;

end;

Appendix 4C

ACSL PROGRAM

Double-Fed Generator Starting Transient Dynamic Simulation
............................. CONSTANT PHASE=2.094395,R11=1.4392,R22=0.7233,RO=16
CONSTANT C1=168.E-6,C2=360.E-6,L O=0.00015,RD1=2.6568
CONSTANT RD2=2.3022,L SD1=0.0373,LSD2=0.0385,LMD=0.0164
CONSTANT MQSIC1=5.e-5,MDSIC1=5.e-5,MQSIC2=5.e-5
CONSTANT MDSIC2=3.e-2,VQIC1=5.e-5VDIC1=5.e-5
CONSTANT IQIC=1.e-4,IDIC=1.e-5,WEIC=0.0
CONSTANT VQIC2=5.e-5,VDIC2=2.0,THIC=0.0,NRIC=0.0
CONSTANT PI=3.1412,WRR=377.0, RO2=16.0, RO1=16.0
CONSTANT TSTOP=0.8,NSTOP=0.8
CINTERVAL CINT=1.E-4

MAXTERVAL MAXT=5.E-4

INITIAL
RQ1=RD1
RQ2=RD2

LSQ1=0.0373



L SQ2=0.0385

LMQ=0.0164

LLSD1=(LSD1-LMD)

LLSD2=(LSD2-LMD)

LLSQ1=(LSQ1-LMQ)

LLSQ2=(LSQ2-LMQ)
LMMQ=1.0/(1L.O/LMQ+1.0/LLSQ1+1.0/LLSQ2)
GUNC1=1.0/C1

GUNC2=1.0/C2

END

DYNAMIC
DERIVATIVE
WR=WRR*2.0*55/60
THETAR=INTEG((W1-WR),NRIC)
THETER=INTEG((W1),THIC)
RO=RSW((T.LT.1.0),RO1,R0O2)
LAMQS1=INTEG((VQS1+TSSQI*LAMQS-
W1*LAMDS1+BSSQ1*LAMQS2),MQSIC1)
LAMDSI=INTEG((VDSI+TSSD1*LAMDS1+W1* LAMQSI+BSSD1*LAMDS

2),MDSICY)

LAMQS2=INTEG((VQS2+TSSQ2* LAMQS2-(W1-

WR)*LAMDS2+BSSQ2*LAMQS1),MQSIC2)



LAMDS2=INTEG((VDS2+TSSD2* LAMDS2+(W1-
WR)*LAMQS2+BSSD2* LAMDSL1),MDSIC2)
VQ=GUNC1*TSQI* LAMQS1+BSQ1* GUNC1* LAMQS2-W1*VDS1-
GUNCI*IQO
VQSI=INTEG(VQ,VQIC1)
VD=GUNC1*TSD1*LAMDS1+BSD1* GUNC1* LAMDS2+W1*VQS1-
GUNCI*IDO
VDSI=INTEG(VD,VDIC1)
VQS2=INTEG((GUNC2* TSQ2* LAMQS2+BSQ2* GUNC2* L AMQSL-(W1-
WR)*VDS2),VQIC2)
VDS2=INTEG((GUNC2* TSD2* LAMDS2+BSD2* GUNC2* L AMDS1+(W1-
WR)*VQS2),VDIC2)
IQO=INTEG((VQSL/LO-RO*IQO/LO-W1*IDO),IQIC)
IDO=INTEG((VDSL/LO-RO*IDO/LO+W1*1Q0),IDIC)
1QS1=-(TSQ1* LAMQS1+BSQ1*LAMQS2)
IDS1=-(TSD1*LAMDS1+BSD1*LAMDS2)
1QS2=-(TSQ2* LAMQS2+BSQ2* LAMQSL)
IDS2=-(TSD2* LAMDS2+BSD2*LAMDSL)
VAS1=(VQS1* COS(THETER)+VDS1*SIN(THETER))* SQRT(2.0/3.0)
VBS1=(VQS1* CO(THETER-PHASE)+VDS1* SIN(THETER-
PHASE))* SQRT(2.0/3.0)
VCS1=(VQS1* CO(THETER+PHASE)+VDS1* SIN(THETER+PHASE))* SQR

T(2.0/3.0)



VAS2=(VQS2* COS(THETAR)+VDS2* SIN(THETAR))* SQRT(2.0/3.0)* 2.0
VBS2=(VQS2* COS(THETAR+PHASE)+VDS2* SIN(THETAR+PHASE))* SQR
T(2.0/3.0)

VCS2=(VQS2* COS(THETAR-PHASE)+VDS2* SIN(THETAR-

PHASE))* SQRT(2.0/3.0)

VS1=SQRT(VQS1**2+VDS1**2)

V S2=SQRT(VQS2**2+VDS2**2)

IAS1=(1QS1* COS(THETER)+IDS1* SIN(THETERY))* SQRT(2.0/3.0)
IBS1=(1QS1* COS(THETER-PHASE)+IDS1* SIN(THETER-

PHASE))* SQRT(2.0/3.0)

ICS1=(1QS1* COS(THETER+PHASE)+IDS1* SIN(THETER+PHASE))* SQRT (2
.0/3.0)

I pa=iasl

Vpa=vasl

IAS2=(1QS2* COS(THETAR)+IDS2* SIN(THETAR))* SQRT(2.0/3.0)/2.0
I1BS2=(1QS2* COS(THETAR+PHASE)+IDS2* SIN(THETAR+PHASE))* SQRT(
2.0/3.0)

ICS2=(1QS2* COS(THETAR-PHASE)+IDS2* SIN(THETAR-

PHASE))* SQRT(2.0/3.0)

WA=VDSI*LLSD2+VDS2*LLSD1-LLSD1*WR*LAMQS2
WB=LAMDSI*(TSSD1*LLSD2+BSSD2*LLSD1-LLSD2**2*BSSD1/LLSD1-

LLSD2*TSSD2)



W1=-(WA+WB)/(LLSD2*LAMQS1+LLSD1*LAMQS2)
w2=wr-wl

f1=w1/(2.0*pi)

f2=w2/(2.0*pi)

TSSQ1=-RQ1*L SQ2/(L SQ1*L SQ2-LMQ**2.0)
BSSQ1=RQ2*LMQ/(L SQ1*LSQ2-LMQ**2.0)
TSSD1=-RD1*LSD2/(LSD1*L SD2-LMD**2.0)
BSSD1=RD1*LMD/(LSD1*LSD2-LMD**2.0)
TSSQ2=-RQ2*L SQL/(L SQ1*L SQ2-LMQ**2.0)
BSSQ2=RQ2*LMQ/(LSQ1*LSQ2-LMQ**2.0)
TSSD2=-RD2*LSD1/(LSD1*L SD2-LMD**2.0)
BSSD2=RD2*LMD/(LSD1*LSD2-LMD**2.0)
TSQ1=-LSQ2/(LSQ1*L SQ2-LMQ**2.0)
BSQ1=LMQ/(LSQ1*LSQ2-LMQ**2.0)
TSD1=-LSD2/(LSD1*L SD2-LMD**2.0)

BSD1=LMD/(LSD1*LSD2-LMD**2.0)

TSQ2=-L SQ1/(L SQ1*L SQ2-LMQ**2.0)
BSQ2=LMQ/(LSQ1*LSQ2-LMQ**2.0)
TSD2=-LSD1/(LSD1*LSD2-LMD**2.0)
BSD2=LMD/(LSD1*LSD2-LMD**2.0)

PROCEDURAL

LAMQM=LMMQ* (LAMQSL/LLSQ1+LAMQS2/LLSQ2)



END

END

END

END

LAMM=ABS(LAMQM)
RME1=-4.05*LAMM**2.0-1.47* LAMM+1.217
RME2=7.24* LAMM**2.0-4.25* LAMM+1.58
LME=-0.44* LAMM**2.0+0.0851* LAMM+0.0164

LSE1=-0.36*LAMM**2.0+0.0906* LAMM+0.0373

.............................................. LSE2=-0.55*LAMM**2.0+0.09* LAMM+0.0385

RM1=RSW((LAMM.GE.0.2),0.7608 RME1)
RM2=RSW((LAMM.GE.0.2),0.7408 RME2)
LSQ1=RSW((LAMM.GE.0.2),0.041,L SE1)

L SQ2=RSW((LAMM.GE.0.2),0.0345,L SE2)
LMQ=RSW((LAMM.GE.0.2),0.01577,LME)
RQ1=R11+RM1

RQ2=R22+RM?2

LLSQ1=(LSQ1-LMQ)

LLSQ2=(LSQ2-LMQ)
LMMQ=1.0/(1L.O/LMQ+1.0/LLSQ1+1.0/LLSQ2)

TERMT(T.GE.TSTOP)



Appendix 5A

Control Winding Mathematical Model of doubly-fed synchronous reluctance machine
with dc control winding excitation.
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Replacing the Vg, 1as With the equation (5.17) and (5.18) gives



3 . o -
Re[qus] = Rs Re{l qu] + p{ Ls Re[l qu] + 5 Lle Re{l qdpeJ @ BP)]}

3 . i -
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Removing the ‘Re’ operator on both sides of the equation obtains the g-d complex-form

equation of the power winding

3 .« i(6,-6,)
qus = &lqu + p{lequ +5 Lmlzlqdpe P } .

Appendix 5B

Power Winding Mathematical Model of doubly-fed synchronous reluctance machine with
dc control winding excitation.

Vi =Ryl

+ PpAg,
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Replacing Vap, lap, las, los @nd s with the equations (5.10), (5.11), (5.17) and (5.18)

gives
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Removing the ‘Re’ operator from two sides of the equation obtains
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The g-d complex-form equation is obtained by dividing ‘e’ from both sides of the

equation.
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Appendix 5C

Torque equation of doubly-fed synchronous rel uctance machine with dc control winding

excitation.
d LAa LAb LAc I as
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" LCa LCb LCc |cs
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Appendix 6A

The parameters of the lead acid battery [61]
Battery capacitance Cy, = 54,000 F
Discharging resistance Ry; = 0.001Q
Discharging capacitance Cp = 1.0F
Self-charging Resistance Ry, = 10,000 Ohms
Open circuit battery voltage = 24 V
Connecting resistance Ry = 0.05Q

Internal resistance Rbs = 0.002Q



Appendix 7A

%Program to obtain the electrical characteristics of DF machine
%for a wide speed range including above base speed and below speed range.
%rate value calculation:
clear all
basetime=4;
for mm=1:1:3
%0Qj0's machine parameters
%vpm=187;rp=0.7;wp=377;Ip=0.043;1m=0.0385;ipm=9.3477;pr=8§;
%Wu's machine parameters
vpm=187;rp=1.4,wp=377;Ip=0.041;Im=0.021;ipm=11.7107;pr=4;
if mm==1;iqs=16;end
if mm==2;iqs=8;end
if mm==3;igs=2;end
%cal culate the peak rate current.
%i pm=(wp*Im* rp*iqgs)/(rp2+wp”2* [ p"2)+sart((wp* Im*igs* rp)~2...
%-(rp2+wp2* 1p2)* ((wp* Im*igs)2-vpm2))/ (rp2+wp”2* | p”2)
%iss(mm)=ipm
Yovpm=sgrt((rp 2+wp"2* | p"2)* ipm"2+wpr2* Im"2*iqs"2-2* wp* Im* rp*igs*idp)
%i pm=(wp* Im* rp*iqs)/(rp™2+wp"2* 1p"2) +sgrt((wp* Im*igs* rp)~2...
%-(rp2+wp2* 1p2)* ((wp* Im*igs)2-vpm2))/ (rp2+wp”2* | p”2)
%cal cul ate the base speed.

ssa=|p2* i pmA 2+ M 2% g8 2; ssb=-2* Im* rp*igs* i pm; ssc=rp\2* i pm*2-vpm"2;



whb(mm)=-ssb/(2* ssa)+sqrt(ssh”2-4* ssa* ssc)/(2* ssa)
%approximated equation to cal culate the base speed by chossing rp=0;
awbb(mm)=vpm/sgrt(Ip"2*ipm"2+Im"2*igs"2)

%boundary point between Mode | and Maode 11

la=ipm"2* IpM4-Imh 2% | pr2*igsh2;

[b=2* rp2* | p"2* ipm"2-1m"2* rp2* iqsh2-1p2* vpm”2;

|c=ipmA2* rpM-rp\2* vpm\2;

[d=2*vpm* Im*rp*igs*Ip;

le=2*vpm* Im*rp"2*igs,

kkl1=la"2;

kk2=2*la*Ib;

kk3=Ib"2-1d"2+2*1a*Ic;

kk4=2*Ib*|c-1e"2;

kk5=lc"2;

mwm=[kk1 kk2 kk3 kk4 kk5];

wn=roots(mwm);

awnn=sgrt(wn);

w12(mm)=max(awnn)

wee=w12(mm);

nwee=w12(mm);

if wee>=Dbasetime* 377; wee=basetime* 377; nwee=basetime*377; end;
%approximated equation to calculate the boundary speed by choosing rp=0;

aw12(mm)=vpm/sgrt(Ip*2*ipm"2-Im"2*iqs"2)



%below the base speed
for nn=1:1:21;

whbe(mm,nn)=wbb(mm)* (nn-1)/20;

wp=wbe(mm,nn);

iidp(mm,nn)=ipm;

iigp(mm,nn)=0;

tor(mm,nn)=1.5*4*igs*iidp(mm,nn)*Im;

po(mm,nn)=tor(mm,nn)* wbe(mm,nn)/4;

iip(mm,nn)=sgrt(iidp(mm,nn)"2+iigp(mm,nn)*2);

vpo(mm,nn)=sgrt((rp*2+wp”2*p*2)*ii p(mm,nn) " 2+wp 2* Im"2*igs™2...

+2*wp2* Im* I p*igs*iigp(mm,nn)-2* wp* Im* rp*igs* iidp(mm,nn));

end
for nn=1:1:21;

nwbe(mm,nn)=-wbb(mm)* (nn-1)/20;

wp=abs(nwbe(mm,nn));

niidp(mm,nn)=ipm;

niigp(mm,nn)=0;

ntor(mm,nn)=1.5*4*igs* niidp(mm,nn)*Im;

npo(mm,nn)=ntor(mm,nn)* nwbe(mm,nn)/4;

niip(mm,nn)=sgrt(niidp(mm,nn)"2+niigp(mm,nn)"2);

nvpo(mm,nn)=sgrt((rp2+wp"2* |p2)* nii p(mm,nn)"2+wp 2* Im"2*igs™2...

+2*wp2* Im* | p*igs* niigp(mm,nn)-2* wp* Im* rp* igs* niidp(mm,nn));

end



%above the base speed

%Mode |

for nn=22:1:72;
whbe(mm,nn)=wbb(mm)-+(wee-wbb(mm))* (nn-21)/51;
wp=wbe(mm,nn);
s1=10e-4* (vpm"2-(rp2+wp2* |p"2)* i pm"2-wp2* Im"2* igs™2);
s2=10e-4* (2* wp*Im*rp*igs);s3=10e-4* (2* wp™2* Im*Ip*igs);
ta=s2/\2+s3"2;th=2* s1* s2;tc=s1"2-s3"2* ipm"2;
iidp(mm,nn)=-tb/(2* ta)+sqrt(tb"2-4* ta*tc)/(2*ta);
iigp(mm,nn)=(s1+s2*iidp(mm,nn))/s3;
tor(mm,nn)=1.5*4*igs*iidp(mm,nn)* Im;
po(mm,nn)=tor(mm,nn)* wbe(mm,nn)/4;
iip(mm,nn)=sgrt(iidp(mm,nn)*2+iigp(mm,nn)"2);
vpo(mm,nn)=sgrt((rp*2+wp”2* [p"2)* iip(mm,nn) 2+wp 2* Im"2*igsh2...

+2*wp2* Im* | p*igs*iigp(mm,nn)-2* wp* Im* rp*igs* iidp(mm,nn));

end

for nn=22:1:72;
nwbe(mm,nn)=-wbb(mm)+(-nwee+wbb(mm))* (nn-21)/51;
wp=abs(nwbe(mm,nn));
s1=10e-4* (vpm"2-(rp " 2+wp"2* [ p"2)* i pm2-wp 2% Im2* igs"2);
s2=10e-4* (2*wp*Im*rp*iqs);s3=10e-4* (2* wp"2* Im*Ip*iqs);
ta=s2/\2+s3"2;th=2* s1* s2;tc=s1"2-s3"2*ipm"2;

niidp(mm,nn)=-tb/(2* ta)+sgrt(tb"2-4*ta* tc)/(2* ta);



niigp(mm,nn)=(s1+s2*iidp(mm,nn))/s3;
ntor(mm,nn)=1.5*4*igs* niidp(mm,nn)*Im;
npo(mm,nn)=ntor(mm,nn)* nwbe(mm,nn)/4;
nii p(mm,nn)=sgrt(niidp(mm,nn)"2+niigp(mm,nn)"2);
nvpo(mm,nn)=sqrt((rp2+wp*2*|p2)* niip(mm,nn)*2+wp 2* Im"2*igqs™2...
+2*wp2* Im* | p*igs* niigp(mm,nn)-2* wp* Im* rp* igs* niidp(mm,nn));
end
%mode I
for nn=73:1:123;
whbe(mm,nn)=wee+(basetime* 377-wee)* (nn-73)/50;
wp=wbe(mm,nn);
iigp(mm,nn)=-wp"2* Im* |p* iqd/(rp"2+wp”2* 1p"2);
iidp(mm,nn)=(wp* Im* rp*igstvpm* sart(Ip"2* wp2+rp™2))/(rp2+wp”2* 1p2);
tor(mm,nn)=1.5*4*igs* iidp(mm,nn)*Im;
po(mm,nn)=tor(mm,nn)* wbe(mm,nn)/4;
iip(mm,nn)=sgrt(iidp(mm,nn)"2+iigp(mm,nn)*2);
vpo(mm,nn)=sgrt((rp2+wp™2* 1p*2)* ii p(mm,nn) 2+wp 2* Im"2* igs™2...
+2*wp2* Im* Ip* igs*iigp(mm,nn)-2* wp* Im* rp*igs* iidp(mm,nn));
end,
for nn=73:1:123;
nwbe(mm,nn)=-nwee+(-baseti me* 377+nwee)* (nn-73)/50;
wp=abs(nwbe(mm,nn));

niigp(mm,nn)=-wp"2* Im*|p* iqs/(rp2+wp™2* 1p*2);



niidp(mm,nn)=(wp* Im* rp*igs+vpm* sqrt(Ip"2* wp 2+rp”2))/(rp2+wpr2* 1pr2);
ntor(mm,nn)=1.5*4*igs* niidp(mm,nn)*Im;
npo(mm,nn)=ntor(mm,nn)* nwbe(mm,nn)/4;
niip(mm,nn)=sgrt(niidp(mm,nn)"2+niigp(mm,nn)"2);
nvpo(mm,nn)=sqrt((rp2+wp”2* [p~2)* niip(mm,nn)"2+wp 2* Im"2* igqs™2...
+2*wp2* Im* I p* igs* niigp(mm,nn)-2* wp* Im* rp* igs* niidp(mm,nn));
end;

end

Appendix 7B

Control Schemel:
K,=35.54
Kp=0.1042

K. =2.4019
Kq=15791

K4 =0.6955
J=0.0025 Kg-m?
B =0.0.

Control Schemelll:



K, =2.871
K,=0.58
J=0.0025 Kg-m?

B=0.0.

Appendix 7C

%Program used to calculate the I P parameters for two-order speed loop.
Y%aa0/(s"\2+aal* s+aa?)

%main program--KIP2.m and subprogram---KIP.m
clear al

Yoparameters

global ul cl hltrekl,;
pr=4;1m=0.02;iqs=8;tre=0.4;k1=-2;1p=0.041,
J=0.0025;b=1/J;B=0.0; kt=(3/2)*pr*Im*igs,
uo=5;co=1;ho=1

ss=fsolve('K1P',[uo co ho]")

ul=ss(1)

cl=s3(2)

hl=ss(3)

u2=ul+cin2

ki=ul*u2/(kt*b)

kp=((ul+u2)/b-B)/kt



end;

%Subprogram Kip2.m

function g=KIP(p)

globa ul cl hltre ki,

ul=p(1);c1=p(2);h1=p(3);

o=zeros(3,1);

%coefficiences parameter

q(1)=hl/ul-hl/(ul+cl”2)-1;

g(2)=h12/(2* u1)-h1"2* (1-k1)/(2* ul+c1”2)-k1* h172/(2* ul+2* c1/2);
q(3)=0.9-((h/ul)* (1-exp(-ul*tre))-(hl/(ul+cl 2))* (1-exp(-(ul+cl 2)*tre)));

end;

Appendix 7D

%program used to calculate the IP parameters for three-order speed loop.
%ae0l(S\3+aa2* S'2+aal* S+aao)

%main program--KIP3.m and subprogram---K1PP.m

clear al

Yoparameters

global ul c2 c3 h2 h3trekl k2;

k1=1.2;k2=-2;tre=0.4;

uo1=20;c02=2;c03=2;h02=0.3;ho3=3;



ss=fsolve('KI1PP',[uol co2 co3 ho2 ho3]")
ul=ss(1)

€2=55(2)

c3=s3(3)

h2=ss(4)

h3=ss(5)

u2=ul+c2"2;

u3=ul+c2"2+c3"2;

aa2=ul+u2+u3;
aal=ul*u2+u2*u3+u3*ul,
aa0=ul*u2*u3;

%Dr.QOjo controller
pr=4;Im=0.02;|p=0.04;igs=10;j=0.0025;
z=(3*prr2*Im*iqs)/(4*));

k3=lp*aa2

kd=Ip* aao/(z*k3)

k2=Ip* aal/(z* k3)

end;

%Subprogram of Kip3.m

function g=KIPP(p)

global ul c2 c3 h2 h3trekl k2;
ul=p(1);c2=p(2);c3=p(3);h2=p(4); h3=p(5);
g=zeros(5,1);

%coefficiences parameter



q(1)=-(h2+h3)* ((u1+c2"2)+(ul+c2"2+c3"2))+h2* (ul+(ul+c2"2+c32))...
+h3* (Ul+(ul+c2/2));
q(2)=-(h2+h3)/ul+h2/(ul+c2"2)+h3/(ul+c2"2+c3"2)-1;
q(3)=0.9-(-(h2+h3)* (1-exp(-ul*tre))/ul...
+h2* (1-exp(-(ul+c2"2)*tre))/(ul+c2"2)...
+h3* (1-exp(-(ul+c2"2+c372)* tre))/(ul+c2/2+c372));
q(4)=(-(h2+h3)* h2/(ul+(ul+c2/2))+h2"2/(2* (ul+c22))...
+h2*h3/((ul+c2/2)+(ul+c2"2+c3"2)))...
-k1* (-(h2+h3)* h3/(ul+(ul+c2"2+c3"2))...
+h2* h3/((ul+c22)+(ul+c2/2+c372))+h372/(2* (ul+c22+¢372)));
q(5)=((h2+h3)"2/(2* u1)-(h2+h3)*h2/(ul+(ul+c2°2))...
-(h2+h3)*h3/((ul+c2"2+c372)+ul))...
-k2* ((-(h2+h3)* h2/(ul+(ul+c2"2))...
+h2/2/(2* (ul+c2/2))+h2* h3/((ul+c2/2)+(ul+c272+c372)))...
+(-(h2+h3)*h3/(ul+(ul+c2"2+c372))+h2* h3/((ul+c2"2)+(ul+c2"2+c372))...
+h372/(2* (ul+c272+c3"2))));

end;
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