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 Brushless doubly-fed (dual-winding, mixed-pole) machines have received 
renewed attention in the last few years for use in adjustable-speed drives and variable 
speed generator systems. This class of machine has two three-phase stator windings 
wound for different pole numbers and a cage or a reluctance rotor. It appears to be highly 
attractive due to its structural simplicity, high efficiency, lower manufacturing cost, and 
its ability to operate in induction and synchronous machine modes with the possibility of 
sub- and super-synchronous speeds operations. 
 
 This dissertation presents an accurate model of the doubly-fed reluctance 
machine, which considers the core-loss of the machine. The q-d equivalent circuits with 
series core-loss resistances or shunt core-loss resistances are given. The analysis and 
performance characterizations of a few systems with this machine are set forth. These 
systems are:  
(1) Stand-alone doubly-fed reluctance generator system with capacitive excitation in both 

the power and control windings. 
(2) Doubly-fed synchronous generator system with DC current excitation in control 

windings and three-phase impedance load or a loaded three-phase diode rectifier in 
power windings. 

(3) Doubly-fed synchronous reluctance generator systems with controlled DC output 
voltage. DC-DC buck converter or boost converter is used as DC voltage regulator.  

(4) Field-orientation doubly-fed motor control system that can run in a wide speed range. 
IP controller, Input-output linearization controller, voltage-controlled voltage source 
PWM inverter, and current-controlled voltage source PWM inverter are used in two 
control schemes. 

 
Dynamic simulation, steady-state calculation, and experimental measurement are 

used to reveal its potential application.     
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LIST OF SYMBOLS 

p1, q = Pole pair number of the power and control windings, respectively 

Pr = Pole pair number of the salient rotor structure 

rp, rs = Per-phase winding resistance of the power and control windings, respectively 

IAp, Ias = Power winding phase ‘A’ current and control winding phase ‘a’ current, 
              respectively 



IAo = Phase ‘A’ load current 

IAr, IBr, ICr = Phase currents flowing into the three-phase diode rectifier 
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Lj,k, j = a, b, c; k = A, B, C, = Mutual inductances between the power and control winding 
           phases 

L1, L2 = Per-phase leakage inductance of the power and control winding, respectively 

Lp, Ls = Self-inductance of the power and control winding, respectively  

Lm12 = Mutual inductance between the power and control windings 

L’s, Lm = Referred control winding self-inductance and mutual inductance, between 
              power and control winding, respectively 



Llp = Lp – Lm = Per-phase effective leakage inductance of the control winding 
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CHAPTER 1 
RESEARCH BACKGROUND 

 

1.1 Introduction 

  

Brushless doubly-fed (dual-winding, mixed-pole) machines have received 

renewed attention in the last few years for use in adjustable-speed drives where efficiency 

optimization and energy conservation are desirable. This class of machine has two three-

phase stator windings wound for different pole numbers and a cage or a reluctance rotor. 

The three-phase stator windings that carry the load are called the power windings, while 

other three-phase windings usually used for speed and power flow control are called the 

control windings. The stator windings of the doubly fed machines are shown in Figure 

1.1. Two sets of stator windings can be connected together or physically separated. In 

Figure 1.1(a), by following special rule of winding connection, the resulting windings can 

be divided into two sets of stator windings with different pole numbers when viewed 

from two sets of leads, A-B-C and a-b-c. When these two sets of leads are powered 

simultaneously from two independent sources, the terminal currents will not affect each 

other due to the symmetric nature of the winding. In Figure 1.1(b), two stator windings 

are separated from each other. Separate stator windings are generally undesirable except 

added flexibility of design or operation is necessary.  

 In general, brushless doubly-fed induction machine has a special cage 

construction to support the two air-gap fields produced by the two sets of stator windings. 

1 



 The double-fed reluctance machine, on the other hand, has either a simple salient 

laminated pole (shown in Figure 1.1(c)) or axially laminated rotor structure with no cage 

windings (shown in Figure 1.1(d)).   

The concept of a single machine with two sets of polyphase stator windings, 

which do not couple directly but interact via a specially formed rotor, originated one of 

those ingenious techniques developed to overcome fixed speed limitation of the induction 

motor before the frequency conversion was developed using power electronics. The first 

machine to use this concept, called Hunt motor [1], resulted from the incorporation of 

two effective machines in a single magnetic circuit. Based on the ideas of the Hunt  

(b)

(d)

(a)

(c)

A B C a b c

 
 

Figure 1.1. Doubly-fed reluctance machines. (a) The same group stator windings, (b) The 

separate group stator windings, (c) Salient-pole rotor, (d) Axially-laminated rotor.   

 



Control Windings
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Figure 1.2. Schematic of BDFM ASD.
 

motor, the so-called self-cascaded induction machine [2] was made by overcoming the 

structural problems in design. Because the speed of the self-cascaded machine can be 

controllable without brush-gear by adjustable resistance, some significant industrial use 

has been found over several years [3]. Broadway and his associates [4-11] had 

extensively investigated this type of machine two decades ago. The advent of power 

electronics converters capable of adjustable-frequency, adjustable-voltage, bi-directional 

power flow has revived interest in the self-cascaded induction machine [12-13]. This 

interest is promoted by the demonstrated adjustable speed drive (ASD) capability in 

which one of the stator windings is supplied by a converter of a rating significantly 

smaller than that of the machine. This configuration, shown schematically in Figure 1.2, 

is now referred to as a brushless doubly fed machine (BDFM). Its basic adjustable speed 

principle is based on this equation: ωr  =  (ω1 + ω2)/Pr. Where ω1 is the angular frequency 

of the power winding currents, while ω2 is the angular frequency of the control winding 

currents. If Pr, rotor pole-pair number, and ω1 are fixed, the rotor speed ωr will be 

adjustable by increasing or decreasing the current frequency of the control windings. 

 



1.2 Literature Survey 

 

To explore the potential of brushless doubly-fed machine and improve its design 

to sufficiently obtain its expected advantages, intensive investigations have been 

undertaken. The research can be divided into four areas: 

(a) The development of dynamic and steady state models for performance 

evaluation and design of doubly-fed machines [15-26].  

(b) The investigation of doubly-fed machine as a motor in adjustable speed 

drives systems (ASD) [27-32].  

(c) The investigation of doubly-fed machine as a generator in variable speed, 

constant-frequency powers generation and in stand-alone application [33-41].  

(d) The design and analysis of the rotor structure of brushless doubly-fed                                          

                  machines with cage-rotor and reluctance rotor [42-45]. 

 

1.2.1 Modeling and Analysis of Doubly-Fed Reluctance Machines 

 

 An accurate model is very important for design and application engineers. The model can be used 
to investigate the performance of machines and show the effects of certain trends in machine design. The 
simulation, by using an accurate model, will provide adequate representation of full performance for 
control and stability. Recent research has developed a few models of brushless doubly-fed machine with 
cage and reluctance rotors. 
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Figure 1.3.  Steady-state equivalent circuit. 

In early research [4,8-11], a steady state equivalent circuit is given to predict 

machine's performance in the synchronous mode of operation and to investigate the 

characteristics of the drive system in steady state conditions. The steady-state equivalent 

circuit was shown in Figure 1.3 [5]. 

This circuit is similar to that of a conventional induction machine, except for the 

extra series impedance KpXpq and KqXpd in the primary and secondary circuits, 

respectively. The constants Kp and Kq are dependent on the magnetic properties of the 

rotor. Sq and Sd are slip values of primary and secondary windings. Xpq is a referred value 

of mutual reactance between the 2p-pole and 2q-pole component windings. β is the 

relative displacement between the 2q-pole component winding and the rotor at a zero 

instant in time. Xp and Xq represent the self-reactances of 2p-pole and 2q-pole component 

windings. Vp, Vq, ip, and iq are the voltages and currents of the 2p-pole and 2q-pole 

component windings.  

To investigate the characteristics of doubly-fed machines based on the steady 

state model, a common feature of all the above analytical work is the assumption that the 

machine is equivalent to two magnetically separate wound rotor motors, and different 



pole numbers of the rotors which are connected electrically and mounted on a common 

shaft. Although this approach is appropriate for conceptual understanding, it is not 

adequate for detailed machine and drive system design.  

Recently, a detailed, dynamic model has appeared in the literature [19]. This 

model was developed for the brushless doubly-fed induction machine with the cage-rotor. 

To reduce the complexity of the detailed model so that it is suitable for BDFM drive 

system dynamic studies, the two-axis model [20] was developed from the detailed model. 

It only considers the fundamental mutual inductance and transforms the equations to a 

two-axis rotor reference frame. The two-axis model and the detailed model have been 

successfully used to predict the effects of certain trend in machine design [17,18] and to 

develop closed speed control systems [21]. However, these models do not include the 

expressions of the machine parameters so that the application of the models to predict 

different running modes and configurations were limited.  

The two-axis model equivalent circuit of brushless doubly-fed machine with cage-rotor 

was shown in Figure 1.4[20] where Vq6, Vd6, iq6, and id6 represent 6-pole stator winding 

q-d voltages and currents, while Vq2, Vd2, iq2, and id2 represent 2-pole stator winding q-d 

voltages and currents. Vqr, Vdr, iqr, and idr are rotor winding q-d voltages and currents. The 

q-d flux linkages of stator windings with 6-pole and 2-pole are λq6, λd6, λq2, and λd2.  Lm6, 

Lm2, and Lrm represent the magnetizing inductances of stator windings (6-pole, 2-pole) 

and rotor winding, respectively. Ll6 and Ll2 are the leakage inductances of 6-pole and 2-

pole stator windings. Llr is leakage inductance of rotor winding. M6 and M2 are mutual 

inductances between stator windings (6-pole, 2-pole) and rotor winding.r6, r2, and rr 

represent the resistances of stator windings and rotor winding. 
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Figure 1.4. Two-axis dynamic model for the cage rotor machine. 



 

Figure 1.5. Q-d equivalent circuit of salient rotor machine. 

 

Recent work has led to more progress. One has presented rigorous analytical 

model  [22, 23] based on generalized harmonic theory [46]; another [24] described a 

time-stepping finite-element model, which can readily represent the effect of saturation in 

cage-rotor machine.    

For the brushless doubly-fed reluctance machine having either salient or axially 

laminated rotor structure, a transient model is presented in [25, 26]. It is developed from 

the concept of winding functions and the principles of d-q arbitrary reference frame 

transformation.  

The q-d equivalent circuit of this machine is shown in Figure 1.5[26]. This model 

ignores the influence of magnetic saturation and core loss, which are dominant in the 

operation of doubly-fed reluctance machines.  
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Figure 1.6. Conventional slip power recovery system.   

 

1.2.2 The Application of Brushless Doubly-Fed Machines as Motors and Generators 

 

The conventional slip power recovery system employing wound-field induction 

machines (shown in Figure 1.6), has reduced the required converter rating, but high cost 

and bulky size of wound-field induction machines and the maintenance required for the 

slip-rings, have unfortunately limited their applications.  

To avoid the disadvantages of the system, slip power recovery system with 

brushless reluctance machine has drawn much attention recently. It has the same 

advantage of substantially reducing the inverter power rating. Furthermore, since 

brushless doubly-fed reluctance machines have both field and armature windings on the 

stator and reluctance rotor does not carry currents, brushes and rotor copper loss are 

completely eliminated. Therefore the system has a simpler and more reliable structure, 

less maintenance cost and higher efficiency than the conventional system. Besides, recent 

research have explored the potential of applying the brushless doubly-fed machine to 

variable speed generating systems, such as wind power generation. 



In papers [28-31], the concept and implementation of field orientation control of 

brushless doubly-fed reluctance machine for variable speed drive and generating system 

are presented. The stator flux orientation is employed to achieve decoupled control of 

torque and active/reactive power through the secondary currents, so variable speed drive 

and generator operation with decoupled active/reactive power control can be achieved. 

To apply this system to restricted applications where accessibility to the rotor 

shaft is prohibited, the literature [30] presents a sensorless control scheme. It will further 

enhance the reliability and reduce the cost of the drive.    

 

1.3 Research Motivation 

 

The brushless doubly fed reluctance machine with simple saliency on the rotor is 

considered. It appears to be highly attractive due to its structural simplicity, high 

efficiency, lower manufacturing cost, and compatibility with existent production line 

[14].  

Some expected advantages of ASD or VSG system with this machine are listed 

below: 

(1) Its ability to operate in induction and synchronous machine modes with the 

possibility of sub- and super-synchronous speeds operations.  

(2) With a rotor structure optimized for minimum core loss, a double-fed reluctance 

machine may have better efficiency than an induction machine of the same rating.  

(3) Controllable power-factor and low harmonic distortion of the utility supply. 

(4) Robust machine construction. 



(5) Operation as an induction motor in the event of converter failure. 

  Literature survey yields some important information of this machine: 

(a) In recent years various efforts have been made to establish proper dynamic model and 

explore the design variations of the doubly-fed brushless machine with both cage-rotor 

and reluctance rotor. When the voltage, applied to one or both stator windings, is 

increased, the machine will naturally saturate. The performance analysis is less accurate 

if the model neglects the effects of iron loss and saturation. To solve this problem, a 

model [24] considering the effect of saturation has been presented for the application of 

the cage-rotor structure. The reluctance machine with saliency rotor has more iron loss 

and higher saturation than cage-rotor machine, so it is necessary to develop a model 

including the effect of iron loss and saturation. At present, the dynamic model developed 

for saliency rotor machine ignores these effects. Hence we need to look for a new model 

whose equations consider the general case which includes the influence of sequences of 

the stator windings and the saturation of the air-gap flux linkage on self and mutual 

inductance. We hope that this generalization can provide a more accurate insight into the 

machine design and performance analysis. 

(b) While a lot of work is being done on the analysis and control of doubly-fed reluctance 

machines used in adjustable-speed drive application, relatively little attention has been 

paid to their use as stand-alone generators. The idea of using doubly-fed reluctance 

machines as generators was inspired by the fact that these machines can run at high 

speeds where the efficiencies of prime-movers (turbines) are relatively high. Also, since 

the reluctance generator is run with a prime mover, there is no need for special starting 

arrangement. These advantages look very attractive for some applications such as 



aeroplane power systems, marine generators for gas-turbine drives and electrical vehicle 

generator systems. Hence, it is significant to explore the potential of this machine as 

stand alone generator and use it to develop new DC power generation schemes.  

One important characteristic of doubly-fed reluctance machine is its capability of 

operating in synchronous mode with one set of stator windings connected to a DC source. 

Little attention has been paid to its synchronous drive performance. The field orientation 

control strategy is now used in induction motors for achieving precise and fast dynamic 

speed and/or torque responses. Doubly-fed reluctance machine has been shown to be 

effective in variable-speed drive and generating system with the two sets of windings 

connected to AC sources. We hope the field orientation control of the doubly-fed 

reluctance machine in the synchronous mode can also achieve the same performance 

level as the induction machine. 

The motivation for this work was inspired from the above discussion. With the 

use of PWM converter and digital signal processor, we hope that the proposed research 

will promote the doubly-fed reluctance machines to find more applications in industry, 

military and power system due to its low cost, high reliability and flexible control 

methods.                                                              

 

 

 

 

 

 



CHAPTER 2 
 

PROPOSED RESEARCH 
 
 

The research work will include these topics: 

1. Modeling of a doubly-fed reluctance machine 

This topic will deal with the modeling and analysis of the doubly-fed reluctance 

machines with simple salient or laminated rotor structure having 2Pr poles and two stator 

windings with pole numbers given as 2p1 and 2q, respectively. 

  An experiment machine, supplied by the Advanced Motor Development Center of 

Emerson Motor Co. will be used for this research. Its stator winding arrangement and 

rotor structure are shown in Figure 1.1(a) and (c). The stator windings are distributed in 

36 slots. When viewed from one set of terminals (a, b, c), it is a 6-pole winding 

construction and a two pole, three-phase winding construction from the other set of 

terminals (A, B, C). 

The concept of the q-d harmonic balance is used to determine voltage equations. 

The electromagnetic torque and the contributions of the control and power windings to 

the mechanical output power is determined using the Manley-Rowe power-frequency 

relationships. The influence of the sequences of stator currents and machine windings are 

included in the analysis permitting the elucidation of the different possible modes of 

operations. The resulting model includes saturation effects and core losses, which is 

shown in Figure 2.1. In this equivalent circuit, Rcp and Rcs represent the core loss 

resistances of power windings and control windings, respectively. The inductance 

parameter, Lp, Ls, and Lm change with the air-gap flux linkage. Based on this model, the 

parameters of the experimental machine will be measured.  



 

Figure 2.1. Q-d complex equivalent circuit of doubly fed reluctance machine.  
 

To validate the modeling approach, the results of steady-state calculation and 

dynamic simulation will be compared with the experimental results from this machine.  

 

2. The performance characteristics of a doubly-fed self-excited reluctance generator 
 

Proposed self-excited generators are shown in Figure 2.2. A three phase capacitor 

banks will be connected to 6-pole winding, called control winding, and the load 

(impedance or rectifier) are connected to 2-pole winding, called power winding. A q-d 

equivalent circuit model accounting for saturation of the magnetic paths and saturation-

dependent core and harmonic loss resistance will be used to predict experimental results. 

The experimental measurement and computer simulation will show the steady state and 

dynamic performance characteristics of this generator system. 

3. Synchronous operation of a doubly-fed reluctance generator 
 

Proposed synchronous generator system is shown in Figure 1.3. For this generator 

system, control winding (6-pole) will be fed with direct current source, while the power 

winding (2-pole) will be connected with impedance load and rectifier load.  



 

 

Figure 2.2. Self-excited doubly-fed reluctance generator systems. 

 

Saturation effects, core, and harmonic losses will be included in the dynamic and steady 

state models  of generator system. Its performance characteristics will be investigated by 

experimental measurement and computer simulation. 

The operation performance of the doubly-fed synchronous reluctance generator as 

a controllable power source for DC loads will be investigated. System schematic diagram 

of feeding an impedance load and feeding a battery was shown in Figure 2.3. The system 

consists of a doubly fed reluctance machine, a DC-DC buck converter, a three-phase 

rectifier and a three-phase capacitor bank. Figure 2.3(a) shows the generator run by a 

source of mechanical power and feeding an impedance load, where a battery is used as  



 

 

(a) 

 

(b) 

Figure 2.3. Doubly-fed reluctant synchronous generator systems. (a) With DC-DC buck 

converter,(b) with boost converter.  

 

starting source. The generator scheme for battery charging is shown in Figure 2.3(b). The 

power winding will deliver the dc power to the load, with the control windings acting as 

the vehicle for excitation.  The excitation process  will be established  by  connecting  the 

generated dc voltage to the machine's control windings through the buck converter. This generator scheme 
is envisaged for stand-alone applications requiring regulated dc voltage or current and in charging battery 
in electrical automotive applications. The dynamic and steady state models of generator topologies will be 
set forth and used to calculate steady state performance characteristics. Its  performance  characteristics  
including  steady-state  
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Figure 2.4. Regulated DC power generation systems using doubly-fed synchronous 

reluctant machine.  (a) Feeding an impedance, (b) feeding battery. 

 

 



 
 

and dynamic will be shown through the computer simulation and experimental measurement.   

4. Field orientation control of a doubly-fed reluctance machine in the synchronous mode 

The dynamic equations of the doubly-fed synchronous reluctance machine in the 

rotor reference frame are: 

Vqp = rp Iqp + p λqp + ωr λdp                                  (2.1) 

Vdp = rp Idp + p λ dp - ωr λ qp                        (2.2) 

Vqs = rs Iqs + p λ qs                    (2.3) 

Vds = rs Ids + p λ ds                     (2.4) 

Te = 1.5 ( p1 + q ) Lm [ Idp Iqs - Iqp Ids ]      (2.5) 

where voltage equations of power winding and control winding are  (2.1) to (2.4), and 

torque equation is  (2.5). Iqs and Ids are the q-d control winding currents while Iqp and Idp 

are q-d power winding current. Lm is mutual inductance. By connecting the control 

winding to a DC current source Is, the following equations are obtained: 

Vqs = (2/3)Vdc,       Vds = 0 

Iqs = Is ,       Ids = 0    . 

Because of  Ids = 0, torque equation can be expressed as 

Te = 1.5 ( p1 + q ) Lm Idp Iqs.    . 

The air-gap flux is regulated using Iqs while Idp controls the instantaneous torque 

of doubly-fed synchronous reluctance motor. 

The field orientation principle defines conditions, which has been yielded from 

the derivation above, for decoupling the field control from the torque control. A field-

oriented doubly-fed synchronous reluctance machine will emulate a separately-excited dc 



motor. To investigate the performance of this machine running in a wide speed range, 

constant torque will be hold below the base speed while the field-weakening operation 

conditions must be used to achieve constant power output above the base speed. 

Below the base speed, the voltages of the primary winding rise linearly with 

speed, Iqs will be kept constant to maintain the constant magnetizing flux while Idp will be 

used to control the instantaneous torque with setting Iqp = 0.  

Above the base speed, the voltages of power winding are kept at rated value while 

the control winding current, Iqs, is equal to rated value. To maintain the constant output 

power and maximize the output torque, Iqp and Idp need to be regulated at the same time. 

This is called constant-power, field-weakening operation. 

Figure 2.5 shows the block diagram of two control systems. The space vector 

pulse width modulation (SV-PWM) technique and hysterestic current control technique 

will be used to control voltage source inverter, which will provide an adjustable 

frequency voltage source for the power windings. The control windings will be supplied 

by a DC current source. In control scheme I, a novel nonlinear controller is used and its 

principle as well as design procedure will be described. IP controller with no-overshoot 

performance is used in control scheme II, its design procedure will also be given. Its 

steady state characteristics will be calculated and dynamic performance will be 

demonstrated using computer simulation program. 
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Figure 2.5. Field orientation control systems for a doubly-fed synchronous reluctance 

machine. (a) Control scheme I, (b) control scheme II. 

 

The research work will make contribution in these areas: 



(1) A dynamic model of doubly-fed reluctance machine considering the effects of core 

loss and saturation will be presented. It will provide a more accurate model for the 

performance evaluation and the design of doubly fed reluctance machine. 

(2) The performance characteristics of doubly-fed self-excited reluctance generator and 

doubly-fed synchronous reluctance generator will be investigated and analysis 

methods will be presented. An innovative DC power generator scheme using doubly 

fed reluctance machine with salient rotor structure will be investigated. It has 

potential for use in stand-alone applications and in electric automobiles. 

(3) Two field orientation control schemes for a doubly-fed synchronous reluctance 

machine will be investigated for high-performance operation both in the constant 

torque and constant power region. The simulation results will supply valuable 

information for realization and application of the control systems. 

 
 
 
 
 
 



CHAPTER 3 
MODELING OF A DOUBLY-FED RELUCTANCE MACHINE 

 

3.1 Introduction 

 

This chapter mainly deals with the modeling and analysis of the doubly-fed 

reluctance machine. First, the concept of winding functions is used to derive the machine 

inductances. The influence of the sequences of stator currents and machine windings are 

included in the analysis permitting the elucidation of the different possible modes of 

operations. Conditions for the development of average electromagnetic torque are 

developed which also give insight into the machine design criteria. The electromagnetic 

torque and the contributions of the control and power windings to the mechanical output 

power are determined using the Manley-Rowe power-frequency relationships. The 

resulting model, including saturation effects and core losses, is used to unveil the inherent 

oscillatory instability of the machine and to predict the steady-state performance and 

dynamic characteristics for its motor or generator systems in the following chapters. 

 

3.2 Stator and Rotor Structure of the Experimental Machine 

  

 The model set forth in this chapter applies to doubly-fed reluctance machines with 

simple salient laminated rotor having 2Pr poles and two stator windings with pole 

numbers given as 2p1 and 2q, respectively. p1, q, and Pr, respectively, represent the pole- 

22 



pair number of the power windings, control windings, and rotor. The experimental 

machine used for this research has stator winding arrangement and rotor structure shown 

in Figure 3.1. Figure 3.1(a) shows the stator winding connection diagram of the machine 

distributed in 36 slots which when viewed from one set of terminals (a, b, and c), is a 

three-phase, 6-pole winding construction. From the other set of terminals (A, B, and C), a 

non-triplen two-pole, three-phase winding construction is observed. For any three-phase 

balance ac power supply, these two symmetrical sets of three-phase windings are 

electrically independent of each other. 
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Figure 3.1.  Stator and rotor structure of the experimental machine.  

(a) Stator windings. 

(b)  Rotor structure. 

 

 



3.3 Machine Model 

 

 In the analysis that follows, classical assumptions are made in order to obtain closed-

form equations for machine inductances. The permeabilities of the stator and rotor iron 

parts are assumed to be infinite; the stator winding distributions are approximated by 

their fundamental components; and the air-gap length is assumed to take a constant value 

g1 over the rotor arc and g2 elsewhere as shown in Figure 3.1(b). Saturation effects will 

be included in section 3.7. 

 The stator windings are supplied with three-phase voltage vectors VABC and Vabc. 

Since the frequencies of the supply voltages can be positive or negative (positive or nega-

tive current sequence), they are defined as k3ωp, k4ωs , respectively, for the 2p1 and 2q 

windings where K3 and K4 are either +1 or -1. The stator voltage differential equations 

expressed in terms of the phase currents and flux linkages are, therefore, expressed as 

[27] 

VABC = rp IABC + pλABC                                                                        (3.1) 

Vabc = rsIabc + pλabc                                             (3.2) 

where  

λABC = L ABC I ABC + L ABCabc I abc                 (3.3) 

λ  abc = L abc I abc + L abcABC I ABC                 (3.4) 
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 The per-phase resistances of the stator windings are rp and rs, respectively, and the 

derivative d/dt is given as p. The phase voltages, currents, and flux linkages of each set of 

three-phase stator windings are transformed to their respective q-d-n synchronous 

reference frame equations using the matrix transformation T(θp) and T(θs), which are 

defined as follows: 

Vqdnp = T(θp)VABC      (3.12) 

Vqdns = T(θs)Vabc      (3.13) 

Iqdnp = T(θp)IABC      (3.14) 

Iqdns = T(θs)Iabc      (3.15) 

λqdnp = T(θp)λABC      (3.16) 

λqdns = T(θs)λabc      (3.17) 

and 
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where θpo and θso are initial angles of the synchronous reference frames. Substituting 

Equations (3.18-3.21) into Equations (3.12-3.17), the resulting q-d-n voltage and flux 

linkage equations are given as 

Vqdnp = rpIqdnp + pλqdnp + K3 ϖpλqdnp    (3.22) 

Vqdns = rpIqdns + pλqdns + K4 ϖsλqdns    (3.23) 

λqdnp = LppIqdnp + LpsIqdns      (3.24) 

λqdns = LssIqdn + LspIqdnp      (3.25) 
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3.4 Calculation of Inductance Using Winding Function Theory 

 

 The q-d-n machine inductance matrices Lpp, Lsp and Lss are calculated using the 

winding function approach [48,49]. According to this method, the mutual inductance 

between and winding "i" and "j" in any machine (mean airgap radius is constant) is 

calculated by 

  d),(N),(N),(grlL iijj

2

0
rm

1
0ij φθφθφθφµ= ∫

π
− . 

The average air-gap radius is r, motor stack length is l, and the inverse gap-length is 

represented by g-1(φ,θrm). The angle, φ, defines the angular position along the stator inner 

diameter while the angular position of the rotor with respect to the stator reference is θrm. 

The winding functions of winding "i" and "j" are given, respectively, as Ni(φ,  θrm) and 

Nj(φ, θrm). The term Ni(φ, θrm) or Nj(φ, θrm) is called the winding function and represents, 

in effect, the MMF distribution along the air-gap for an unit current in winding "i" or "j". 

If this winding is located on the stator, the winding is only a function of the stator 



peripheral angle φ while if the winding is located on the rotor the winding must be 

expressed as a function of both φ and the mechanical position of the rotor θrm. 

Winding functions representing the six and two pole windings are drawn in Figures 

3.2 and 3.3, respectively.  Although the winding functions for the mixed-pole machine 

have substantial space harmonic contents as shown in [14,50], they are represented here 

by their fundamental components since only these components, as shown in Figure 3.4, 

have the greatest effect on energy conversion. 
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Figure 3.2. Winding function for 6-pole phase A.  
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Figure 3.3. Winding function for 2-pole phase a. 
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Figure 3.4. Fundamental components of the winding functions. 

 These components of the phase windings accounting for the winding sequences are 

expressed as 
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By using the synchronous reference frame T(θp), the q-d components of phase 

winding function NA, NB and NC are expressed as 

))(cos( 1 ppqp KpNN φφ −=      (3.36) 

))(sin( 1 ppdp KpNN φφ −=  .                 (3.37) 



By using the synchronous reference frame T(θs), the q-d components of phase 

winding function Na, Nb and Nc are expressed as 

))(cos( 2 qsqs KqNN φφ −=      (3.38) 

))(sin( 2 qsds KqNN φφ −=  .                 (3.39) 

K1 and K2, the signs of the winding sequence, as well as Np and Ns are defined as 
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In Equation (3.41), N1 and N2 are the numbers of series connected turns per-phase of 

Cp and Cq circuits for the power and control windings, respectively. The fundamental 

winding distribution factors are defined as Kωp and Kωq, respectively. The initial angular 

displacements between the fundamental components of the winding functions and the 

stator reference are φp and φq. 

The air-gap function from Figure 3.1(b) is expressed as 
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where n = 0, 1, 2, 3, 4...2Pr-1 and the rotor pole pitch is α. With Equations (3.30-3.42) 

substituted in Equations (3.27-3.29), expressions for inductances comprising Lpp, Lss, and 

Lps are obtained. They are expressed as 
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 The expressions for these inductances are given in Appendix 3A. All inductances of 

the zero-sequence winding components are zero. 



 To realize the electric-mechanical energy conversion, the frequency of the speed 

voltage in a given phase must be the same as the frequency of the current flowing in the 

same phase. To reduce the pulsating torque, the self-induced voltages must also have the 

same frequency as those of the currents. By checking q-d component expressions of 

inductance Lp, Ls, and Lps in Appendix 3A, we can see that all q-d components are equal 

to constant, if the combination of the pole-pair numbers: p1, q, and Pr, and the relationship 

of frequencies among ωp, ωs, and ωrm ,  are satisfied as expressed in Condition I and 

Condition II. The constant q-d inductance components make sure that the requirements of 

the electric-mechanical energy conversion and reducing the pulsating torque are satisfied.  
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where m and n are positive or negative integers. Different operating modes are 

established from Condition I and Condition II for possible values of p1, q, Pr by 

considering different combinations of values of K1, K2, K3 and K4. In general, it is found 

that the rotor speed is given as 

(p1 ± q) ωrm = ω p ± ω s. 

 By substituting the constraint condition, Condition I or Condition II, into the 

expressions of q-d inductance elements in Appendix 3A, we can prove that all of them 

are constants.  

 

3.5 Calculation of Electromagnetic Torque 

 

The mechanical equation of motion for the machine is expressed as  

Jpθ rm = Te - TL                 (3.56) 



where the load torque is TL, the moment of inertia of the rotor and connected load is J and 

Te is the developed electromagnetic torque. The electromagnetic torque is calculated 

from the magnetic co-energy ωco as 
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If linearity is assumed (infinite permeability), the co-energy is equal to the stored 

magnetic energy given as 

[ ] [ ][ ] [ ] [ ][ ]

[ ] [ ][ ]                                                                     .            

2

1

2

1

abcABCabc
T

ABC

abcabc
T

abcABCABC
T

ABCco

ILI

ILIILI

+

+=ω
(3.58) 

Equation (3.58) is further expressed in terms of q-d-n quantities using Equations (3.12-

3.15) and relationships between q-d inductance elements and a-b-c inductance elements 

expressed as follows 
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The developed electromagnetic torque becomes 
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All the derivative components of inductance [Lpp], [Lss], and [Lps] are listed in Appendix 

3B.  

 The torque is time varying in general since the inductances are time varying and Iqdns, 

Iqdnp are constant quantities during steady-state operation conditions. By substituting the 

constraint conditions under Condition I or Condition II into the expressions in the 

Appendix 3B, the q-d-n components of inductance [Lpp]', [Lss]' and [Lps]' can be obtained. 

The results are 
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 Under the Condition I or Condition II, Equation (3.59) will become 
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The power winding q-axis and d-axis flux linkage are expressed as 

                                                    λqp = LqqmIqp + LqdmIqs         

λdp = LddmIdp + LqdmIds    , 

By using these two equations and considering the equality of  Iqqm = Iddm, which can be 

proven using their expressions and constraint conditions in Appendix 3B, finally an 

average torque under Condition I and condition II are given respectively as 

Under Condition I 
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Under Condition II 
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 It is usual in electric machine analysis to refer all state variables to one set of 

windings. If we refer the state variables of the control windings to the power windings, 

Equations (3.22-3.25) become 
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3.6 Some Design Aspects 

 

 Here certain design criteria arising from the derived model equations are briefly 

discussed. The selection of the number of poles for the stator windings and the rotor is 

based on constraint conditions in Condition I and Condition II. Simplification of these 

equations result in Equations (3.66-3.69) which explicitly calculate the two stator pole 

numbers given the number of rotor poles: 
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 It can be easily verified that the pole numbers of our test machine with Pr = 2, p1 = 1, 

q = 3 are generated from Equations (3.66-3.67) when n = -1 and m = 1. 

 The "effective" leakage inductances of two stator windings are the differences 

between the self-inductances and the magnetizing inductances. Figure 3.6 shows the 

graphs of the "effective" leakage factors Kp and Ks defined as 
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 It is observed from Figure 3.5 that the leakage factors are small when the turn number 

per pole of the two stator windings are equal with αm less than 0.5. Ultimately, the pole 

arc factor selected for any design must take into consideration the saturation effect, the 

effect of the space harmonic components of the stator windings and the curvature of the 

rotor pole.   

 The leakage inductances of the power and control windings of the experimental 

machine are relatively high, this is partly because the machine design was not optimized 

and moreover, the magnetizing inductance of this salient-pole structure is theoretically 

limited by the practical feasible pole-arc of the rotor that ensures that the rotor and stator 

teeth under normal operating conditions are not in deep saturation. However, it is 

expected that a doubly fed reluctance machine with an axially laminated or multiple flux 

barrier rotor structure have potentially smaller “leakage” inductances similar to those of  

 



0 0.1 0.2 0.3 0.4 0.5
-0.5

0

0.5

K
p

Nps=1.0

Nps=0.5

αm  
( a ) 

 
 

0 0 .2 0 .4 0 .6
0

0 .5

1

1 .5

2

K
s

Nps=0.5

Nps=1.0

αm
 

(b) 
 
 

 

Figure 3.5. Effective leakage factors for values of αm and ratio of effective turns per 

pole of the power winding, Nps = Np/Ns. (a) Power windings, (b) Control windings. 

 

 



three-phase synchronous or three-phase induction machine. How to optimize the design of this kind of 
machines for achieving best performance still have a lot of work to do. 

 

3.7 Including Saturation Effects 

 

 Experimental waveforms of winding currents and air-gap flux linkage show that the 

machine has significant space-harmonic current components and is highly saturated at 

moderate supply voltage levels. No-load test also reveals that the core loss is significant. 

 Traditionally, core loss [53,54] has been divided into two components: hysteresis loss 

and eddy current loss. Within the iron of the machine, there are many small regions 

called domains. In each domain, all the atoms are aligned with their magnetic fields 

pointing in the same direction. Once the domains are aligned, some of them will remain 

aligned until a source of external energy is supplied to change them. The fact that turning 

domains in the iron requires energy leads to a common type of energy loss. So the 

hysteresis loss in an iron core of the machine is the energy required to accomplishing the 

reorientation of domains during each cycle of the ac current applied to the core. Eddy 

current losses are caused by induced electrical currents called eddy currents, since they 

tend to flow in closed paths within the core of the machine. Eddy current is proportional 

to the size of the paths they follow within the core. Using lamination stator and insulating 

resin between each lamination are the effect way to limit the eddy current and its loss. 

  It is clear that these significant effects must be included in the model to give accurate 

performance predictions. There are two ways to represent this part of losses, using shunt 

loss resistances or series loss resistances. These are shown in the equivalent circuit given  
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( b ) 

Figure 3.6. Q-d equivalent circuit with shunt core-loss resistances. (a) q-axis equivalent 

circuit, (b) d-axis equivalent circuit. 

 

in Figures 3.6 and 3.7. In Figure 3.6, the resulting voltage equations including the shunt 

core loss resistances are expressed as 
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 In Figure 3.7, the resulting voltage equations including the series core loss resistances 

are expressed as 
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Figure 3.7. Q-d equivalent circuits with series core-loss resistances. (a) q-axis equivalent 

circuit, (b) d-axis equivalent circuit. 
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 These two equivalent circuits are interchangeably used in the steady-state calculation 

and dynamic simulation, the same results are obtained using any one of them. By 

comparing two equivalent circuits, we find that the equivalent circuit in Figure 3.6 is 

more complicated and need accompanying computational burden, but the physical 

meaning is more clear, while Figure 3.7 is simpler for the equation derivation and 

parameter calculation. 

 

3.8 Steady-State Equivalent Circuits 

 

 The complex form equations for the q-d equivalent circuits in Figure 3.7, can be 

expressed as 
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Under the steady-state, the derivation items, '
qdsqdp p  and p λλ , will equal to zero, 

substitute Equations (3.72-3.73) into (3.70-3.71), we can obtain the equations 
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 Using the transformations of T(θs) and T(θp) and rewriting the Equations (3.74-3.75), 

the steady-state equations for phase A and a of the power winding and control winding 

are expressed as 
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 According to these two equations, the steady-state equivalent circuit is shown in 

Figure 3.8. This is the situation considering the series core loss resistances.  



 

Figure 3.8.  Steady-state equivalent circuit with series core-loss resistances.  

 

 

Figure 3.9. Steady-state equivalent circuit with shunt core-loss resistances.  

  

 Using the same way, we can derive the steady-state equations and equivalent circuit 

for the situation considering the shunt core-loss resistances. The steady-state equations 

are expressed as 
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 The steady-state equivalent circuit with shunt core-loss resistance is shown in Figure 

3.9. 

 

3.9 Calculation of Machine Parameters 

 

 The inductance and resistance values for the steady-state equivalent circuit can be 

found by a set of blocked rotor tests. For example, when the parameters of the power 

windings are tested, the rotor is clamped in the locked position, and an adjustable voltage 

source with 60Hz frequency is connected to the power winding and adjusted from 0 to 

the line-line rated voltage. Measurements are made of the voltage, current, and input 

power for power winding, and open circuit's voltage for control winding. The control 

winding has no connection with supply. 

 To test the parameters for the control winding, control winding is connected to 

adjustable voltage source while the power winding has no connection with any supply. 

 After collecting these test date, the parameters can be calculated for two kinds of 

steady-state equivalent circuits. 

 According to the angular frequency relationship among power winding, control 

winding and rotor 

rsp ω=ω−ω  , 

and since  rotor is blocked,  



we can obtain 

ωr = 0,  ωp = ωs ,  and 1s
p

s =
ω
ω

=  . 

Winding resistances, rp and rs, can be directly measured by using the multiple function 

meters. 

 The other parameters’ calculation is based on the equivalent circuits with series core-

loss resistance (Figure 3.8) or with shunt core-loss resistance (Figure 3.9). 

A. Equivalent Circuit with Series Core-loss Resistances  (considering turn ratio) 

1.Open-circuit control winding, Ia = 0 

 For the given input power, voltage, and current for power windings, and open-circuit 

voltage for control windings,  
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2. Open-circuit power windings, IA = 0. 



 For the given input power, voltage, and current for control winding and open-circuit 

voltage for power winding, 
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 By using these equations, the calculation results can be used to look for approximate 

polynomial equations relating the machine parameters to the air-gap flux linkage 

magnitude. These equations are given as 
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                                217.147.105.4 2 +−−= mmmpR λλ  

                                58.125.424.7 2' +−= mmmsR λλ   . 

 The calculation results and approximate polynomial equations for these parameters 

are plotted in Figures 3.10(a)-(e). 



 

    (a)      (b) 

 

    (c)                      (d) 

 

(e) 

Figure 3.10. Machine parameters using steady-state equivalent circuits with series core-

loss resistances.  (a) Self-inductance of the power winding, (b) Series core-loss resistance 

of the power winding, (c) Self-inductance of the control winding, (d) Series core-loss 

resistance of the control winding, (e) Magnetizing inductance. 



  

 

 

(a) 

 

(b) 

Figure 3.11. Approximate steady-state equivalent circuit for the parameter calculation. 

(a) For power windings, (b) for control windings. 

 

B. Equivalent Circuit with Shunt Core-loss Resistances  (considering turn ratio) 

1.Open-circuit control winding, Ia = 0 

 To calculate parameters for the power winding, its input power P3φ, voltage VA, and 

current IA, and control winding open-circuit voltage Va are measured. The approximated 



equivalent circuit, obtained from Figure 3.9 and shown in Figure 3.11(a), is used to 

derive the expressions of the parameters. 
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core-loss resistance Rmp, self-inductance Lp, and magnetizing inductance Lm are 

expressed as 
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2.Open-circuit power winding, IA = 0 

 To calculate parameters for the control winding, its input power P3φ, voltage Va, and 

current Ia, and power winding open-circuit voltage VA are measured. The approximated 

equivalent circuit shown in Figure 3.11(b) is used to derive the expressions of the 

parameters. 

 Input reactance of the control winding is 
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open-circuit power winding voltage will be 
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core-loss resistance '
msR , self-inductance '

sL , and magnetizing inductance mL are 

expressed as 
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 By using these equations, the calculation results can be used to look for approximate 

polynomial equations relating the control winding's parameters to the air-gap flux linkage 

magnitude. These equations are given as 



 

    (a)      (b) 

 

    (c)      (d)  

Figure 3.12.  Machine parameters using steady-state equivalent circuit with shunt core-

loss resistances. (a) Self-inductance of the power winding, (b) Self-inductance of the 

control winding, (c) The magnetizing inductance, (d) The shunt core-loss resistances for 

the power winding and control winding.  
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   13218655022 2 ++−= mmmpR λλ  

   2.882.20148218 2' ++−= mmmsR λλ  . 

 The calculation results and approximate polynomial equations for these parameters  

are plotted in Figures 3.12(a)-(d).  

 By comparing two groups of the machine parameters calculated from two different 

steady-state equivalent circuits, we can see that power winding self-inductance Lp, 

control winding self-inductance '
sL , and magnetizing inductance mL  are very close, but 

series core loss resistances ( '
msR , mpR ) are  smaller than the shunt core loss resistances. 

 

3.10 Manley-Rowe Relationships 

 

 The concept of power conservation at each frequency which governs the 

operation of a multi-frequency, dissipationless, linear, and time-invariant circuits is 

generally not applicable to circuits or systems with time-varying or nonlinear inductances 

(frequency converters). In such circuits, the powers delivered to or drawn from these 

nonlinear or time-varying inductances by the individual spectral frequency components 

of the operating signals are, in addition to the energy conservation law, governed by 

further principles which control the distribution of the energy exchanged between the 

nonlinear or time-varying inductances and the remaining part of the circuit or system. 



Power relations for nonlinear resistive and storage elements excited by independent 

harmonic signals of different frequencies were published by Manley-Rowe [57] and 

Pantell [58].  These relations were applied to the first time by Penfield [59] and more 

recently by Russell and Pickup to elucidate the real power transfer mechanism from the 

stator circuit to the rotor circuit and the shaft [60]. 

 The Manley-Rowe average real power/frequency relationships for a 

dissipationless circuit with nonlinear or time-varying inductances excited by two sources 

of independent angular frequencies (ω1 and ω2) are expressed as [57-60] 
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where P(mω1+nω2) is the average real power flow due to a signal with an angular 

frequency of (mω1+nω2). Equations (3.78-3.79) do not guarantee that the different 

frequencies they generate exist in the circuit under consideration and they give no 

information about the frequency components generated by the nonlinear or time-varying 

inductances (which are frequency converters) in the circuit. 

      The complex-variable d-q voltage equations of the doubly fed machine are given as  

Vqdp = rpIqdp + pλqdp + jωpλqdp     (3.80) 

Vqds = rsIqds + pλqds + jωsλqds   .                                                                         (3.81) 

The apparent input power equations for the power and control winding circuits are 

given as 
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      Also, the real powers sent by the power and control windings across the air-gap to the 

shaft at steady-state are from equations (3.82-3.83) and are expressed as 
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 The Manley-Rowe real power/frequency relationships are now applied to 

determine the active power distribution of the doubly fed reluctance machines. These 

relationships are only applicable to the input and output real powers (to and from the air-

gap) of the time-varying mutual inductances between the power and control windings. 

The independent two angular frequency are ω1 and zω2 and the dependent angular 

frequency is ω1 + zω2, which is the angular frequency of the air-gap power converted to 

the developed mechanical power. Assuming that power input into the time-varying 

inductances is positive and output power is negative, use of Equations (3.78-3.79) results 

in 
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where P(ω1) is the real power contributed by the power winding circuit to the air-gap, the 

contribution of the control winding circuit is P(zω2) and P(ω1+ω2) is the active power 

converted to mechanical power to produce the electromechanical torque. From Equations 



(3.88-3.89) which are deduced from Equations (3.86-3.87), the following observations 

are deduced 
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The ratio of the contributions of the control and power windings to the developed 

mechanical power is the same as the ratio of their source frequencies. Hence, if the 

control winding circuit is used to affect a small change of shaft speed around the 

synchronous speed of the power winding frequency in such applications as pumps and 

compressors, a relatively small rated inverter is required (compared to the power winding 

power requirement) confirming the experimental observation in [30]. However, in high-

performance drive applications where extended speed range of operation is desirable, the  

 

 

 

Figure 3.13. Air-gap power contribution of power (Pp) and control (Ps) windings 

normalized with developed mechanical power as a function of control winding frequency. 



 
power requirement of the inverter feeding the control winding circuit may indeed exceed 

that of the power winding circuit when ω2 is greater than ω1. 

Figure 3.13 and Equation (3.89) show the contributions of the control and power 

winding circuits to the developed mechanical power. We can see that with increase of 

control winding frequency, the relative active power contribution of the power winding 

decreases to the point when it equals that of the control winding when ω2 = ω1 after 

which frequency the control winding active power contribution predominates. Hence, a 

doubly fed reluctance motor drive requiring a large-speed operation range is likely to be 

very expensive in view of the increase of inverter active power rating. 

The electromagnetic torque of the machine is defined as the ratio of the developed 

mechanical power to the shaft speed, ωrm. From Equations (3.86-3.87), we have 
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Since power is invariant to reference frame transformations, the real power 

transferred from the power and control winding circuits across the airgap are given by 

equations (3.84-3.85). Hence, the electromagnetic torque is given as 

[ ] [ ]  Re)(
2

3
Re)(

2

3 *
1

*
1 qdsqdsqdpqdpe IjalqpIjalqpT λλ +=+= .             (3.91) 

 

 

 

 



3.11 Transient and Oscillatory Behavior 

 

 The starting transient, dynamic response, and waveforms of the machine operating as a motor can 
be simulated using Equations (3.92-3.102) with assumed power and control winding voltage sources.  
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To obtain Equations (3.100) and (3.101), flux linkage λdm, λqm, λ’ds, λdp, λ’qs, and λqp are 

defined as 
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According these expressions, the current Idp, Iqp, I’ds, and I’qs can be represented by the 

flux linkage and are expressed as follows 
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We define the inductance leakage as 
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By substituting the expressions of Idp, Iqp, I’ds, and I’qs into the expressions of λdm and 

λqm, we can obtain 
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Finally, Equations (3-100) and (3-101) are obtained from above derivation. 

 However, it is required to determine either the reference frame angle of the control or 

power winding circuit and to properly account for saturation effect. These are achieved 

by the alignment of the air-gap flux linkage on the q-axis such that the d-axis air-gap flux 

linkage and its derivative are forced to be zero every time. When these constraints are 

applied to Equations (3.93, 3.95, 3.100-3.102), Equation (3.103) results from which ωp 

can be determined 
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Figures 3.14 and 3.15 show the simulated no-load starting transient of the experimental 

machine in which the control winding circuit is supplied with a three-phase inverter with 

a constant Volts/Hz control scheme. During the initial starting period, the control 

windings are shorted after which the inverter connected to the control winding circuit has 

its frequency ramped linearly and levels off at 10Hz. It is significant to note that after 

reaching a steady-state operating condition, the rotor experiences a bounded oscillation 

around the average speed. However, when the frequency of the inverter is ramped to 15 

Hz and kept constant at that frequency as shown in Figure 3.15 (showing only the steady-

state waveform), the rotor speed oscillatory component is continuously increasing. After 

some time, a new operating speed is found with a lower average speed and a different 

frequency of rotor speed oscillation. A jump phenomenon has occurred. These simulation 

results have been confirmed in the laboratory. Figures 3.16(a) and 3.17(a) present 

experimental power winding current waveforms when inverter frequency is 10HZ and 

15HZ.  Figure 3.16(b) and Figure 3.17(b) show the significant power spectra of the 

power winding current confirming the presence of the side-band current components 

when the control winding frequency is 15Hz. The lower side-band current components of 

the control and power windings give rise to a negative damping torque leading to the 

machine oscillatory rotor motion.  
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Figure 3.14. No-load transient of rotor speed and torque when inverter frequency = 10 

Hz. (a) The rotor speed of no-load, (b) The electromagnetic torque vs. rotor speed. 

 

(a) (b)   

Figure 3.15. No-load transient of rotor speed and torque when inverter frequency = 15 

Hz. (a) The rotor speed, (b) Electromagnetic torque vs. rotor speed. 
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Figure 3.16. Experimental waveforms showing machine oscillatory motion with inverter 

frequency=10Hz. (a) Phase 'a' power winding current, (b) Power spectra of the power 

winding current. 

 

 

(a) (b)

Figure 3.17. Experimental waveforms showing machine oscillatory motion with inverter 

frequency=15Hz. (a) Phase 'a' power winding current, (b) Power spectra of the power 

winding current. 

 

 

 



3.12 Synchronous Motor 

 

 With the power windings connected to a balanced three-phase voltage source 

having a frequency of ωp and the control winding connected to a DC voltage source as 

shown in Figure 3.18, the doubly-fed reluctance machine is running in synchronous 

operation condition. The detailed information about the synchronous operation is referred 

to in Chapters 5 and 7.  

The power winding and control winding q-d equations of the doubly-fed synchronous 

reluctance machine in the rotor reference frame are: 

dppqpqppqp pIRV λωλ ++=                 (3.104) 

qppdpdppdp pIRV λωλ −+=      (3.105) 

''''
qsqssqs pIRV λ+=       (3.106) 

 ''''
dsdssds pIRV λ+=       (3.107) 
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Figure 3.18. Schematic diagram of the doubly-fed synchronous reluctance motor with 

DC excitation. 

 



where 

'
qsmqppqp ILIL +=λ       (3.108) 

'
dsmdppdp ILIL +=λ       (3.109) 

qpmqssqs ILIL += '''λ       (3.110) 

dpmdssds ILIL += '''λ  .                (3.111) 

Torque equation is expressed as 
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Under the steady-state condition and considering the following conditions: 
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The following equations are obtained 
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dpppqppqp ILIRV ω−=      (3.114) 

)( '
smqpppdppdp ILILIRV +−= ω    (3.115) 

The peak value of power winding voltage is expressed as 

222
dpqpm VVV +=       (3.116) 

Substituting equation (3.114) and (3.115) into (3.116) yields 

02 =+⋅+⋅ cqpbqpa CICIC                     (3.117) 

Where 

222
pppa RLC += ω  



'22 spmpb ILLC ω=  

22'2 )()( msmpdppdpppc VILIRILC −−+= ωω  

Then Iqp can be solved using equation (3.117) and expressed as 
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2 −−−
=  .                 (3.119) 

Only Equation (3.118) is used in the calculation because the solution of Equation (3.119) leads to poorer 
power factor results. 

The phase voltage and current of power windings are 

2
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+
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VV
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+
=  . 

The active power and apparent power as well as power factor can be computed 

using following equations: 
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3
dpdpqpqpo VIVIP +=  
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o

o

S

P
pf =   . 

By applying a given constant load to the shaft of the synchronous motor and 

varying the control winding current from underexcitation to overexcitation and recording 

the power winding current at each step, the curves of Figure 3.19(a) are obtained. The 



power winding phase current is plotted against the dc control winding current for 2 N.m, 

4 N.m, and 8 N.m load torque values, respectively. As shown in Figure 3.19(b), the 

power factor is plotted against the dc control winding current for various given loads. 

Note that both sets of curves show that a slightly increased control winding current is 

required to produce unite power factor as the load is increased (points 1, 2, and 3). As 

load is applied,  not  only  does the power  winding  current  rise,  but  is also necessary to  
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(b) (d) 
Figure 3.19. Doubly-fed synchronous reluctance motor characteristics. (a) Motor power factor vs. power 

winding current, (b) motor power vs. control winding current, (c) power winding current vs. control 

winding current, (d) q-axis current of power windings vs. control winding current. 

increase the control winding current. Figure 3.19(c) show the curves of power winding 

input power against the control winding current. Note that slight input power increment 



for each load value is necessary to balance the losses of increment of control winding and 

power winding as increment. Figure 3.19(d) shows the cures of q-axis current of power 

windings against the control winding current, where we can see that the unity power 

factor is achieved when the maximum q-axis current of power windings is obtained. We 

also note that, the higher the load torque, the higher the magnitude of maximum q-axis 

current of power windings (see points 1, 2, and 3).   

 

 

3.13 Conclusion 

 

This chapter presents an accurate model of the doubly-fed reluctance machine, 

which consider the core-loss of the machine. The q-d equivalent circuits with series core-

loss resistance or shunt core-loss resistance are given. The Manley-Rowe power-

frequency relationships are used to determine the relative contribution of each stator 

winding circuit to the developed mechanical power. The machine inherent parameters are 

obtained by using the steady-state equivalent circuits and experimental test. These 

parameters and the model are successfully used to exposure the inherent oscillatory 

instability of the doubly fed reluctance machine in the motoring mode by computer 

simulation and experiment. They also will be used in the following chapters to investigate 

the steady-state characteristics and dynamic performance of some application systems 

with the doubly-fed reluctance machine.  



CHAPTER 4 

 
PERFORMANCE CHARACTERISTICS OF DOUBLY-FED  

RELUCTANCE GENERATOR  

 
 

4.1 Introduction 

 

 The idea of using doubly-fed reluctance machines as generator was inspired by 

the fact [50, 40, 36]: 

(1) These machines can run at high speeds where the efficiencies of prime-mover 

(turbines) are relatively high. 

(2) As the reluctance generator is run with a prime-mover, there is no need for a special 

starting arrangement.  

(3) In stand-alone generator applications with regulated turbine speed, an automatically 

regulated load frequency is achieved if two stator windings are connected in series. 

(4) According to the frequency relationship (ωp + ωs = ωr) between the power winding 

and control winding, the frequency ωp of the generated voltage in power winding can be 

controlled by regulating ωs and active power (from battery source, solar system, for 

example) and reactive power provided to the load using a DC/AC PWM inverter in the 

secondary winding as the rotor speed ωr varies. So the dual-winding reluctance 

generators have a better controllability than a squirrel-cage induction generator that 

required a rectifier-DC/AC-PWM inverter system to control the load voltage with no 

facility to augment the power provided by the shaft to meet excessive load demand.  

(5) The dual-winding machine can be use as a generator for wind-power transfer. With 
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wind as the power source, the frequency and current in the control windings are 

manipulated using current-regulated voltage-source, pulsewidth-modulated (VSI-PWM) 

inverters to track the power speed profile of the wind turbine for maximum power 

capture. 

         This chapter explores the use of a dual-winding reluctance machine as an 

autonomous generator system in which reactive power is supplied to sustain the load. 

Two stand-alone generator systems considered in this chapter are shown schematically in 

Figure 4.1. In Figure 4.1a, the generator feeds balanced 3-phase load impedance. 3-

capacitors are connected across the power and control windings to provide reactive power 

to the generator. In Figure 4.1b, power winding is connected to a rectifier that feeds an 

impedance load and control winding has the same connection as the system in Figure 

4.1a. Section 4.2 and 4.3 give the derivation of the generator load model and the 

generator steady-state model. Calculated, measured generator steady-state characteristic 

curves and waveforms are included in Section 4.4 and 4.5. The dynamical simulation 

results of the self-excitation and de-excitation are given in Section 4.6. Conclusions are 

drawn in Section 4.7.   

 

4.2 Model of Generator loads 

 

 The phase voltages and phase currents are balanced. The phase voltage and 

current for phase A of the power winding circuit are defined as 
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p
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Figure 4.1. Schematic diagram of stand-alone generator systems. 

(a)With impedance load (Top), (b) with a loaded 3-phase diode 

rectifier (Bottom). 
 
Similarly, the phase-a voltage and current of the control winding are giving as 
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   (4.2) 

 The phase voltage equations of the load and capacitor circuits from Figure 4.1(a) 

are expressed as 

q

as
as C

I
pV −=               (4.3) 
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pV +−=                                             (4.4) 

AooAooAP IRpILV +=  .             (4.5) 

Substituting Equations (4.1) and (4.2) into Equations (4.3)-(4.5) and using harmonic 

balance principles, the following complex-form equations are obtained: 
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From Figure 4.1(b), the phase-A capacitor voltage, voltage and current equations of the 

rectifier and connected load are 
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dcIcrdbIBrdaIAr ISIISIISI ===    ,  ,             (4.10) 

 

VpcvBpbvApavd VSVSVSV ++=                              (4.11) 
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Assuming that the filter inductor current and filter capacitor voltage are DC quantities, 

the switching functions of the rectifier are approximated by their fundamental 

components and given as 

)cos(    ),cos( pvpavsvpaI ASAS αθαθ +=+=                       (4.15) 

)cos(    ),cos( pvpbvsvpbI ASAS αβθαβθ +−=+−=                       (4.16) 

)cos(    ),cos( pvpcvsvpcI ASAS αβθαβθ ++=++=          (4.17) 

where 

π
32=A , 

3

2πβ = . 

With Equations (4.1), (4.2), and (4.15)-(4.17) substituted in Equations (4.9)-(4.11) and 

applying harmonic balance technique, the following equations result: 
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p
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)(Re qdvqdpd SValV =       (4.19) 

where 
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j

qdv
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qdI AeSAeS αα ==      , .     (4.20) 

We will show that the loaded rectifier (based on the fundamental component 

analysis) appears like a resistor (RL) connected across the capacitor Cq (see Figure 4.2). 

The effective resistance is given as  

oL RR
12

2π=  .                       (4.21) 

The following equations are obtained from Equations (4.19) and (4.20): 
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Because αsv are approximately equal to αpv we can assume dIdvqIqv SSSS ==  and to 

obtain: 
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Finally, the expression of the effective resistant RL is obtained in Equation (4.21). 
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Figure 4.2. Effective resistance RL. 

 

4.3 Steady-State Generator Model 

 

The generator system in Figures 4.1(a) and 4.1(b) can be described by following 

q-d equations: 

dppqpqppqp pIRV λωλ ++=                (4.22) 

qppdpdppdp pIRV λωλ −+=                (4.23) 

'''''
dssqsqssqs pIRV λωλ −+=                (4.24) 
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qssdsdssds pIRV λωλ ++=      (4.25) 
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qpdoopqooqoo VILIRpIL =++ ω     (4.28) 

dpqoopdoodoo VILIRpIL =−+ ω     (4.29) 
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where 

'
qsmqppqp ILIL +=λ         (4.32) 

'
dsmdspds ILIL +=λ         (4.33) 

qpmqssqs ILIL += '''λ         (4.34) 

dpmdssds ILIL += '''λ         (4.35) 

cppp RrR +=          (4.36) 

'''
csss RrR += .         (4.37) 

Since some parameters of machine are dependent on the airgap flux, the steady-state 

system equations are easily solved if the current state variables are replaced with flux 

linkages. By using Equations (4.34) and (4.35), the current states can be expressed with 

flux linkages as 
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 Substituting Equations (4.38)-(4.41) into Equations (4.23)-(4.31), the following equations with flux 
linkages as state variables are obtained: 
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The complex form for Equations (4.42)-(4.49) are expressed as Equations (4.50)-(4.53): 
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In the steady-state, all differential items of Equations (4.50)-(4.54) are equal to zero. The 

following equations are obtained and used to describe the steady-state performance of the 

generator system in Figure 4.1(a): 
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Equations (5.60)-(5.61) are obtained from Equations (4.58)-(4.59) and expressed as 
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Substituting Equations (4.60)-(4.61) into Equation (4.56) gives 
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Substituting Equation (4.60) into Equation (4.57) yields 

'
qdsqdpqdp BAV λλ +=      (4.63) 
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Replacing Vqdp with Equation (4.63) and Iqdo with Equation (4.60) in Equation (4.55) 

yields 

'
22210 qdsqdp KK λλ +=       (4.64)) 

where 

122121      , ssssp BBKTjAK +=++= ω . 

Now we obtain a complex-form equation system (Equations (4.65)-(4.66)) of the 

generator system in Figure 4.1(a): 

'
12110 qdsqdp KK λλ +=       (4.65) 

'
22210 qdsqdp KK λλ += .      (4.66) 

The matrix form of Equations (4.65)-(4.66) is 
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As Equation (4.67) is singular, feasible solutions are obtained only when the determinant 

of K matrix is set equal to zero. That is 

021122211 =−=∆ KkKK .    (4.68) 

By replacing 21,12,2211  and, KKKK with corresponding expressions in Equation (4.68), a 

complex form equation is obtained and can be separated into real part and imaginary part 

0=∆+∆=∆ IR j .                   (4.69) 

∆R and ∆I, respectively, represent real part and imaginary part of Equation (4.68) and 

Appendix 4A gives the expressions of ∆R and ∆I. 

To satisfy the condition of Equation (4.69), the ∆R and ∆I both must be equal to 

zero. That is  

0=∆R  ,  0=∆ I . 

By using the condition 0=∆R , Equations (4.70)-(4.71) are obtained: 
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The quantities 101 and ,, CCqlys aaaa −−−  are determined by machine parameters and the 

values of the electrical components and rotor speed. The expressions of 

101 and ,, CCqlys aaaa −−−  are listed in Appendix 4B. 

The complex-form mutual airgap flux linkage is given as 

)( '
qdsqdpmqdm IIL +=λ .           (4.72) 

Combining Equations (4.38) and (4.39) into a complex-form gives 
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and the complex-form from Equations (4.40) and (4.41) is expressed as 
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Substituting Equations (4.73-4.74) into Equation (4.72) yields 

qdsqdpqdm FE λλλ +=      (4.75) 

where 
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mplp LLL −= : The per-phase effective leakage inductance of the power winding. 

msls LLL −= '' : The per-phase effective leakage inductance of the control winding. 

Using Equation (4.62) and Equation (4.75) to obtain a matrix equation (4.76): 
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Now we can obtain Equations  (4.77) and (4.78) from Equation  (4.76) 
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With given values of ωr, Cp, Cq, and varying the airgap flux linkage from zero to some 

reasonable values, the machine parameters are computed from their approximated 



equations and the quantities of 101 and ,, CCqlys aaaa −−−  can also be determined. Then 

they are inserted in Equations (4.70) and (4.71) to determine corresponding load 

impedance (or load resistance) and the angular frequencies of the power and control 

winding currents. The state variables qdpλ , '
qdsλ , Vqdp, 

'
qdsV , and Iqdo are then calculated 

using Equations (4.77), (4.78), (4.63), (4.61), and (4.58). 

 

4.4 Steady-State Results 

 

The mathematical derivation given in Sections 4.2 and 4.3 are used to obtain the 

steady-state results of the generator systems shown in Figure 4.1(a) and Figure 4.1(b).  

The results are verified experimentally by running the rotor of the generator at 750 and 

825 rev./min corresponding to rotor angular electrical frequencies of 50Hz and 55Hz 

respectively. Cq = 90µF and Cp = 166µF are chosen. The Matlab program used to solve 

these nonlinear system equations is listed at appendix 4C. Figure 4.3 gives measured 

and calculated steady-state performance characteristics of the generator feeding an 

impedance load (generator system in Figure 4.1(a)). We can see from Figure 4.3(a) that 

output power is inversely proportional to the load resistor when the load resistor is bigger 

than some values; however the output power sharply decreases when the load resistor 

continuously reduces in the range, which has the values smaller than those values. Then 

the generator loses output power when the load resistor reaches its minimum limited 

value that is approximately equal to 12 ohms for this experimental generator system. 

Figure 4.3(b) shows that the higher the rotor speeds are, the larger the output power and 

load voltage. The maximum power points are clearly seen in this figure. 
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Figure 4.3. Measured and calculated results of doubly-fed reluctance generator system 

feeding impedance loads. (a) Output power against per-phase load resistance, (b) load 



voltage against output power, (c) load voltage against load current, (d) power factor 

against load resistance. 

 
 
 
 
 
 
 
 
 
 
 

 
                                 (a)                                                                     (b)   
     
Figure 4.4.  Measured generator waveforms (rotor speed =850 rev/min, load resistance 

20Ω) (10ms/div). (a) Generator line-line voltage (Top)(50V/div) and Generator phase 

current (Bottom)(2A/div), (b) control winding line-line voltage (Top)(50V/div) and Phase 

current in Cq (Bottom)(5A/div). 



 
The relationships between the load voltages and currents are 

illustrated in Figure 4.3(c), in which the maximum load current 
points are easily obtained. It is observed from Figure 4.3(a)-(c) that 

there is good correlation between measurement and calculation 
results. The little discrepancies between measured and calculated 

results may be due to the high sensitivity of the machine 
performance to magnetic saturation and the presence of significant 
current space-harmonic components evidenced in the waveforms 

shown in Figure 4.4. In Figure 4.3(d), we can see that power factor 
will decrease with increasing load resistance and there is little affect 

with different rotor speeds. 
Figure 4.5 shows the calculated generator characteristics of self-exciting generator 

system feeding an impedance load with three different inductance values. Increasing 

inductance  value  causes  the  increment  of  outout  voltage,  generator power factor, and  
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Figure 4.5. Calculated generator characteristics of self-exciting generator system feeding impedance load. 

(Cp=65uf, Cq =45uf, Wrm = 1800RPM) (a) Power winding frequency vs. load impedance, (b) load voltage 

vs. load impedance, (c) load voltage vs. load current, (d) generator power factor vs. load impedance, (e) 

output power vs. load impedance. 
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Figure 4.6. Measured and calculated results of generator system feeding a loaded 

rectifier (ωrm = 825 rev/min and ωrm = 750 rev/min). (a) Load voltage against output 

power, (b) generator voltage against output power, (c) output voltage against load 

current, (d) power factor against load resistance. 

 

 

  

(a) (b) 
 

Figure 4.7.  Measured waveforms of generator system feeding a rectifier load. 

(a) Generator line-line voltage (Top)(50V/div) and generator phase current 

(Bottom)(1A/div), (b) output rectifier voltage (Top)(50V/div) and Input rectifier current 

(bottom)(1A/div). 



 
output power, as shown in Figures 4.5 (b), (d), and (e), respectively. 

The higher the load inductance, the higher the output maximun 
voltage, as shown in Figure 4.5(b). In Figure 4.5(a), we note that the 

frequency of  power winding voltage and current increases with 
increasing the impedance value of load. 

Figure 4.6 shows measured and calculated performance characteristics with the generator feeding a 

rectifier having a resistive load. Two rotor speeds: 725rev/min and 825rev/min, are choose for the 

steady-state calculation and experimental measurement. 

The curves shown in Figures 4.6(a)-(d) are very similar to those in Figures 4.4(a)-(c), 

because a rectifier feeding a resistive load is equivalent to a resistive load on the 

fundamental component basis.  

We can see that the higher the rotor speed is, the larger the output power, load 

voltage and load current. The maximum powers and load currents relating to two rotor 

speeds can be obtained in these figures. The correspondence experiment and calculation 

results are fairly good in view of the harmonics imposed on the generator voltages and 

currents due to the switching diodes shown in Figure 4.7.  

 

 

4.5 Power Capability and Parametric Analysis 

 

 The active power supplied by the source of mechanical power to the generator 

systems in Figure 4.1(a) and Figure 4.1(b) are distributed to the power and control 

windings. The distributions of the active power across the airgaps determined by the 

Manley-Rowe power/frequency relationships are given as 



.   0
)()(

0
)()(

=
+
+

+

=
+
+

+

sp

sp

s

s

sp

sp

p

p

PP

PP

ωω
ωω

ω
ω

ωω
ωω

ω
ω

           (4.79) 

Note that P (ωp +ωs) is the power input to the airgap by a source with angular frequency 

given by ωp +ωs. It is evident from equation ωrm = ωr/(p1+q) that P (ωp +ωs) is the input 

mechanical shaft power. Assuming that power input to airgap is positive and power 

received from the airgap is negative, the following relationships are derivable from 

Equation 4.79: 
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(c) 

Figure 4.8. Parametric characteristics of generator feeding a resistive load rotor speed = 

900 rev/min. (-: Cpq = 0.4; +: Cpq = 0.6; °: Cpq = 0.8; ×: Cpq = 0.9). 

(a) Relative control winding frequency against load frequency, (b) load voltage against 

load power, (c) load voltage against relative load frequency.  

 

 

 

 

Hence, the ratio of power transferred across the airgap to the power winding to meet load 

demand, power winding core and copper losses is directly proportional to the ratio of the 

power winding frequency and angular rotor speeds. Furthermore, it is inferred that 

smaller the angular frequency of the control winding, the higher the percentage of shaft 

power that can be utilized to meet load demand. In stand-alone generator applications 

operated by regulated turbines requiring regulated load frequency, capacitors Cq and Cp 

must be chosen to make ωp to be slightly lower than the rotor angular speed. If an 

inverter is connected to the control winding, the frequency of the inverter source voltage  



must also be very low to ensure that most of the active power is sent to the power 

winding circuit. Figure 4.8 shows how the performance characteristics of the 

experimental machine are influenced by the selection of the capacitor Cp and Cq. The 

steady-state analysis chose Cq=90µF )360( ' FCq µ= and rotor speed ωrm=900 rev/min, 

then different ratios '/ qppq CCC = , which are 0.4, 0.6, 0.8, and 0.9, are selected. Figure 

4.8(a) shows that the ratios of capacity affect the regular range of power winding speed 

ωp and control winding speed ωs. Hence, the maximum frequency of the power winding 

current is different and directly relative to the capacitive ratios. The voltage and the 

output power does not increase monotonically with the capacitive ratios, which are 

shown in Figures 4.8(b) and 4.8(c). Figure 4.8(b) shows the relationship between output 

power and load voltage, where we can see that maximum output power curve is obtained 

when the capacitive ratio is 0.6. The relationship between load voltage and power 

winding frequency is shown in Figure 4.8(c). We also can see that the maximum load 

voltage curve is obtained when the capacitive ratio is 0.6. 

 

 

4.6 Simulation of Self-Excitation Process 

 

The electrical starting transient of the dual-winding reluctance generator system with an 
impedance load  (shown in Figure 4.1(a)) is simulated. The system are described using following equations: 

ωp + ωs =(p1+q) ωrm          (4.80) 

dppqpqpqpqp pIRV λωλ ++=      (4.81) 

qppdpdpdpdp pIRV λωλ −+=      (4.82) 

'''''
dsspqsqsqsqs pIRV λωλ −+=      (4.83) 



'''''
qssdsdsdsds pIRV λωλ ++=      (4.84) 

dppqoqp

p

qp VII
C

pV ω−−−= )(
1

    (4.85) 

qppdodp

p

dp VII
C

pV ω+−−= )(
1

    (4.86) 

qpdoopqooqoo VILIRpIL =++ ω     (4.87) 
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qssds
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where 
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qsqpmqqslsqqpqmqsqsqs IILILILIL ++=+=λ    (4.93) 
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mpqppq RrR +=       (4.101) 

mpdppd RrR +=       (4.102) 

 

'''
msqsmsq RrR +=       (4.103) 

'''
msdsmsd RrR +=       (4.104) 

 

217.147.105.4 2 +−−= mqmqmpqR λλ     (4.105) 

58.125.424.7 2' +−= mqmqmsqR λλ     (4.106) 

0164.0085.044.0 2 ++−= mqmqmqL λλ     (4.107) 

0373.00906.036.0 2 ++−= mqmqpqL λλ    (4.108) 

0385.009.055.0 2' ++−= mqmqsqL λλ      (4.109) 

 

217.147.105.4 2 +−−= mdmdmpdR λλ     (4.110) 

58.125.424.7 2' +−= mdmdmsdR λλ     (4.111) 

0164.0085.044.0 2 ++−= mdmdmdL λλ     (4.112) 

0373.00906.036.0 2 ++−= mdmdpdL λλ    (4.113) 

0385.009.055.0 2' ++−= mdmdsdL λλ .                (4.114) 

The effect of magnetizing flux-linkage saturation on the machine parameters must be accounted for and a 
means must be found to determine either ωp or ωs from Equation (4.80) given the rotor speed. If the 
magnetizing path is unsaturated, all the machine parameters are constant but vary with magnetizing flux 
linkage under saturated condition. The parameter variations are accounted for by choosing a reference 
frame speed for the power winding (ωp), such that the total magnetizing flux linkage is aligned with q-axis. 
The d-axis magnetizing flux linkage and its derivative then become identically equal to zero. These 
conditions are expressed as 

0=dmλ      (4.115) 

0=dmpλ  .                  (4.116) 

When the condition (4.115) is enforced in Equations (4.81)-(4.94), all d-axis machine parameters 
become constant while all q-axis parameters are dependent on the q-axis magnetizing linkage. 

When the conditions expressed in Equations (4.115)-(4.116) are used in Equation (4.100), the 
following Equations (4.117) and (4.118) are obtained 
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Because the machine parameters are dependent on the magnetizing flux linkage, it is necessary to use flux 
linkages as state variables in generator system equations. To realize this purpose, the following derivations 
are done. 

The derivation from Equations (4.91)-(4.94) yield following equation: 

'
qsppqqpppqqppq BTIR λλ +=−      (4.119) 

'
dsppddpppddppd BTIR λλ +=−      (4.120) 

where 

2'12'

'

1        ,
mqsqpq

mqpq
ssq

mqsqpq

sqpq
ssq LLL

LR
B

LLL

LR
T

−
=

−
−

=  

2'12'

'

1        ,
mdsdpd

mdpd
ssd

mdsdpd

sdpd
ssd LLL

LR
B

LLL

LR
T

−
=

−
−

=  

qpssqqsssqqssq BTIR λλ +=− '[''      (4.121) 

dpssddsssddssd BTIR λλ +=− ''      (4.122) 

where 

2'

'

22'

'

2        ,
mqsqpq

mqsq
ssq

mqsqpq

qpsq
ssq LLL

LR
B

LLL

LR
T

−
=

−
−

=      

2'

'

22'

'

2        ,
mdsdpd

mdsd
ssd

mdsdpd

sdsd
ssd LLL

LR
B

LLL

LR
T

−
=

−
−=       . 

Substituting Equations (4.119)-(4.122) into Equations (4.80)-(4.90) yield 
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Substituting Equations (4.124) and (4.126) into Equation (4.116) yields Equation (4.133), in which ωp is 
expressed in terms of ωr, flux linkages and machine parameters. 
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Equations (4.123)-(4.132) and Equation (4.133) are used for the simulation of the electrical starting 
transient of the dual-winding reluctance generator.  The self-excitation process of the generator feeding an 
impedance load was simulated with values of Cp and Cq Selected as 168µF and 360µF, respectively, and a 
constant rotor speed of 1500 rev/min. 

The simulation results given in Figure 4.9 display the growth of the generator terminal voltage and 
current as the magnetizing flux linkage builds up. Saturation effect limits the growth of the magnetizing 
flux linkage, which brings the generator to a stable 0perating condition. Figure 4.10 gives experimental 
results for the self-excitation process corresponding   to  the   simulation  results.    The   simulation  results  
are  similar  to  the  
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      (c)  

Figure 4.9. Self-excitation process of doubly-fed reluctance generator. (a)Power winding 

phase voltage, (b) power winding phase current, (c) magnetizing flux linkage magnitude. 

 

experimental results, which proves that mathematical model used in the simulation program effectively 
reflects the true situation. 

We also simulate the de-excitation phenomenon of the generator. When the generator is critically 
loaded such as when the load impedance is reduced beyond a certain threshold value,  the  load  voltages  
collapse (de-excite)  due to a rapidly reducing airgap flux linkage. This dynamic process is displayed in 
Figure 4.10. Figure 4.10(a) shows the dynamic process of airgap flux  linkage when  the  load  impedance 
is  reduced 

 

 



(a) 

 

(b) 

Figure 4.10. Experimental waveforms of self-excitation process. 

(a) Power winding phase voltage, (b) power winding phase current. 
 

beyond a certain threshold value. The collapse process of the voltage and current is shown in Figures 
4.11(b) and (c). (The simulation program is listed in Appendix 4C)  

 

4.7 Conclusions 

 

 This chapter sets forth the analysis and performance prediction of a stand-alone dual winding 
reluctance generator with capacitive excitation in both the power and control windings. A q-d model of the 
generator is proposed that accounts for the core and harmonic losses and the influence of  magnetic  path 
saturation on   the machine self and mutual inductances. This should find utility in the accurate prediction 
of the dynamic and transient performance of the generator and in the design optimization of stand-alone 
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Figure 4.11. Voltage de-excitation phenomena in the generator feeding R-L load.  

(a) Airgap flux linkage, (b) power winding phase current, (c) power winding phase 

voltage. 

 

doubly-fed reluctance generators. Measured performance characteristics compare favorably with the 
analysis results. 

 

 

 



CHAPTER 5 

SYNCHRONOUS OPERATION OF A DOUBLY-FED 

RELUCTANCE GENERATOR 
 

5.1 Introduction 

 

 A doubly-fed reluctance machine can realize its synchronous operation when its 

control windings are supplied by a direct current (DC) source. The machine can be 

working in the synchronous mode as generator or motor. The frequency of load voltage 

generated in power winding is directly dependent on the rotor speed in the generating 

mode. The rotor electrical angular frequency is proportional to AC supply angular 

frequency of the power windings in the motoring mode based on the angular frequency 

relationship ωp = (p1 +q)ωrm.   

Doubly-fed synchronous reluctance motors show potential in fan, pump, 

refrigeration and air-conditioning applications. It is anticipated that the machine will also 

find utility as a medium to high frequency generator in stand-alone applications such as 

in airplane power systems and marine generator for gas turbine drives [7,14]. The 

obvious advantages of this generator system include the absence of brushes, slip rings 

and possibility of operating the load at leading or unity power factor by controlling the 

excitation current.    

In this chapter, the performance of doubly-fed synchronous generator is 

investigated  when  feeding   an  impedance  load and a rectifier load.    This chapter is  
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Figure 5.1. Schematic diagram of the doubly-fed reluctance machine with DC excitation. 

organized as follow. Section 5.2 gives the derivation of the machine voltage and torque 

equations using the concept of q-d harmonic balance technique, including the effect of 

magnetic saturation, core and harmonic losses. The operation of the machine in stand-

alone generator mode feeding an impedance load is set forth in Section 5.3.  This section 

also contains comparison of experimental and simulation results.  The generator 

connected to a three-phase rectifier feeding a load is analyzed in Section 5.4. Finally the 

concluding remarks are contained in Section 5.5. 

 

5.2 Machine Model 

 

With the power windings connected to a balanced three-phase voltage source 

having a frequency of ωp and the control winding connected to a DC voltage source as 

shown in Figure 5.1, the voltage equations of the control windings are expressed as 

asassas pIRV λ+=      (5.1) 

bsbssbs pIRV λ+=      (5.2) 



cscsscs pIRV λ+= .                             (5.3) 

The flux linkages of the control winding are also given as: 

CpaCBpaBApaAcsacbsabasaaas IIILILILILIL +++++=λ   (5.4) 

CpbCBpbBApbAcsbcbsbbasbabs IIILILILILIL +++++=λ   (5.5) 

CpcCBpcBApcAcsccbscbascaas IIILILILILIL +++++=λ   (5.6) 

Where Laa, Lbb , Lcc are the self-inductances of the control windings carrying currents Ias 

,Ibs ,Ics , respectively; Lab, Lac , Lbc are the mutual-inductances between the phase-

windings of control windings. The mutual-inductances between the control windings and 

power windings are given by Li,j where i = a, b, c and  j = A, B, C. Iap, Ibp and Icp are the 

currents flowing in the power windings. 

The inductances are given by the following expression [25]: 
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where, p1, q, and Pr are the pole pair number of power windings, control windings, and 

rotor, respectively. r is the radius of  stator. l is the length of stator lamination. NA and Na 

are the winding functions of power windings and control windings (see Figures 3.3 and 

3.4). g1 is air-gap width and α is pole-arc width (see Figure 3.1).  µ0 is magnetic 

permeability. 

 Three real signals (fa, fb, fc) which could be three-phase balanced voltages, 

currents, flux linkages, etc., can be transformed into a complex-form signal (fqd) and zero 

sequence signal (fn) using the following equations where θ is the reference frame angle: 
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It can also be shown that the original signals can be recovered from the 

transformed quantities using the following expressions: 
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Using Equation (5.8) to transform the voltages and currents of the power 

windings with balanced three-phase voltage supply to a reference frame with an angular 

angle θp (or angular speed of ωp), the zero sequence current (Inp) and voltage (Vnp) are 

zero. The actual phase voltages and currents can be expressed in terms of the transformed 

complex-form current (Iqdp) by using Equation (5.9), which are given as 
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j
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qdpAp eaVVeVaVeVV θθθ ===      (5.10) 
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j
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j
qdpAp eaIIeIaIeII θθθ === . (5.11) 

From Figure 5.1, we can see 

 bsasdc VVV −=           (5.12) 

csbs VV −=0       (5.13) 

0=++ csbsas III  .     (5.14) 

These phase voltages and currents are transformed into complex-form equations in the stationary reference 

frame, which are 
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]Re[     ],Re[     ],Re[ 2
qdscsqdsbsqdsas aVVVaVVV ===      (5.17) 

]Re[      ],Re[     ],Re[ 2
qdscsqdsbsqdsas aIIIaIII ===  .  (5.18) 

Control Winding Mathematical Model 

By substituting Equation (5.7) to Equations (5.1)-(5.3), the following derivation 

are done (detailed derivation is listed in Appendix 5A): 
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the following expression of  Vas is obtained 
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Substituting equation (5.10)-(5.11) and (5.15)-(5.18) into equation (5.21) yields the q-d 

complex-form voltage equations (in the stationary reference frame) for the control 

windings given as 
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Extending equation (5.22) into q-axis and d-axis equations (in the synchronous reference 

frame) gives 
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Power Winding Mathematical Model 

 The phase ‘A’ voltage of balanced three-phase power windings is also given as (The detailed 

derivation is obtained in  Appendix 5B): 

ApAppAp pIRV λ+=         (5.25) 

where the flux linkage is given in Equation (5.26): 

csAcbsAbasAaCpACBpABApAAAp ILILILILILIL +++++=λ  .       (5.26) 

Using Equation (5.7) to Equation (5.26) and then substituting Equation (5.26) into 

Equation (5.25) yield 
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Replacing the VAp and IAp with the expression (5.10)-(5.11) which are substituted in 

Equation (5.27) and using harmonic balance principle yield the d-q complex-form 

equation of the power windings given as 
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Its q-axis and d-axis form equations from Equation (5.28) are obtained (in the 

synchronous reference frame ωp) 
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 To combine the mathematical models of control windings and power windings in 

the same system, we chose the power windings as reference windings. After control 

windings are referred to the power windings using the winding turns-ratio, the system 

Equations (5.31)-(5.34) are obtained as 

)()( ''
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)(0 ''''
dpmdssdss ILILpIR ++=  .                  (5.34) 

The q-d complex-form equations of power windings and control windings in the synchronous reference 

frame are given as Equations (5.35) and (5.36) 
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qdsmqdppqdsmqdpppqdppqdp ILILpILILjIRV ++++= ω   (5.35) 
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Torque Equation 

 The mechanical equation of motion is expressed as 

Lerm TTJp −=θ2       (5.37) 

where the load torque is TL, the moment of inertia of the rotor and connected load is J, 

and Te is the electromagnetic torque. The electromagnetic torque is calculated from the 

magnetic co-energy. It can be shown that the electromagnetic torque is given as (see 

Appendix 5C) 
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Considering the turns ratio between the power windings and control windings and 

since θr = θp, the time-invariant electromagnetic torque equation is 
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 Since the core losses in the machine are significant, we use magnetizing flux 

dependent series or shunt core-loss resistances: mpR and '
msR to represents these losses. 

Considering these factors and using the flux linkage variables, the complex-form 

Equations (5.22) and (5.28) of the power windings and control windings are expressed as 

With shunt core-loss resistances 
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With series core-loss resistances 

qdpqdppqdpmppqdp pjIRrV λλω +++= )(  

''''' )( qdsqdsmssqds pIRrV λ++=  

'
qdsmqdppqdp ILIL +=λ  

qdpmqdssqds ILIL += '''λ  

where 

                                          s
s

p
ss

s

p
s L

N

N
Lr

N

N
r

2

'

2

'    , 







=








=   

ms
s

p
msm

s

p
m R

N

N
RL

N

N
L

2

'
12      ,

2

3








==     . 

The corresponding complex-form equivalent circuits with shunt or series loss 

resistors are shown in Figure 5.2 and Figure 5.3. 
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Figure 5.2. Complex-form equivalent circuit of doubly-fed synchronous reluctance 

machine with shunt core-loss resistances. 
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Figure 5.3 Complex-form equivalent circuit of doubly-fed synchronous reluctance 

machine with series core-loss resistances. 

 

 

5.3 Generator with Impedance Load 

 

 Figure 5.4 shows the schematic diagram of the machine operating as a stand-alone generator 

feeding a three-phase impedance R-L load. A three-phase capacitor bank is connected in parallel to the 

power windings to provide generator reactive power to sustain the load. 

The generator system with impedance load in Figure 5.4(a) can be described by 

the following q-d equations using the synchronous reference frame angle θp. 
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Figure 5.4. Doubly-fed synchronous generator systems. (a) With impedance, (b) with a loaded rectifier. 
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Machine Model with series core-loss resistances (Figure 5.3) 
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where 
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Since the parameters of the machine are dependent on the airgap flux linkage, It is 

necessary to express Equations (5.40)-(5.43) in terms of flux linkages. From Equations 

(5.44) and (5.45), we can obtain 
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Substituting these expressions into Equations (5.40)-(5.43), we obtain the following equations. 
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The q-d complex-form equations of the generator system are expressed as 
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Under the steady-state operation, the derivatives of the state variables are 

identically equal to zero leading to the following system equation: 
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This equation is nonlinear since the machine inductances and core loss resistances vary 

with the magnitude of the airgap flux linkage as shown in Figure 3.11. 

 The relationship between these parameters and airgap flux linkage magnitude are 

empirically determined as 
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217.147.105.4 2 +−−= mmmpR λλ  

58.125.424.7 2' +−= mmmsR λλ  

where the airgap flux linkage is given as 
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If we use the machine model with the shunt loss resistor (see Figure 5.2), similar 

derivation is done and the complex-form equations of generator system in terms of flux 

linkage are given as 
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Under the steady-state operation, the following matrix equation is obtained 
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For the machine model with the shunt loss resistor is used, the machine’s parameters are 

determined as follows: 
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 To investigate the steady-state performance characteristics of the machine, 

Equations (5.54)-(5.56) are numerically solved for fixed values of Cp = 45µF, various 



values of rotor speed, control winding dc current, and load impedance. Figure 5.5 gives 

the generator characteristics when fixed Idc = 4.5A and choosing three different rotor 

speeds. In Figure 5.5(a), the curves show the steady-state relationship between the output 

power and load voltage while the steady-state relationship between the load voltage and 

load current is displayed in Figure 5.5(b). It is observed from these figures that the higher 

the rotor speeds, the higher the output power, load voltage and load current. 
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(a)                                                                   (b) 

Figure 5.5. Calculated and measured characteristics of synchronous generator system 

with impedance load for different rotor speeds. (a) Load voltage vs. output power, (b) 

load voltage vs. load current. 

 

 



                            (a) RL = 21Ω                                               (b) RL = 400Ω 

Figure 5.6. Measured waveforms of synchronous generator system with impedance load (5msec/div). (a) 

High output power.Top:generator current (1A/div); Bottom:generator voltage (50V/div), (b) Low output 

power. Top: generator current (0.5A/div); Bottom: generator voltage (50V/div). 

 

Figure 5.6 shows the waveforms of the generator when the rotor speed is 900rpm and 

feeding a low resistive load (RL = 20ohms) or a high resistive load (RL = 400 ohms). In 

either case: a low resistive load or a high resistive load, the waveforms of voltage and 

current are not pure sinusoidal waveforms because of existing harmonic components. The 

influence of the dc excitation current on the voltage regulation of the generator is shown 

in Figure 5.7. Three different dc current values, 3A, 4.5A, and 6A, are chosen to do the 

experimental measurement and steady-state calculation. The curves in Figure 5.7(a) show 

the steady-state relationship between the load voltage and output power while the steady-

state relationship between the load voltage and load current is displayed in Figure 5.7(b). 

It is observed in Figure 5.7 that increasing the excitation current increases the maximum 

attainable power and also the no-load generator voltage. These figures show that the 

measured and calculated generator characteristics correlate very well. The discrepancies 

between  calculations  and  experimental  results  are  due  to  the  high  sensitivity  of the  
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      (c) 

Figure 5.7. Calculated and measured characteristics of synchronous generator system with impedance load 

for a constant rotor speed and different control winding excitation currents. (a) Load voltage vs. output 

power, (b) phase load voltage vs. load current, (c) power factor vs. load resistance. 

 

operating points to the airgap flux linkage and non-negligible generator harmonic currents seen in Figure 

5.6. In Figure 5.7(c), we can see the power factor will not be affected by varying the load resistance or 

control winding current. 

      Figure 5.8 demonstrates calculated synchronous generator characteristics of generator  system  feeding  

an impedance  load  with  three  inductance  volue.  Increasing  the load 
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(c) (d) 
Figure 5.8. Calculated synchronous generator characteristics of generator system feeding 

impedance load. (Wrm = 1800RPM, Idc = 4.5A). (a) Load power vs. load impedance, (b) 

load voltage vs. load current, (c) generator power factor vs. load impedance, (d) load 

voltage vs. impedance. 

 

inductance value decreases the maximun output power, generator power factor, output current, and output 

voltage as shown in Figures 5.8(a)-(d). These reductions are obvious in lower impedance values, however, 

these reduction gradually disappear with increasing impedance load values. 

 The starting electrical transients of the generator system feeding an impedance load are simulated 

using Equations  (5.50)-(5.53)  or   (5.57)-(5.59).   Figure 5.9 displays 



the simulation results. The generator is fitted with an excitation capacitor bank with a 

per-phase value of 45µF and is driven at a constant speed of 1800rpm. Saturation effects 

are accounted for by updating the inductances and core loss resistances based on the 

instantaneous airgap flux linkage magnitude. There is a gradual growth of the load 

voltage and current magnitudes, which are respectively illustrated in Figures 5.9(a) and 

5.9(b), as the airgap flux linkage is built up until they all reach a steady-state operating 

condition. 
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Figure 5.9. Simulated starting transient of the synchronous doubly-fed reluctance generator system feeding 

an impedance load. (a) Phase ‘A’ terminal voltage, (b) phase ‘A’ generator current. 

 

 

 



 

5.4 Generator with Rectifier Load 

 

The model of the generator-rectifier system is shown in Figure 5.4(b). The model 

of the rectifier load connected to power winding of the generator has been derived in 

Section 4.2. This section also shows that a three-phase rectifier with an impedance load in 

steady-state behaves like a wye-connected three-phase resistive load (RL) connected 

across the excitation capacitor. The relationship between RL and Ro is expressed as 

oL RR
12

2π=  . 

Consequently, the analytical approach used for the generator feeding impedance can be 

used for the generator with rectifier load. 

 The rectifier voltage Vd and current Id can be found using the following equations 
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 Figure 5.11 gives the measured and calculated performance characteristics of the 

generator feeding a rectifier that has a high impedance load (RL=400 ohms) or a low 

impedance load (RL = 5 ohms). Three different dc current values, 3A, 4.5A, and 6A, are 

used in the steady-state calculation and the experimental measurement. The curves of 

load voltage vs. output power is shown in Figure 5.11(a), where we can see that 

increasing control winding dc current increases the maximum attainable power. The load 

voltage and load current also increase with increasing the control winding dc current, 

which is observed from the curves of load voltage vs. load current shown in Figure 



5.11(b). Figure 5.11(c) shows us that the power factor will not be affected by varying the 

control winding current or rectifier resistance load. The difference between calculation 

and measured results are due to these factors: profound commutation overlap, waveform 

distortions and high value of stator leakage inductance. Figure 5.10 shows the measured 

voltage and current waveforms of the generator feeding a three-phase rectifier feeding a 

high impedance load or low impedance. In either case, waveform distortions are clearly 

seen in Figures 5.10(a) and 5.10(b). Profound commutation overlap is found in the 

waveform of the generator voltage as shown in Figure 5.10(b). Like the generator feeding 

an impedance load, there is a maximum output power corresponding to each rotor speed 

and control excitation current. 

 

 

                       (a) RL = 400Ω                                                  (b) RL = 5Ω 

Figure 5.10. Measured waveforms of the synchronous generator system feeding a three-

phase rectifier load (5msec/div). (a) High impedance load, Top: generator current 

(0.2A/div); Bottom: generator voltage (50V/div), (b) low impedance load, Top: generator 

current (1A/div); Bottom: generator voltage (20V/div).  
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(c) 

Figure 5.11. Measured and calculated steady-state performance curves of synchronous generator system 

with a three-phase rectifier load. (a) Load voltage vs. output power, (b) Load voltage vs. load current, (c) 

power factor vs. rectifier load resistance. 

 

 

 

 

 



 

 

5.5 Conclusion 

 

 In this chapter, we have presented the modeling and analysis of the doubly-fed synchronous 

reluctance generator with a dc control winding excitation. The generator operates essentially like a 

cylindrical rotor synchronous generator in which the frequency of the generated voltage is directly related 

to the rotor speed and the pole numbers of the windings. Hence this machine is suitable as a medium to 

high frequency generator. Steady-state calculation results compare fairly well with experimental results. 

The discrepancies between calculations and experimental results are due to the airgap flux linkage and the 

non-negligible generator harmonic currents. The severe commutation overlaps in the operation of the 

rectifier also contribute to the differences of calculation and experimental results. The model equations 

derived in this chapter can be used with profit to calculate the transient and steady-state performance of the 

doubly-fed synchronous reluctance motor fed with either a variable or constant frequency supply. 

 

 

 



CHAPTER 6 
 

THE PERFORMANCE OF A DOUBLY-FED SYNCHRONOUS RELUCTANCE 
GENERATOR WITH CONTROLLED DC OUTPUT VOLTAGE 

 

6.1 Introduction 

 

The attention in this chapter is focused on the operation of the doubly-fed 
synchronous reluctance generator as a controllable power source for DC loads and 
for use in battery charging. Using the generated DC voltage at the power winding to 
excite the control winding circuit brings these advantages of eliminating the need for 
an independent excitation arrangement and the absence of slip-rings and brushes. 
This kind of generator systems can be realized by connecting the generated DC 
voltage from the power windings to machine control windings through a DC-DC 
converter such as buck or boost converter.  

  In this chapter, the AC output power from the power windings of the 
doubly-fed synchronous reluctance generator is rectified with a three-phase rectifier 
and is further processed by either a DC-DC buck or boost converter for output 
power or load voltage regulation. Section 6.2 gives a description of the generator 
systems investigated, in addition to the derivation of the models of the machine, 
shunt capacitors, three-phase diode rectifier and buck and boost DC-DC converters. 
In Section 6.3, the steady-state calculation and experimental results are compared 
and discussed.     The simulation of the 
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 excitation process for the generator system with exciting source from the power 
windings is discussed in Section 6.3. The simulation of the starting transients and 
steady-state waveforms of using this generator system for battery charging is also 
included in this section. Conclusions are contained in Section 6.4.    

 

6.2 Description and Modeling of Generator Systems 

 

Figures 6.1 and 6.2 show the schematic diagram of the synchronous reluctance 

generator systems considered in this chapter. 

In Figure 6.1, the generator is connected to a three-phase diode rectifier. The 

output of that is further processed by either a DC-DC buck or boost converter. The three- 

 



  

Figure 6.1.  Schematic diagram of the doubly-fed synchronous generator systems.  

(a)With buck DC-DC converter, (b) with DC-DC boost converter. 

 

phase control windings are connected to a controllable source of DC current or voltage 

source while the three-phase power windings are connected to a three-phase diode 

rectifier. Delta-connected capacitors are connected across the power winding terminals to 

provide reactive power and to enhance the generator real power output capability. 

Controllable DC voltage or power is obtained by connecting the filtered output of the  

 



(a) 

 

(b) 

Figure 6.2. Schematic diagram of the doubly-fed synchronous generator system with dc-

dc buck converter. (a) Feeding an impedance load, (b) feeding a battery. 

 

 

rectifier to either a DC-DC buck or boost converter. The DC-DC converter controls the 

output power or voltage using a constant frequency, pulse-wide modulation control 

(PWM) scheme that varies the turn-on time (the duty ratio) of the transistor. 

The generator systems shown in Figure 6.2 are further application of the generator 

system with DC-DC buck converter in Figure 6.1(a). In Figure 6.2(a), the generator is 

excited by feeding the control winding from a battery at first, then the generator generates 

output voltage whose filtered rectified dc voltage feeds the impedance load and at the 

same time activates the dc-dc buck converter. At last, the battery source is disconnected 

when a steady-state operating condition is obtained. 

The generator scheme for battery charging is shown in Figure 6.2(b) in which the 

filtered dc voltage is directly connected to the battery. For this application, the battery, 

which also acts as the source to the DC-DC converter, excites the generator through the 



control windings. When DC output voltage is sufficiently built up, the generator sends 

charging current to the battery whose value is determined by the converter duty-ratio and 

battery open circuit voltage. 

 The model equations of the generator schemes shown in Figures 6.1 and 6.2 are 

presented in the following subsections. 

Synchronous Reluctance Generator 

If we use the complex-form equivalent circuit shown in Figure 5.2, which has the 

shunt core-loss resistances ' and msmp RR , the complex-form q-d equations of the generator 

in the synchronous reference frame rotating with angular speed ωp (ωp is the angular 

speed of the generated voltage) are given as 
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or  the model equations of the generator  can be described by the following equations if 

we use the complex-form equivalent circuit shown in Figure 5.3, which has the series loss 

resisters ' and msmp RR . 
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In these equations, p=d/dt, Vqdp, and Iqdp are the complex-form generator terminal voltage 

produced by the power windings and current flowing through them, respectively, the 

referred control winding complex-form current and flux linkage are '
qdsI and '

qdsλ , 

respectively. The quantity Vs is the input voltage to the control winding while Np and Ns 

are the effective per-phase, per pole turn numbers of the power and control windings, 

respectively. qdpλ  is  the complex q-d flux linkage for the power windings. The measured 

self and magnetizing inductances of the windings and core-loss resistances of the 

machine used for this work are shown in Figure 3.11 (series loss resistors) or Figure 3.17 



(shunt loss resistors). The relationship between these parameters and airgap flux linkage 

magnitude are empirically determined in equation (3.86) (series loss resistors) or equation 

(3.87) (shunt loss resistors). 

Shunt Capacitor, Rectifier and Load 

The complex-form q-d equations of the shunt capacitors (Co) connected across the power windings 

is given as 
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Also, the equations describing the input-output voltages and currents of the rectifier, filter 

elements and the load are defined as 
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Sqdv and SqdI are, respectively, the complex-form q-d voltage and current switching 

functions of the rectifier, µ is the commutation angle, Vd is the rectifier output voltage, Io 

is the load current with the filter inductor current and filter capacitor voltage represented 



as Id and Vco, respectively. The quantity Cd is the filter capacitor, Ld is the filter inductor 

with the impedance load represented as Ro and Lo. The initial angle between the power 

and control winding axes is σ and the power factor angle of the generator at the power 

winding terminals is θ. The conjugate is presented by *. 

DC-DC Buck Converter 

 The model of the DC-DC buck converter feeding a resistive load or battery shown 

in Figure 6.1(a) and Figure 6.2 are derived in this subsection [81-82]. The output voltage 

and power are controlled by varying the turn-on time of the transistor d1T that is 

regulated by changing the magnitude of the reference voltage compared to a constant 

frequency saw-tooth waveform. T is transistor’s switching period. Figure 6.3 (a) gives a 

typical converter inductor current and converter switching functions corresponding to the 

three converter operational modes given in Figures 6.3 (b-d). The switching functions of 

transistor and diode are S1 and S2, respectively, which take values of unity when the 

devices are turned on and zero when they are turned off. The switching function when the 

transistor and diode are not conducting at the same time is S3. 

Mode I: Transistor is on: 0 # t # d1T  

The voltage equations are given as 

cocdLo VVpIL −=       (6.14) 

ecoe IpVC =        (6.15) 

0=+− eoLoco IRIRV       (6.16) 

where IL is the inductor current, Vco is the output filter capacitor voltage, the current 

through the output capacitor is Ie and the load resistance is Ro. 

 



Mode II: Diode is on: d1T # t # (d1+ d2)T 

The voltage equations from figure 6.3 (c) are expressed as 

coLo VpIL −=       (6.17) 

ecoe IpVC =       (6.18) 

0=−− eoLoco IRIRV  .    (6.19) 

Mode III: Transistor and diode are off: (d1+ d2)T# t # (d1+ d2+d3)T 

The voltage equations from Figure 6.3(d) are given as 

ecoe IpVC =       (6.20) 

0=− eoco IRV  .                (6.21) 

The equations of the three modes of operation are averaged using the switching functions 

and are given as  

)()( 21121 SSVSVSSpIL cocdLo +−=+     (6.22) 
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Boost DC-DC Converter 

The model of the DC-DC boost converter feeding a resistive load shown in Figure 6.1(b) is set forth in this subsection. 
Figure 6.4(a) shows the inductor current of the boost DC-DC converter with the switching functions and the three modes of operation 
of this converter are shown in Figure 6.4 (b-c). The voltage equations are derived below 

Mode I: Transistor is on: 0 # t # d1T  

The voltage equations from Figure 6.4(a) are 

cdLo VpIL =       (6.25) 

ecoe IpVC =       (6.26) 

0=−− eoco IRV  .                   (6.27) 

Mode II: Diode is on: d1T # t # (d1+ d2)T 



The voltage equations of this mode from Figure 6.4(c) are expressed as 

cocdLo VVpIL −=      (6.28) 

ecoe IpVC =       (6.29) 

0=+− eoLoco IRIRV  .      (6.30) 

 

Figure 6.3.  Buck DC-DC converter. (a) Converter inductor current and switching 

functions, (b) circuit when transistor is on, (c) circuit when the diode is on, (d) circuit 

when both transistor and diode are off. 

 



 

 

Figure 6.4. Boost DC-DC converter. (a) Converter inductor current and switching 

functions, (b) circuit when transistor is on, (b) circuit when diode is on, (c) circuit when 

both diode and transistor are off. 

 

 

 

 

 

 

 



 

Mode III: Transistor and diode are off: (d1+ d2)T# t # (d1+ d2+d3)T 

The model equations from Figure 6.4(d) are expressed as 

ecoe IpVC =       (6.31) 

0=− eoco IRV  .     (6.32) 

Finally, the equations for three modes are combined and are given as 
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Lead-acid Battery  
 From [61] and Figure 6.5, the dynamic equations describing the lead-acid battery are given as 
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Figure 6.5. Equivalent circuit representation of a lead-acid battery 

 

 

Appendix 6A contains the definitions of the different resistors and capacitors in Equations (6.18)-(6.19). 

 

6.3 Steady-state Characteristics of the Generator Systems 



 

 During steady-state operation, the q-d state variables of the generator, shunt capacitor and rectifier equations are constant. 
Also, the average inductor voltages and capacitor currents in the rectifier output filter and the DC-DC converters are zero. Hence 
averaging the converter equations (6.22)-(6.24) and (6.33)-(6.35) and setting the derivatives of the generator, rectifier variables and 
shunt capacitors to zero, the models of the generator systems are obtained as following 

The Model of the generator system with buck converter in Figure 6.1(a)  
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The Model of the generator system with boost converter in Figure 6.1(b) 
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The Model of the generator system in Figure 6.2(a) 
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The Model of the generator system in Figure 6.2(b) 
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where the average of the switching functions S1, S2, and S3 are d1, d2, and d3, respectively and are related by 

1321 =++ ddd  .                                           (6.44) 

LÎ  and cÎ are, respectively,  the averaged inductor current and input converter current. sV̂  is the averaged converter output voltage 

while coV̂  is the capacitor voltage. When the DC-DC converters operate in the continuous-current conduction mode (CCM), d3 is 

equal to zero. Under steady-state operation, the state variables of the generator, rectifier, filter and the average of the states of the DC-
DC converter are constant and their time derivatives become zero. With these constraints enforced on Equations (6.40-6.43), it can be 
easily derived that the effective resistance seen at the input of the loaded DC-DC buck converter and the phase resistance presented by 
the load at the output of the machine terminals are respectively given as [62,63] 
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Hence, When the converter operates in (CCM) mode, Equations (6.40)-(6.44) can be numerically solved given the duty ratio d1 
and load to determine the characteristics of the generator system.  



However, when the operation is in the discontinuous condition mode (DCM), d3 needs to be determined from Figure 6.3(b-
d) for the buck DC-DC converter. The average inductor current expressed in terms of the load, input and output voltages is given as 
[64]  
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Using Equation 6.40 or 6.42, the equation below from which d3 can be determined is obtained: 
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Similar analysis for the boost converter using Figures 6.4(b-d) and Equation 6.41 or 6.43, the equation for d3 is given as 
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 Using the same method of deriving Equations (6.45) and (6.46), the output load resistances referred to the input of the DC-
DC converter using Equations (6.40-6.43) are given as 
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These converter input resistances are further referred to the input side of the three-phase diode rectifier using equation (6.40)-(6.43) 
and are expressed as 
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 It is observed that the converter load appears as a duty-ratio dependent resistor. For a given load, converter switching 
frequency and other converter parameters, it is determined whether the converter operates in the CCM or DCM mode by using 
Equation 6.48 or 6.49. Then with known d1, d2 and d3, the steady-state equations from any generator system model expressed by 
Equations (6.45-6.46, 6.52-6.53), are numerically solved with the empirical equations of the generator parameters given the control 
winding excitation voltage, rotor speed, and the load resistances of the DC-DC converter. 

 Figures 6.6 and 6.7 show both steady-state calculated and measured characteristics of the generator system with a DC-DC 
buck converter while corresponding results are displayed in Figures 6.8 and 6.9 for the system with DC-DC boost converter. Two 
control winding currents, 2A and 4A, are chosen in the experimental measurement and the calculation. The rotor speed is set at 1200 
rev/min. These two converters operate in the continuous-conduction current mode of operation.  

Figures 6.6(a) and 6.8(a) show the curves of load voltage vs. duty ratio. Load voltages of both have maximum values when 
the duty ratio is close to 0.5, and decrease when the duty ratio deviates that value. The load voltage of boost converter is much higher 
than that of the buck converter. 

Figures 6.6(b) and 6.8(b) show the curves of effective input resistance of converter vs. duty ratio.  Their effective input 
resistances are inverse-proportional to the duty ratio, the higher the duty ratio, the lower the effective input resistances. 



Figures 6.6(c) and 6.8(c) show the curves of load power vs. duty ratio. The load powers of both have the maximum values 
when the duty ratio is close to 0.5, and then they decrease when the duty ratio leaves that value. They both have the same maximum 
output powers. 

Figures 6.6(d) and 6.8(d) show the curves of converter input voltage vs. duty ratio. The converter input voltages of both are 
inverse-proportional to the duty-ratio. Boost converter input voltage is higher than one of buck input voltage. 

 The steady-state characteristics of the generator system with either DC-DC buck converter or DC-DC boost converter, 
which are displayed in Figure 6.7 and Figure 6.9, are similar each other. The curves of generator output power vs. duty ratio are shown 
in Figures 6.7(a) and 6.9(a)). Per-phase generator voltage vs. duty ratio are shown in Figure 6.7(b) and 6.9(b). Figures 6.7(c) and 
6.9(c) show the curves of per-phase generator voltage vs. per-phase generator output power.   

 There is good agreement between measured and calculated steady-state performance curves. Since the rectifier output 
voltage also depends on the load impedance that in turn is influenced by the duty-ratio and the generator load performance, we can see 
the output voltage profiles of these two converters differ remarkable from those of the converters fed with a constant voltage source. 
Figures 6.10 and 6.11, respectively, for the buck and boost converters give measured waveforms of the converters operating in the 
continuous-current mode.  

  The steady-state performance of the generator system (shown in Figure 6.2(a)), that is special because of its excitation 
depending on the generated output DC voltage from the power windings, is shown in Figure 6.12.  Two rotor speeds, 900rev/min and 
1350rev/min, are used in the experimental measurement and the calculation. 

 Figure 6.12(a) and (b) show the curves of duty-ratio vs. generator per-phase terminal voltage or DC load voltage. 
Changing the duty-ratio during the range from zero to near 0.2 can regulate these voltages.  Figure 6.12(c) shows the curves of per-
phase terminal voltage vs. generator output power while the curves of duty-ratio vs. control winding DC current are shown in Figure 
6.12(d). The higher the rotor speed, the higher the attainable maximum control winding DC currents and generator output powers. 

  It is observed from the Figure 6.12 that it is necessary to keep the duty ratio not less some values near 0.2 so that the 
generator system (shown in Figure 6.2(a)) avoids the collapse of the generator terminal voltage. 

Overall, there are good agreements between measurement and calculation results. The little differences must be due to the 
presence of factors not accommodated in the derived models: significant harmonic components in the generator and input rectifier 
currents in addition to the non-negligible over-lap commutation of the rectifier diodes which can be seen in Figure 6.14. 

 

 

Figure 6.6. The steady-state characteristics of the generator system with DC-DC buck converter in the Figure 6.1(a). (Rotor speed = 

1200 rpm). (a) Load voltage vs. duty ratio, (b) effective input resistance of converter vs. duty ratio, (c) load power vs. duty ratio, (d) 

converter input voltage vs. duty-ratio. 



 

 

 

 

 

 

 

 

 

Figure 6.7. The steady-state characteristics of the generator system with DC-DC buck converter in the Figure 6.1(a) (Rotor speed = 

1200 rpm). (a) Generator output power vs. duty ratio, (b) per-phase generator voltage vs. duty ratio, (c) per-phase generator voltage vs. 

generator output power. 

 

 

 

 

 

 

 

  



 

Figure 6.8. The steady-state characteristics of the generator system with DC-DC boost converter in the Figure 6.1(b) (Rotor speed = 

1200 rpm). (a) Load voltage vs. duty ratio, (b) effective input resistance of converter vs. duty ratio, (c) load power vs. duty ratio, (d) 

converter input voltage vs. duty-ratio. 

 

 

 

 

 

 

 



 

Figure 6.9. The steady-state characteristics of the generator system with DC-DC boost converter in the Figure 6.1(b) (Rotor speed = 

1200 rpm). (a) Generator output power vs. duty ratio, (b) per-phase generator voltage vs. duty ratio, (c) per-phase generator voltage vs. 

generator output power. 

 

 

 

 

 

Figure 6.10. Measured waveform of the generator with DC-DC buck converter in the Figure 6.1(a). (Rotor speed = 1200 rpm, duty-

ratio = 0.6) 

(a) Top: Generator phase current. Bottom: Generator line-line voltage. 



(b) Top: Input converter current. Bottom: Converter inductor current. 

 

 

Figure 6.11. Measured waveform of the generator with DC-DC boost converter in the Figure 6.1(a). (Rotor speed = 1200 rpm, duty-

ratio = 0.6) 

(a) Top: Generator phase current. Bottom: Generator line-line voltage. 

(b) Top: Input converter current. Bottom: Converter inductor current. 
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Figure 6.12. Measured and calculated steady-state characteristics of the doubly-fed 

synchronous reluctance generator feeding an impedance load (RL=400Ω).(Figure 6.2(a)) 

(a) Duty-ratio vs. generator per-phase terminal voltage 

(b)  Per-phase terminal voltage vs. generator output power 

(c) Duty-ratio vs. dc load voltage 

(d) Duty ratio vs. control winding dc current. 

 

 

 

 

 

 

 

6.4 Simulation of Generator System 

 

 For a complete understanding of the generator system in Figure 6.2, the starting 

transient of the generator system assuming that the root speed is constant is simulated and 

shown in Figure 6. 13. Three starting stages are: (1) a battery is connected to the control 

windings while the converter is turned off. (2) after 0.4 seconds, the converter is turned 

on with the battery still connected for another 0.4 seconds and (3) finally, the battery is 



disconnected with only the converter supplying the excitation current to the control 

windings. It is observed that the generator easily excites and the period taken to achieve 

steady-state operating condition depends on the battery voltage and the converter duty 

ratio. The simulated steady-state waveforms and corresponding experimental results are 

now displayed in Figure 6.14. Figure 6.15 gives the simulation results of the generator 

system when the converter duty ratio is reduced while operating at a stable steady-state 

point. In view of the low excitation current, the generator voltage collapses indicating 

that for a stable operation, a minimum converter duty ratio requirement for a given rotor 

speed and load must be met to sustain the generator operation. 

 The electrical excitation process of the generator charging a lead-acid battery 

shown in Figure 6.2(b) is simulated and the simulation results are shown in Figure 6.16. 

With the generator shaft running at a constant speed and the converter turned on, the 

generator excites, building up the generator DC output voltage. The battery initially 

provides an average current flowing into the converter and, after the generator voltage 

has sufficiently risen, an effective current flows into the battery to charge it. Figure  
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Figure 6.13. Starting transient of the generator system shown in Figure 6.2(a). Rotor 

speed = 1350 rpm, duty ratio = 0.6, load resistance = 400 ohms. (a) Control winding 

current, (b) DC load voltage, (c) line-to-line generator voltage, (d) generator phase ‘a’ 

current. 

 

 

 

 

 

1.2 1 .21 1 .22 1 .23 1 .24 1 .25

-100

-50

0

50

100

T  (  S ec. )

V
 a

b
 (

 V
 )

        

 

            (a)                                                                      (b) 

 



1.2 1.21 1.22 1.23 1.24 1.25
-8

-6

-4

-2

0

2

4

6

Ip
a 

( 
A

 )

T  (  S ec. )    

 

            (c)                                                                       (d) 

Figure 6.14. Steady-state waveforms of the generator system feeding impedance load. 

Rotor speed = 1350 rpm, load resistance = 400 ohms, duty ratio of converter = 0.6. 

(a) Generator line-to-line voltage, 50V/div, (b) phase ‘a’ generator current, 2A/div. 
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                                  (c)                                                                  (d)      

Figure 6.15. Generator de-excitation due to reduced DC-DC converter duty ratio. 

(a) DC load voltage, (b) control winding current, (c) generator loine-to-line voltage, (d) generator  phase current. 
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Figure 6.16. Electrical excitation transient for the doubly-fed synchronous reluctance 

generator charging a lead-acid battery. (a) Current flowing into the battery, (b) generator 

DC voltage, (c) phase ‘a’ generator current, (d) control winding current. 
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Figure 6.17. Measured steady-state waveforms of the generator charging a 24V battery. 

Average charging current = 0.7A. (a) Battery current, (b) generator line-line voltage, 

10V/div, (c) generator phasse current, 0.5A/div, (d) variation of charging curent with 

converter duty ratio for 900 rpm and 1350 rpm. 

 

 

 

 

 

 

 

6.17(a)-(c) display measured steady-state waveforms of the generator charging a 24V 

battery when the rotor speed is 1350rpm and the duty ratio of the DC-DC converter is 

0.25. The average charging battery current is fixed at 0.7A. Finally, Figure 6.17(d) shows 

the measured variation of the average charging current as a function of the duty ratio of 

the converter for two rotor speeds. From this graph, it is concluded that there is a 

maximum average charging current achievable below which there are two possible duty 

ratios that result in the same average charging current. 

 

6.5 Conclusion 



 

 The modeling and analysis of the doubly-fed synchronous reluctance generator 

with a DC excitation , which can be an outside source or a self source from DC output of 

power windings, are presented. The generator systems successfully use buck or boost 

DC-DC converter connected to the power windings as the DC source regulators. The 

generator system characteristics are predicted based on the proposed models and the 

results of which compare favorably with measured results. The excitation process of the 

generator systems feeding an impedance load or charging a battery are simulated and 

discussed. The computer simulation results show that the excitation process is fast and 

reliable. These generator systems have a potential for use in stand-alone applications and 

in electric automotive applications.   

 

 

 

 



CHAPTER 7 

FIELD ORIENTATION CONTROL OF A DOUBLY-FED SYNCHRONOUS 

RELUCTANCE MACHINE 

 

7.1 Introduction 

 

 Doubly-fed reluctance machines having two stator windings (power and control 
windings) have received renewed attention in the last few years in adjustable-speed 
drives where efficiency optimization and energy conservation are desirable.  In many low 
performance drive applications, the three-phase power windings are connected to the 
utility supply, while the rotor circuit is connected to either an inverter controlled ac or 
converter controlled dc sources. With controlled ac source connected to the control 
winding, the machine operates either in the synchronous, sub-synchronous or super-
synchronous modes permitting large speed operation range. The feasibility of the doubly-
fed reluctance machine with controlled ac power and control winding excitations for 
accepted field orientation-type performance have been demonstrated  [73,74].      

 This chapter proposes a novel high-performance control of the doubly-fed 
synchronous reluctance in which the control winding is connected to a controlled current 
DC source. The power windings are connected to a voltage source inverter (VSI), which 
can be a current-controlled VSI or voltage-controlled VSI, to regulate the axis currents, 
voltages, and the frequency in the power windings. The drive system operates exactly 
like  a  DC  machine  possessing  the  same  ease  control.      Two  control  schemes    are 
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 investigated and the main focus are their operation characteristics in a wide speed range 
including the constant torque control below the base speed and constant output power 
above the base speed with maximum output torque.  

 In section 7.2, the field-orientation principle is introduced. It also gives the 
steady-state operation characteristics of the systems below and above the base speed. 
Two control schemes are described in section 7.3. Section 7.4 gives the design 
procedures of integral plus proportional (IP) controller, which presents mathematical 
algorithms to obtain the parameters of the IP controller with non-overshoot performance. 
The theoretical derivation is also included in this section. A novel input-output 
linearization technique and Butterworth method are set forth in Section 7.5, which is used 
in the design of the control scheme I. Sections 7.6 and 7.7 give the detailed description of 
both voltage-controlled and current-controlled VSI. In sections 7.8 and 7.9, the 
dynamical simulation results of two control systems are given and discussed. Finally, we 
draw conclusions in Section 7.10.    

 



7.2 Field Orientation Principle 

 

 In general, an electric motor can be thought of as a controlled source of torque. Accurate control 

of the instantaneous torque produced by a motor is required in high-performance drive systems, e.g., those 

used for position control. The torque developed in the motor is a result of the interaction between current in 

the armature winding and the magnetic field produced in the field system of the motor. The field should be 

maintained at a certain optimal level, sufficiently high to yield a high torque per unit ampere, but not too 

high to result in excessive saturation of the magnetic circuit of the motor. With fixed field, the torque is 

proportional to the armature current. 

 Independent control of the field and armature currents is feasible in separately-

excited dc motors where the current in the stator field winding determines the magnetic 

field of the motor, while the current in the rotor armature winding can be used as a direct 

means of torque control. The physical disposition of the brushes with respect to the stator 

field ensures optimal conditions for torque production under all conditions. 

 The Field Orientation Principle (FOP) defines conditions for decoupling the 

magnetic field control from the torque control. A field–oriented doubly-fed synchronous 

reluctance motor should emulate a separately-excited DC motor in two aspects: 

(1) Both the magnetic field and the torque developed in the motor can be controlled 

independently. 

(2) Optimal conditions for torque production, resulting in the maximum torque per unit 

ampere, occur in the motor both in the steady-state and in transient conditions of 

operation. 

The power winding and control winding q-d equations of the doubly-fed synchronous 

reluctance machine in the rotor reference frame are 



dppqpqppqp pIRV λωλ ++=                 (7.1) 

qppdpdppdp pIRV λωλ −+=      (7.2) 

''''
qsqssqs pIRV λ+=       (7.3) 

''''
dsdssds pIRV λ+=       (7.4) 

where 

'
qsmqppqp ILIL +=λ       (7.5) 

'
dsmdppdp ILIL +=λ       (7.6) 

qpmqssqs ILIL += '''λ       (7.7) 

dpmdssds ILIL += '''λ  .                 (7.8) 

Torque equation is expressed as 

)()(
2

3 ''
1 dsqpqsdpme IIIILqpT −+






= .                (7.9) 

The relationship of the rotor speed ωr, load torque TL and electrical torque Te is  

Ler
r

TTp
P

J −=ω  .           (7.10) 

J is the rotor inertia, and Pr is equivalent pole numbers of the rotor and equal to p1+q.  

If the control winding is connected as shown in Figure 7.1, the control winding currents 

Ias,  Ibs , Ics, and  current  source  Is  have  the  relationships  given  in  Equation  (7 .11) 
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Figure 7.1. Control winding connection. 

 

while the relationships among control winding voltages Vas, Vbs, Vcs, and Vdc are given in 

Equation (7.12): 
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 After performing abc-qd transformation as well as considering the turns-ratio, control 

winding q-d axis voltages and currents become 

0 
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'
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dcqs
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VV
      (7.13) 

and 

.  

0
''

'

sqs

ds

II

I

=

=
      (7.14) 

Hence, the torque depends on the control winding q-axis current '
qsI and the power 

winding d-axis current Idp. It is 



'

2

3
qsdpm

r
e IIL

P
T = .     (7.15) 

In field orientation control, '
qsI  is used to control magnet flux similar to Lmq

'
qsI , while Idp 

is used to control the torque. 

 We drive the motor in a wide speed range. From zero speed up to its base speed, 

the power winding voltage rises up to its maximum value at base speed and then limits to 

that value at higher speed. This speed range is called constant torque region. Maximum 

constant torque is achieved when the control winding dc current '
qsI  is set at the rated 

value, with the d-axis power winding current Idp set to the rated power winding current.  

At the same time the q-axis power winding current is set equal to zero. Above base speed, 

the power winding voltage is kept at rated value while airgap flux linkage need to be 

decreased to realize the constant power output. This goal is realized by regulating the 

power winding q-axis current Iqp and d-axis currents Idp with the control winding current 

'
qsI  set at the rated value. The output-power is constant above base speed, hence it is 

called constant-power or field-weakening region. To obtain maximum torque (and hence 

power) at any speed above base speed within the voltage and current rating, maximum 

torque field-weakening control strategy is used.  

There are two operating modes above the base speed. The operating conditions 

for two modes are listed as follows [79-80]: 

Mode I: current and voltage limited region:   

222
qpdppm VVV +=      (7.16) 

222
qpdppm III +=       (7.17) 



where Vpm and Ipm are the voltage and current rated peak values, respectively. Vdp and Vqp 

are the q-d components of power winding voltage; Idp and Iqp are the q-d components of 

power winding currents. 

Mode II: Voltage-limited region: 

222
qpdppm VVV +=      (7.18) 

222
qpdppm III +≥       (7.19) 

                        Maximize Te at each value of speed. 

where Te is electrical torque. Vpm and Ipm are the voltage and current rated peak values, 

respectively. Vdp and Vqp are the q-d components of power winding voltage; Idp and Iqp 

are the q-d components of power winding currents. 

 Under the steady-state, the power winding q-d voltage equations are 

dpppqppqp ILIRV ω+=                (7.20) 

'
qsmqpppdppdp ILILIRV −−= ω  .     (7.21) 

The peak value of power winding voltage Vpm is constant. It can be obtained from 

Equations (7.20) - (7.21) and expressed as 

( ) ( )2'2

222

qsmqpppdppdpppqpp

dpqppm

ILILIRILIR

VVV

−−++=

+=

ωω
     (7.22) 

when the machine is running below the base speed, power winding q-axis current Iqp = 0 

while the d-axis Idp is set to be equal to the power winding peak rate current Ipm. At the 

same time, control winding current I’qs is equal to the rated dc current I’s (considering 

turns ratio).  Hence, the base speed ωbase can be calculated using Equation (7.23), which 

is obtained from Equation (7.22):    
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where 

2'222
smpmpa ILILS +=  

pmspmb IIRLS '2 −=  

. 222
pmpmpc VIRS −=  

A simplified equation of ωbase is obtained by ignoring resistance Rp (Rp=0): 

2'222
smpmp

pm
base

ILIL

V

+
=ω . 

 

Mode I operation 

 

By extending Equation (7.22) and using the current constraint condition (Equation 

(7.17)) in mode I, we can obtain 

bb

aaqpcc
dp T

TIT
I

−
=           (7.24) 

where 

2'2222222 )( smppmmpppmaa ILILRVT ωω −+−=  

'2 spmpbb IRLT ω=  

.2 '2
spmpcc ILLT ω=  

 Substituting Equation (7.24) into Equation (7.17), the following equation is obtained: 

0)(2)( 222222 =−+⋅−⋅+ pmbbaaqpccaaqpbbcc ITTITTITT . 

Its solution is 
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where 

22
bbcca TTT +=  

ccaab TTT 2−=  

222
pmbbaac ITTT −= . 

Equations (7.24) and (7.25) are used to obtain the power winding q-axis and d-

axis current Iqp and Idp when the machine is operated in the Mode I region. The simplified 

equations of Equations (7.24) and (7.25) are obtained by ignoring the resistance Rp 

(Rp=0): 
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Torque is obtained by substituting the expression of Idp into torque Equation (7.15). 

 

Mode II operation 
 

Substituting Equations (7.20-7.21) into the voltage constraint condition (Equation 

(7.18)) to yield 

02 =+⋅+⋅ ccIbbIaa dpdp  

where 

222
ppp LRaa ω+=  



qspmp IRLbb 22ω−=  

.2)( 2'222222'22
pmqpspmpqppppsmp VIILLILRILcc −+++= ωωω  

Its solution is 

aa

ccaabbbb
Idp 2

42 ⋅−+−=  

where Idp is dependent on variable Iqp. Idp can be expressed as a function of variable Iqp : 

)( qpdp IfI =     . 

 Hence, from Equation (7-15), the torque equation can be expressed as 
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r
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To obtain the conditions of achieving maximum output torque, the torque equation is 

differentiated with respect to Iqp and then forced to zero, that is 
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The solution of this equation is 

222
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−=  .        (7.26) 

Using equation (7.26) to replace variable Iqp in  cc, Idp is obtained and expressed as 

222

222'

ppp

ppppmspmp

dp LR

RLVIRL
I

ω
ωω

+
++

= .    (7.27) 

 Hence, in mode II, if Idp and Iqp are selected using Equations (7.26) and (7.27), not 

only the maximum torque is achieved, but also the voltage constraint condition is 

satisfied. The simplified equations of Equations (7.26) and (7.27) are obtained by 

ignoring the resistance Rp (Rp=0) 
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By substituting the expression of Idp into Equation (7.15), the torque is given as 
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Boundary speed ω12  

 At boundary speed point ω12 between Mode I and Mode II, the power winding q-axis 

and d-axis current Iqp and Idp , calculated from Equations (7.26) and (7.27), also satisfy 

the current constraint condition in Mode I.  By substituting Equations (7.26) and (7.27) 

into the current constraint Equation (7.17), the expression of the boundary speed point is 

obtained from 

0)2()2(2 22
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2 =+−++−++ cecbcadbbaa CCCCCCCCCCC ωωωω     (7.28) 

where 

 ;2     ; 222'222222'2242
pmpspmpmppbspppma VLIRLILRCILLLIC −−=−=  

.2     ;2     ; '2'2242
spmpmepspmpmdpmpppmc IRLVCLIRLVCVRRIC ==−=  

The simplified equation is obtained by ignoring the resistance Rp (Rp=0): 

)( 2'22212

smpmp
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V

−
=ω  . 

The performance curves for wide speed range (below the base speed and above 

the base speed including Mode I and Mode II), shown in Figure (7.2), are computed using 

Equations (7.23) through (7.28). Three different control-winding currents are used to 



obtain these curves. Unit speed is equal to 377 rad/s. It is observed from Figure 7.2 (b) 

and 7.2(c) that Mode I region with constant rated current and constant rated voltage is 

narrow, however it increases when the current winding current increases, and so do the 

maximum speeds for this mode.   

We can also see from other figures that, below the base speed, the d-axis power 

winding current is set to the constant rated values and the q-axis power winding current is 

equal to zero. Total power winding current and torque are held constant, but power  
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   (e)      (f) 

Figure 7.2. Performance curves for extended speed range, maximum output torque 

operation.  (a) Torque, (b) power winding phase voltage, (c) power winding current, (d) 

output power, (e) power winding q and d axis currents, (f) power factor.  

winding voltage and output power increase with increasing value of rotor speed. The 

larger are the control winding currents, the larger the output torque; Above base speed, 

the d-axis power winding current Idp decreases almost linearly with speed for a range, 

after which it tends to a constant value as the speed increases. The torque decreases 

almost linearly with speed, giving an almost constant output power characteristic. Figure 

7.2(e) shows that there is a redistribution of the power  winding  axes  currents  with  the  

winding current '
qsI set at its rated value above the base speed. The controllers need 

accurately reflect this redistributing characteristic in the command axis current values. In 

Figure 7.2(f), we can see that increasing rotor speed or control winding currents will 

increase the power factor of the motor control system. 

 

7.3 Description of Two Control Schemes 

 

Two control schemes, with current-controlled or voltage-controlled voltage source inverter, are 

investigated. Figure 7.3 gives the schematic diagram of the field-orientation control scheme I. The two 

inputs are the reference rotor speed and the power winding q-axis current, which is set to zero for constant 



torque operation and non-zero values for constant power operation. The three-phase power winding 

currents, measured and transformed to the rotor reference frame using the rotor angle measured with an 

encoder, are fed to a non-linear controller. The nonlinear controller generates reference q-d voltage 

components that are transformed into three-phase voltage reference for the VSI.  
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Figure 7.3. Control Scheme I: Field-orientation control of doubly fed synchronous 

reluctance machine with voltage-controlled voltage source inverter (VSI).   

 

Is

ωr

DFMVSI
PWM

ICp

IBp

IAp

Control 
Windings

Power
 Windings

ωr

+ 
-

T (θr)
-1 ∫

θr

ωr* Current
Control

VDC

IAp
* IBp

* ICp
*

Iqp
*

Idp
*

IP

ωb-ωb

Field-Weakening Control
 



 

Figure 7.4. Control Scheme II: Field-orientation control of doubly-fed synchronous 

reluctance machine with current-controlled voltage source inverter (VSI).   

 

The output of the VSI are used to drive the doubly-fed synchronous reluctance motor that has 

control winding connection shown in Figure 7.1.  

Figure 7.4 gives the schematic diagram of the field-orientation control of doubly fed synchronous 

reluctance machine with current-controlled voltage source inverter. The three-phase power winding current 

are measured and used as a feedback signals for the current control of the VSI. The rotor angle is measured 

using an encoder and rotor speed is calculated using the integer. Below the base speed, field-weakening 

controller is switched off, and the reference q-axis current is set to zero. However, the reference q-axis 

current is non-zero values above the base speed. The field-weakening controller is switched on at this time. 

The speed error inputs to the IP controller that generates the reference d-axis current, its values limited in 

some range set by the saturation controller. The reference q-d currents are transformed to the reference 

three-phase power winding  

currents that compare with the three-phase feedback currents to obtain switching-time of  

the VSI’s transistors. The output voltage of the VSI drives the doubly fed synchronous 

reluctance motor its control winding fed by a current source.  

 

7.4 Design of the IP Controller 

 

 The Integral plus proportional (IP) controller is applied here because of its novel features [65]: 

(1) IP controller can eliminates the current overshoot problem and has zero steady-state error. This is very 

useful for the protection of the electrical devices needing frequent stopping and starting. 



(2)   IP controller can also eliminate the speed and position overshoots for step changes without sacrificing 

the load torque response due to a load torque change. 

The literature [66,67] presented a design procedure of IP controller that can be used for a three-order 

induction motor servo drive system. By using this design procedure, the parameters of the IP controller can 

be quantitatively decided and the control system can obtain no overshoot position response. We use the 

similar theoretical method to derive the design procedure for a second-order speed control system with non-

overshoot speed response. 

For a stable single-input single-output (SISO) nth order system expressed by 
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For a white noise input with variance 2
xσ , the variance Eo of the impulse response, or what is called the 

impulse energy of the output, can be determined to be [68 ] 
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in which the impulse energy contribution corresponding to the eigenvalue µj is defined as [68] 
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 For a stable linear system described by Equation (7.29), the variance Eo must be finite and 

positive, i.e., from Equation (7.30), 
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Figure 7.5. Block diagram of IP speed control system.  

The speed control loop of the control scheme II is described by the block diagram Figure 7.5, 

where Kt is torque coefficient, and a and b can be expressed by the system viscous damping coefficient B 

and the inertia constant J. they are expressed as 
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3
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The transfer function speed control loop can be found from Figure 7.5 as 
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Second-order system in Figure 7.5 can also be expressed as 

2

2

1

1

0)(

* )(

)(

µµω
ω

+
+

+
=

= s

h

s

h

s

s

sTr

r

L

 .    (7.37) 



The relationship of coefficients between Equations (7.36) and (7.37) can be found as following: 

021 =+ hh        (7.38) 
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The unit-step response of transfer function is  
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For observing the overshoot, let d(y(t))/dt = 0 and  0<µ1<µ2, then 

0
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It is obvious that the overshoot of its step response will not occur if one of the following cases is satisfied: 

 (1) 0 ,0 21 >> hh ; 

 (2) 0 ,0 21 << hh ; 

 (3) 2121  ,0 ,0 hhhh −><> ; 

 (4) 2121  ,0 ,0 hhhh >−><  . 

When any one of these conditions are satisfied, Equation (7.42) is equal to zero only at t = ∞, hence 

overshoot will not occur.   

 For a second-order system, the expressions of µ1 and µ2 are obtained from Equation (7.31) as 

follows 
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 By using the non-overshoot conditions in Equations (7.43) and (7.44), the conditions (1-4) are 

transferred into corresponding conditions listed as follows 

(a) If 0 and 0 21 >> hh , or 0 ,0 21 << hh , then 0 and 0 21 >> ee ; 

(b)  If 2121   and 0 ,0 hhhh −><> , or 2121   and 0 ,0 hhhh >−>< , then e1>0, e2<0 and e1+e2>0. 

To match the general requirements for the speed drive, the following specifications are prescribed: 

(i) The tracking steady-state error of speed is zero. 

(ii) To avoid any overshoot in the command tracking response, the energy contributions of e1 and e2 

corresponding to µ1 and µ2 are set according to the condition (a) and (b). For convenience of 

formulation, condition (b) is chosen. Accordingly, the relationships of e1 and e2 are set to e1 = K1e2 

and K1<-1. 

(iii) The response time tp is defined as the time for the unit-step response to increase from 0 to 90% of 

its final value. 

Based on these prescribed specifications, and using the related equations, the following nonlinear equations 

are constructed: 
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 To satisfy the condition of 0<µ1<µ2, let µ2 = µ1+ c2 and modified above nonlinear equations, we 

can obtain 
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where c is a finite positive constant. The unknown parameter h1, µ1, and c in Equations (7.48) through 

(7.50) can be solved using the Matlab program. Then the parameters of the controller Kp, KI can be found 

from following Equations (7.51) through (7.53): 
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The Matlab program using to obtain these parameters for non-overshoot performance is 

listed at Appendix 7C. 

 
 

7.5 Nonlinear Controller Design 

 

In the last few years, nonlinear control theory has been used in some electrical machine control 

systems [75-78]. The main reason of using nonlinear control techniques is to improve the existing control 

system and achieve high performance. Linear control methods rely on the key assumption of small range 

operation for the linear model to be valid. When the required operation range is larger, a linear controller is 

likely to perform very poorly or to be unstable, because the nonlinearities in the system cannot be properly 



compensated for. However, nonlinear controller may handle the nonlinearities in large range operation 

directly.   The technological breakthroughs in digital signal processor (DSP) have made it possible to 

implement complex nonlinear control algorithms in the application of the electrical machine control. 

In control scheme I, nonlinear controller is used to generate 

reference signals Vdp and Vqp for the voltage source inverter with space 

vector pulse width modulation technique. The principles of nonlinear 

control input-output linearization with decoupling are used to design 

the controllers [71,72,73]. The literature [73] has successfully used this 

control technique to control a doubly-fed reluctance machine with 

axially laminated anisotropic rotor and single-phase control windings 

fed by a dc source. The same control technique is used in control scheme 

I. 

 Finding a direct and simple relation between the system output and the control input constitutes 

the intuitive basis for the so-called input-output linearlization approach to nonlinear control design. Let us 

use an example to demonstrate this approach [72]. 

 Consider a third-order system  
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5
12 xxx +=&  

uxx += 2
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To generate a direct relationship between the output y and the input u, let us 

differentiate the output y 

3221 )1(sin xxxxy ++== &&  . 

Since y& is still not directly related to the input u, let us differentiate again. We now obtain 

),,()1( 32112 xxxfuxy ++=&&  
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2
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5
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Now an explicit relationship between y and u has been found. If we choose the control 

input to be in the form 
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where v is a new input to be determined, the nonlinearity above equation is canceled, and 

we obtain a simple linear doubly-integrator relationship between the output and the new 

input v, 

vy =&&  

The design of a controller for this doubly-integrator relation is simple, because of 

the availability of linear control techniques. For instance, let us define the error as  

)()( tytye d−=  

where yd(t) is desired output.  Choosing the new input v as 

ekekyv d &&& 21 −−=  

with k1 and k2 being positive constants, the error of the closed loop system is given by 

012 =++ ekeke &&&  



which represents an exponentially stable error dynamics. If initially 0)0()0( == ee & , then 

e(t) ≡ 0, perfect control is achieved;otherwise, e(t) converges to zero exponentially. 

 Therefore, the basic approach to design an input-output linearilized controller includes three steps: 

(a) Repeatedly differentiate an output function until it is explicitly related to the input. 

(b) Choose the input to cancel the nonlinearities and guarantee tracking convergence. 

(c) Study the stability of the internal dynamics. 

The input-output linearization and decoupling process ensures linear relationship between 

input and output variables with output-input pairs decoupled each other. The total number 

of differentiation for all the outputs is called the relative order, while the internal 

dynamics are comprised of n-r states (n is total number of the system dynamic states).  

 In the dynamic system described by Equations (7.1) through (7.10), the input 

variables are Vdp and Vqp are chosen as the input variables while ωr and Iqp are chosen as 

output variables. From Equations (7.1) and (7.10), and using the condition Ids = 0 because 

of the control windings connected with a DC current source, the following differential 

equations are obtained 
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Equations (7.54) and (7.55) are combined as a matrix equation (7.56): 
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This equation is linearized and decoupled and made to take the form of Equation (7.57) 

where Ydp and Yqp are new input variables. 
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Equating Equations (7.57) and (7.56), input variables Vqp and Vdp are determined and 

given as 
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If Equation (7.58) are equated to the power winding q-d voltage Equations (7.1) and 

(7.2), Equations (7.59) and (7.60) are yielded 
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Hence, Equation (7.58) is simplified as 
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The quantities Vdd and Vqq are selected to be dependent on controlled and state variables 

to ensure that Equations (7.59) and (7.60) are linear and decoupled from each other. 

 Cascaded IP (integral-proportional) controller structure is adopted and shown in 

Figure 7.6. With expressions for Vdd and Vqq from Figure 7.6 and substituting Equation 



(7.10) into Equations (7.59-7.60), the following transfer functions are obtained (with the 

disturbance load torque ignored): 
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The reference speed and reference q-axis power winding currents are ∗
rω  and ∗

qpI , 

respectively. The parameters transfer functions Kq, Kd and Ka-Kb are chosen to optimize 

the closed-loop eigenvalue locations using the Butterworth polynomial [71]. The 

Butterworth method locates the eigenvalues uniformly in the left-haft S-plane on a circle 
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Figure 7.6. Integral proportinal linear and decouping controller structure. (a) Q-axis 

power winding current loop; (b) rotor speed loop. 

 



of radius ωo, with its center at the origin. The Butterworth polynomials for a transfer 

function with a second-order denominator is given as 

02 22 =++ ooSS ωω       (7.64) 

comparing Equations (7.60) and (7.58), we have 

poaopq LKLK ωω 2 ,2 ==  .                (7.65) 

For a transfer function with a third-order denominator, the Butterworth polynomial is 
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From Equations (7.66) and (7.63), the parameters of the speed control loop are given as 
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To realize non-overshoot current response, the parameters of second-order current 

control loop described by Equation (7.62) can be computed using the same procedure 

described in section 7.3. However, we need to use the design procedure described in the 

references [66,67] to obtain the parameters of a third-order speed control loop with non-

overshoot speed response.   

The third-order speed control loop transfer function expressed in Equation (7.63), 

also can be transferred as 
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To obtain µ1, µ2 and µ3 so that we can compute the parameters of non-overshoot speed response for this 

third-order speed control loop, the following nonlinear equations can be constructed:  
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where 2
2c  and 2

3c  are finite positive constants. The detailed derivation and its physical meaning for this 

nonlinear equation system are described in the reference [66,67]. 



 After solving this nonlinear equation system, the parameters of the controllers can be computed 

using the expressions as follows: 

)( 321 µµµ ++= pc LK  

)(

)(

321

313221

µµµ
µµµµµµ

++
++=

Z
Kb  

)( 321

321

µµµ
µµµ

++
=

Z
Kd . 

A Matlab program used to obtain these parameters is listed at Appendix 7D. 

 

7.6 Voltage Source SPWM-Inverter 

 

 A voltage source inverter using space-vector pulse-wide modulation technique 

[47][69][70] is applied for the control scheme II. The performance of this inverter is 

simulated using Matlab/Simulink. 
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Figure 7.7. Circuit diagram of a three-phase VSI. 

 



 

 A diagram of the power circuit of the inverter is shown in Figure 7.7. The circuit 

has a bridge topology with three branches (phases), each consisting of two power 

switches and two freewheeling diodes. The inverter is supplied from an uncontrolled, 

diode-based rectifier, via a DC link that contains as LC filter in the inverted Γ 

configuration. In the circuit, the power switches in a given branch must never both be in 

the ON-state, since this would constitute a short circuit. On the other hand, if both the 

switches are in the OFF-state, then the potential of the corresponding output terminal is 

unknown to the control system of the inverter. Since only two combinations of states of 

the switches in each branch are allowed, a switching logic variable can be assigned to 

each phase of the inverter. In effect, only eight logic states are permitted for the whole 

power circuit. Defining the switching variables as  
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the instantaneous values of the line-to-line output voltages of the inverter are given by 

)( 21 SSVV dcab −=      (7.68) 

)( 32 SSVV dcbc −=      (7.69) 

)( 13 SSVV dcca −=      (7.69) 

where Vdc is the DC supply voltage of the inverter. 



 In balanced three-phase systems, the line-to-neutral voltages can be calculated 

from the line-to-line voltages as 
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hence, after substituting Equation (7.68-7.70) in Equation (7.71-7.73), the line-to-neutral 

voltages of the inverter are given by 
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By performing abc-qd transformation for Equation (7.74-7.75), we can obtain 
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The output voltages can be represented as space vectors in the stator reference frame. 

Each vector corresponding to a given state of the inverter are listed in Table 7.1. The 

space vector diagram of line-to-neutral voltages of the VSI are shown in Figure 7.4. The 

relationship between the space vector and three phase voltages are expressed as 
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φ is initial phase angle of the three phase voltages and Vm is the peak phase voltage. The 

magnitude of output voltage is adjustable if the modulation index M, 0#M#1, is used and 

Vm is replaced by MVm .  Substituting Equations (7.79) through (7.81) into (7.78), we can 

obtain 

 

Table 7.1.  Inverter states and Spave Vector 
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When α changes from 0 to 2π, V
r

rotates one circle in Figure 7.8 and three phase output 

voltages finish one period. In Figure 7.8, we can see the non-zero base vectors divide the 

cycle into six, 60o –wide sectors. The desired voltage vector, *V
r

, located in a given 

sector, can be synthesized as a linear combination of the two adjacent base vectors, Vi and 

Vj , which are framing the sector, and either one of the two zero vectors, i.e.. 
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T1 , T2, and To are, respectively, the working time of state Vi , Vj, and Vo. Vz is either Vo or 

V7. Ts is the switching interval of the power switching components. Assuming that space 

vector  V* locates in the sector as shown Figure 7.8, we can obtain the following equation 
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Figure 7.8. Schematic of the space vector PWM. (a) Illustration of the space vector 

PWM strategy, (b) pulse patterns of symmetrical three-phase modulation. 



 

by substituting Vi = V4, Vj = V6, and Vz=V7, whose values are looked up in Table 7.1, 

into Equation (7.83): 
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This equation is equivalent to Equation (7.82), which can be extended as follows: 
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Hence, by equating their real parts and imagnary parts, we can construct the equation 

system as follows: 
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T1 and T2 can be easily obtained by solving this equation system and are expressed as 

)60sin(1 α−= o
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When V* locates in any sector, the general expression  to calculate the state working time 

T1, T2 and T0 are given as Equation (7.84): 
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where Vm is peak phase voltage and modulation index is expressed as 
dc

m

V

V6
M = . 

If the over-modulation mode (T1 + T2 > Ts) occurs, the time duration should be 

scaled as Equations (7.85) and (7.86) to generate the best approximate of the desired 

voltage vector. 
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 The symmetrical pulse patterns of zero-vector for one sampling period are illustrated in Figure 

7.4(a). The state sequence corresponding to each sector is listed in Table 7.2.   

Table 7.2.  State Sequence of Each Sector 

State sector State Sequence 

I. |4-6-7|7-6-4| 

II. |6-2-0|0-2-6| 

III. |2-3-7|7-3-2| 

IV. |3-1-0|0-1-3| 

V. |1-5-7|7-5-1| 

VI. |5-4-0|0-4-5| 

 

 

 



The time intervals T1, T2, and Ts are used to calculate the reference output voltages ∗
aV , ∗

bV  and ∗
cV of the 

VSI: 
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 In Figure 7.3, the control signals Vqp and Vdp are used to computed the modulation M and initial 

phase angle φ, then the interval times T1 and T2 are obtained from Equation (7.84). Finally, Equation (7.88) 

are used to compute output phase voltages ∗
aV , ∗

bV , and ∗
cV  of the VSI. Figure 7.9 shows the simulation 

waveforms of power winding phase voltage and current whose frequency is equal to 60Hz with 5KHz 

switching frequency.   
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Figure 7.9. Simulation of the voltage-controlled PWM-VSI. (a) Power winding voltage waveform, (b) 

power winding current waveform. 

 

 

7.7 Current Control in Voltage Source Inverters 

 

 A block diagram of a current-controlled VSI that is used in control scheme II is shown in Figure 

7.10. The output currents, Ia,, Ib, and Ic, of the inverter are sensed and compared with the reference current 

signals, ∗
aI , ∗

bI , and ∗
cI . Current error signals, ∆Ia, ∆Ib, and ∆Ic, are then applied to the hysteretic current 

controllers, which generate switching signals for the inverter switches. 

 The input-output characteristic of the phase-A hysteretic current controller is shown in Figure 

7.10. The width of the hysteretic loop, denoted by h, represents the tolerance bandwidth for the controlled 

current. If the current error, ∆Ia, is greater than h/2, i.e., current Ia is unacceptably lower than the reference 

current, ∗
aI , the corresponding line-to-neutral voltage, Va, must be increased. This voltage is most strongly 

affected by the switching variable a, hence it is this variable that is regulated by the controller, and is set to 

a logic variable 1 (equivalently, “on” state of a power switch component) in the 
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Figure 7.10. Block diagram of a current-controlled VSI. 
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Figure 7.11. Simulation of the current-controlled VSI. (a) Phase current with 2% tolerance bandwidth, (b) 

phase current with 10% tolerance bandwidth, (c) phase voltage with 2% tolerance, (d) phase voltage with 

10% tolerance, (e) transistor switching signal (on = ‘1’, off = ‘0’) with 2% tolerance bandwidth, (f) 

transistor switching signal (on = ‘1’, off = ‘0’) with 10% tolerance bandwidth. 



 

described situation. Conversely, an error less than –h/2 results in a = 0 (equivalently, “off” state of a power 

switch component) in order to decrease the voltage and current in question. No action is taken by the 

controller when current Ia stays within the tolerance band. The other two controllers operate in a similar 

manner.  

 The width, h, of the tolerance band affects the switching frequency of the inverter. The narrower 

the band, the more frequent switching takes place and the higher quality of the currents. This is illustrated 

in Figure 7.11, depicting simulation waveforms of power winding current and voltage for an inverter 

supplying the power windings of the machine at values of h equal to 10% in Figure 7.11(a) and 2% in 

Figure 7.11(b), of the amplitude of the reference current. Figure 7.11(c) and (d) show the transistor 

switching signals with 10% tolerance bandwidth and 2% tolerance bandwidth. It is obvious that the 

narrower the bandwidth, the higher the switching frequency of transistor. 

 

 

7.8 Simulation Results Below the Base Speed 

 

 The simulations below illustrate the control performance of two control schemes presented in this 

chapter. The parameters of IP controller in control scheme II and nonlinear controller in control scheme I 

are listed in Appendix 7A.  

 The typical examples of constant torque application below the base speed are actuators and servo 

systems, which require maximum torque availability at all speeds to ensure maximum dynamic response. 

To investigate the performance of doubly-fed synchronous reluctance motor drive system below the base 

speed, the following simulation are used to demonstrate the dynamic response to step speed change and 

step torque change. The control winding current is chose as 8 A. The load torque is 4 N.m from 0 to 1.5 s 

and changes to 8 N.m from 1.5 s to 2.2 s.  



Figure 7.12 illustrate the dynamic response of the motor drive for a step change of the reference speed 

from zero to the rated electrical base speed. Because we use non-overshoot  design procedure to obtain the 

control parameters for two-order speed control loop (control scheme II) and for three-order speed control 

loop (control scheme I), there is no overshoot speed response in the simulation results, which can be seen in 

Figure 7.12(a). In Figures 7.12(b) to (d), we can see that, the torque and power winding d-axis current 

increase quickly to reach their maximum values, then they begin to decrease when the speed closes on the 

base speed, and at last the torque reaches an constant torque that is equal to 4 N.m load torque  for this 

simulation example. When the speed reaches the base speed. The d-axis power winding current generating 

the corresponding torque also reachs its steady-state value. The q-axis current of the power winding aligns 

to the zero value so that the field orientation requirements are satisfied.  The power winding q-axis and d-

axis flux linkages, which are decided by q axis and d-axis current componenets, are illustrated in Figures 

7.12(e) to (f).     

The response to change load torque from 4 N.m to 8 N.m at t = 1.5 s is displayed in Figure 7.13. The 

step change of the load torque causes a speed dip as shown in Figure 7.13(a), but it recovers its value after a 

short transient because power winding d-axis current sharply increases to generate a bigger  electrical 

torque against the change of load torque. During this process, power winding q-axis current has a little 

ripple around the zero value and aligns to zero value after a short transient. Figures 7.13(b) to (d) show this 

dynamic process. The dynamic response of the power winding q-axis and d-axis flux  
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Figure 7.12. Dynamic response to a step-change of speed. (a) Reference and actual speed, (b) torque (c) 

power winding d-axis current, (d) power winding q-axis current, (e) power winding d-axis flux-linkage, (f) 

power winding q-axis flux-linkage. 
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Figure 7.13. Response to change of load torque. (a) reference and actual speed, (b) torque (c) power 

winding d-axis current, (d) power winding q-axis current, (e) power winding d-axis flux-linkage, (f) power 

winding q-axis flux-linkage. 
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Figure 7.14. Profiles of the phase current and voltage during the simulation process.  

(a) Phase current, (b) phase voltage. 

 

linkages are illustrated in Figure 7.13(e) to (f). They are affected by the change of the q-axis and d-axis 

current components. 

The profiles of the power winding phase current and voltage are displayed  in Figure 7.14. We can see, 

from 0 to 1.5 s, the voltage and current sharply increase and reach the steady-state values corresponding to 

a 4 N.m torque load. They increase at 1.5 s due to change load torque from 4 N.m  to 8 N.m. Finally they 

reach new steady-state values corresponding to 8 N.m torque load. 

 

 

7.9 Simulation Results Above the Base Speed 

 

 Some industrial and commercial applications require motors to operate over a wide speed range 

and rotating in both directions.   A familiar example is the electric vehicle traction that requires high torque 

for low-speed acceleration and constant power (reduced torque) for high-speed cruising.  To obtain 

constant power control above base speed, field-weakening techniques are used.  

The following three cases demonstrate the dynamic process of a doubly-fed synchronous 

reluctance motor drive systems, which operate in a 2.5 times base speed range and rotate in two directions.   

Case 1. We simulate the dynamic process of the control system with two-stage speed step-change: 

2.5 times the base speed from 0 to 2.5 s and the base speed from 2.5 s to 4 s.  The control winding current is 

chose as 8 A. A 4 N.m load torque is used from 0 to 1.5 s and then changes for 8 N.m from 1.5 s to 4 s.   

Figure 7.15(a) shows the speed response to this two-stage speed step change command. The 

torque, d-axis and q-axis currents of the power windings are illustrated in Figures 7.15(b) and 7.15(c), 

where we can see that the torque and its control current, Idp, sharply reach their maximum values which 

cause the speed to quickly increases. While the q-axis current, Iqp, is align to zero below the base speed and 



shapely changes to a negative constant value above base speed because of the field weakening control. 

Then the speed increase is slowed down with the decrease in torque and q-axis current. Finally the speed 

reach its command value, torque and current also reach their steady-state values. At t = 1.5 s, the load 

torque is changed from 4 N.m to 8 N.m, which causes the rotor speed a little dip but it is recovered quickly 

because the d-axis current Idp and its corresponding torque quickly increase to new values to resist the 

change of speed.   

At t = 2.5 s, the speed command proceeds to second stage by changing the speed command from 

2.5 times the base speed to the base speed. The speed change causes the torque and torque control current, 

Idp, sharply falling down to their minimum values, which farther causes the rotor speed to quickly decrease. 

When the speed closes on the speed command, the torque and d-axis current Idp begin increase in inversely 

proportional to speed. The q-axis is still kept in some negative values before the speed falls down to the 

base speed and then change to the zero again.   

The d-axis and q-axis flux linkages of power windings are shown in Figures 7.15(e) and 7.15(f), 

which are dependent on the d-q current components of power windings and control windings. Figure 7.16 

gives the profile of phase current and voltage of power windings during the whole transient process.  In 

Figure 7.16(a), we can clearly see that there are three transient stages in the whole transient process of 

phase current Ipa: 

(1) From 0 to 1.5 s, speed command is equal to 2.5 times the base speed and load torque is set to 

4 N.m.. Phase current Ipa of the power windings goes through its first transient stage. During 

this transient stage, transient current sharply increases to maximum value and then slowly 

decreases to a steady-state value. The frequency of the current increases step by step and then 

reaches 2.5 times the base frequency.  

(2) From 1.5 s to 2.5 s, speed command is equal to 2.5 times the base speed but load torque is 

changed from 4 N.m to 8 N.m. Phase current Ipa of the power windings goes through its 

second transient stage. During this transient stage, the transient current quickly increases and 

reaches to a new steady-state value, which can generate a new electrical torque to balance the 

new load torque. The current frequency is kept constant. 
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Figure 7.15. Dynamic response to a wide speed range of 2.5 times base speed. (a) Reference and actual 

speed, (b) torque (c) power winding d-axis current, (d) power winding q-axis current, (e) power winding d-

axis flux-linkage, (f) power winding q-axis flux-linkage. 



 

 

 

   (a)      (b) 

Figure 7.16. Profiles of the power winding phase current and voltage during the simulation process. 

(a)Phase current, (b)phase voltage. 

 

(3) From 2.5 s to 4 s, speed is changed from 2.5 times the base speed to 0.5 times the base speed 

and torque is kept at 8 N.m. Phase current Ipa of the power windings goes through its last 

stage. During this transient stage, the transient current increases to some value and then 

decreases and finally reaches to a new steady-state value. The current frequency decreases to 

the base current frequency. 

Case 2. We simulate the dynamic process of the control system with trapezoid speed command. 

During the whole simulation process, a 4 N.m load torque is used and control winding current is chose as 8 

A. 

As shown in Figure 7.17(a), the command speed is seperated into six stages: 

(1) The speed slopes up to twice the base speed from zero in first second. 

(2) The speed is kept constant at  twice the base speed for 1.5 seconds. 

(3) The speed slopes down to 0.5 times the base speed from 2.5 s to 3.5 s. 

(4) The speed is kept constant at 0.5 times base speed for 1 second. 
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Figure 7.17. Dynamic response to a trapezoid speed command. (a) Reference and actual speed, (b) torque 

(c) power winding d-axis current, (d) power winding q-axis current, (e) power winding d-axis flux-linkage, 

(f) power winding q-axis flux-linkage. 

 

 



 

Figure 7.18. Profiles of the power winding phase current and voltage during the simulation process. (a) 

Phase current, (b) phase voltage. 

 

(5) The speed slopes up to twice the base speed again in the time of 4.5 s to 5.5 s. 

(6) The speed is kep constant at twice the  base speed for  1.5 seconds. 

The rotor speed follows the speed command  very well and reaches the desired steady-state speeds: twice 

the base speed or 0.5 times the base speed.    

 Figures 7.17(b) and (c) illustrate the dynamic process of d-axis current of power windings. The 

up-slope speed causes the torque control current Idp and its coresponding   torque increament while the 

down-slope speed causes them decreament. When the speed reaches its stady-state values: 0.5 times the 

base speed and 2 times the base speed, Idp and its corresponding torque also reach their teady-state values.  

Figure 7.17(d) displays the dynamic process of q-axis current of power windings, which is align to zero 

when speed is below base speed or becomes negative value when the speed is above the base speed. 

 Figures 7.18(e) and (f) illustrate the dynamic process of d-axis and q-axis flux linkages of power 

windings.  Their profiles look similar to those of the d-axis and q-axis currents of the power windings 

because they are mainly dependent on theses currents.  

 The dynamic process of the phase current and voltage of the power windings is shown in Figures 

7.19(a) and (b).  we can clear see that there are six transient stages corresponding to the six-stage speed 

command. 

 



 Case 3. We simulate the dynamic process of the control system with a two-direction trapezoid 

speed command. During the whole simulation process, a 4 N.m load torque is used and control winding 

current is choosen as 8 A. 

 As shown in Figure 7.19(a), the speed command is seperated into six stages: 

(1) The speed slopes up to twice the  base speed from zero in first second. 

(2) The speed is kept constant at twice the base speed for 1.5 s. 

(3) The speed slopes down to negative twice the base speed from 2.5 s to 4.5 s. 

(4) The speed is kept constant at negative twice the base speed for 1.5 seconds. 

(5) The speed slopes up to twice the base speed in the time of 6 s to 8 s. 

(6) The speed is kep constant at twice the base speed for  1.5 s. 

The rotor speed follows this speed command very well either in clockwise direction or counter clockwise 

direction. The steady-state rotor speeds can also be obtained in both directions .   

 Figures 7.19(b) and (c) display the dynamic process of the torque control current Idp and 

electrical torque. When the speed command is on its up-slope sides, Idp and torque increase quickly and 

then keep at some values until the rotor speed closes its desired speed. At the monent of the rotor speed 

reaching its stedy-state values, Idp and torque quickly decrease and hold at some values which generate an 

electrical torque to balance the load torque;  When  the  speed  command  is  on  its down-slope sides, Idp 

and  
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Figure 7.19. Dynamic response to a two-direction trapezoid speed command. (a) Reference and actual 

speed, (b) torque (c) power winding d-axis current, (d) power winding q-axis current, (e) power winding d-

axis flux-linkage, (f) power winding q-axis flux-linkage. 
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Figure 7.20. Profiles of the power winding phase current and voltage during the simulation process. 

(a)Phase current, (b)phase voltage. 

 

torque decrease quickly and then keep at some values so that the rotor speed quickly decreases and closes 

its desired speed. At the monent of the rotor speed reaches its steady-state values, Idp and torque quickly 

increase and reach their steady-state values for balancing the load torque. By comparing three cases, this is 

noted that, if the trapezoid speed command is used, the change of the torque control current Idp and torque 

are not as sharp as  those of the step change speed command. Hence, using the trapezoid speed command is 

a good way to avoid the too big  command current Idp
*. 

Figure 7.19(d) shows that q-axis  current Iqp is align to zero below the base speed or is align to the 

negative values above the base speed because of the field weakening control. 

The q-axis and d-axis flux linkages of the power windings are illustrated in Figures 7.19(e) and 

(f), they are dependent on the q-axis and d-axis currents of both the power windings and control windings. 

Figure 7.20 illustrates the profiles of the phase current and voltage of the power windings during 

the whole dynamic process. It is observed from  Figure 7.20(a) that there are six transient stages 

corresponding to the speed command. 

Above simulation results have demonstrated the dynamic performance of control scheme II (using 

IP and hysteretic current control). The control scheme I (using linearization control) also has similar 

simulation results. Figures 7.21 and 7.22 give the evidence that the dynamic performance is the same as 

one of control scheme II in case 3.   

A few factors cause transient difference between control scheme I and control scheme II in case 3:  

(1) Two control schemes use different controller. One uses IP controller, the another uses 

linearization controller; 

(2) In control scheme I, the voltage-controlled PWM-VSI is simulated using average voltage of 

switching period to replace true pulsating voltage, hence it is approximate simulation. 

However, the current-controlled PWM-VSI in control scheme II is simulated directly using 

true pulsating voltage.  The simulation waveforms are shown in Figure 7.9 for voltage-



controlled PWM-VSI and Figure 7.11 for current-controlled PWM-VSI. Figure 7.20(b) shows 

the true phase-voltage waveform (pulsating voltage) while Figure 7.22(b) just shows the 

approximate phase-voltage waveform (average voltage of switching period). 

(3) The higher switching frequency is used in control scheme II. 5 KHz switching frequency is 

used in current-controlled PWM-VSI while 2 KHz switching frequency is used in voltage-

controlled PWM-VSI. 
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Figure 7.21. Dynamic response to a two-direction trapezoid speed command for control scheme I. (a) 

Reference and actual speed, (b) torque (c) power winding d-axis current, (d) power winding q-axis current, 

(e) power winding d-axis flux-linkage, (f) power winding q-axis flux-linkage. 

 

 

 

 

 

          (a)               (b)  

Figure 7.22. Profiles of the power winding phase current and voltage during the simulation process for 

control scheme I. (a)Phase current, (b)phase voltage. 

 

 

Although the dynamic responses of the control scheme II have more harmonic components, they should 

much close to the true results. 

 

 

7.10 Conclusion 

 



 This chapter demonstrates the application of field orientation principle in a doubly-fed 

synchronous reluctance machine with dc control windings. The simulation results prove that this machine 

can be controlled like a separately excited dc motor.  

 The machine is controllable in a wide speed range including constant torque region and constant 

power region. The expressions to determine maximum torque and obtain field-weakening operation 

performance above base speed are given and satisfactorily used in the simulation. A design procedure and 

programs to quantitatively decide the IP parameters for a second-order speed loop are given, which can be 

used to obtain the performance of the non-overshoot speed response. The novel design methodology using 

input-output linearlization technique and Butterworth method are used for designing a nonlinear controller 

for the machine. The simulation results show that the prescribed control performance is achieved for IP 

controller and nonlinear controller.  

 Current-controlled PWM-VSI and voltage-controlled PWM-VSI, which are used  

as a controllable source to supply the power winding of the machine, are described in details and their 

performance is successfully simulated using Matlab/Simulink.  

 Control scheme I with voltage-controlled PWM-VSI and control scheme II with current-controlled 

PWM-VSI are also simulated using Matlab/Simulink. They both demonstrate the similar performance. 

Their effectiveness shows that they are worth to be verified by the experiment.          

 

 

 

 

 

  

 

 



CHAPTER 8 
 

CONCLUSIONS AND SUGGESTION FOR FURTHER WORK 

 
 

8.1 Conclusion 
 

 

      The research work on this dissertation has focused on modeling, simulation, 

and application of a doubly-fed reluctance machine.   

      A accurate mathematical model, which considers the core-loss of the machine, 

and its corresponding dynamic q-d equivalent circuits with series cores-loss resistance or 

shunt core-loss resistance are presented. The machine inherent parameters are obtained 

by using its steady-state equivalent circuits and experimental measurement.  Based on 

this mathematical model, the mathematical models of a few generator systems were 

described. Some generator systems investigated in this dissertation include: 

(a) Self-excited doubly-fed reluctance generator systems. 

(b) Doubly-fed reluctance synchronous generator systems. 

(c) Regulated DC power generation systems using doubly-fed synchronous reluctance 

machine. 

Their dynamic performances were simulated using MATLAB/Simulink and ACSL 

program. The steady-state characteristics of these generator systems were obtained by 

simulation and experimental measurement. The potential applications of these generator 

systems had been revealed from the results of dynamic simulation and steady-state 

calculation. 

217 



 The application of field-orientation principle in a doubly-fed synchronous reluctance 

machine with dc control windings was investigated. The simulation results prove that this 

machine can be controlled like a separated-excited dc motor in a wide speed range 

including constant torque control below the base speed and field weakening control 

above the base speed.  

Two control schemes were investigated in the field orientation control system of 

doubly-fed synchronous reluctance machine. One had IP controller and current-controlled 

voltage-source inverter, and another had linearization controller and voltage-controlled 

PWM voltage-source inverter. The design procedures to obtain the parameters of 

controller were given. 

The research work has made contribution in these areas: 

(1) A dynamic model of doubly-fed reluctance machine considering the effects of 

core-loss and saturation was presented. It provided a more accurate model for the 

performance evaluation and the design of doubly fed reluctance machines. An 

approach to determine machine parameters from measurement was also provided. 

(2)  The performance characteristics of doubly-fed self-excited reluctance generator 

and doubly-fed synchronous reluctance generator as well as an innovative DC 

power generator scheme using doubly fed reluctance machine, were investigated 

and analysis were presented. These works revealed their potential applications. 

(3) Two field orientation control schemes for a doubly-fed synchronous reluctance 

machine were investigated for high-performance operation both in the constant 

torque and constant power regions. The simulation results have provided valuable 

information for realization and application of the control systems. 



 

8.2 Suggestion for Further Work 

 

The research work revealed some inherent disadvantage of this experimental machine 

with simple salient laminated pole rotor structure. The disadvantages include: 

(1) The inherent oscillatory instability of this class of reluctance machine when fed with 

variable-voltage, variable frequency source under open-loop control. 

(2) Its core losses, saturation effect, and leakage inductances are relatively high. 

To eliminate these inherent disadvantages, proper rotor structure and optimization 

designs are necessary. An axially laminated rotor structure will drastically reduce the 

effects of these disadvantages.  

      The simulation results have demonstrated that two field-orientation control 

schemes of doubly-fed synchronous reluctance machine are effective and robust. To 

verify the theory set forth and the effective of these two control schemes, experimental 

work will be necessary. 

 We hope that the proposed further research will improve the performance 

of this kind of machine and promote its applications in industry, military and power 

system given its low cost, high reliability and flexible control methods.    
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Appendix 2A 

 

The parameters of the experimental machine are: 

Number of power winding pole pair, P = 1 

Number of control winding pole pair, q = 3 



Power winding per-phase resistance, Rp = 1.439 Ohms 

Refered control winding  per-phase resistance, Rs’ = 0.723 ohms 

The ratio of the effective power winding to control winding turns, Np/Ns = 0.5. 
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Appendix 4B 

 

Matlab Program 

%Double-fed generator steady-state analysis. 

%Power winding denoted by “1” and control winding denoted by “2”. 

c2=90.e-6;rr1=1.4392;rr2=2.8933;lo=0.00015; 

for num=1:1:3 

if num==1;c1=168.e-6;wr=377*2*45/60; 

ktt=0.185; 

%ktt=0.2; 

end; 

if num==2;c1=168.e-6;wr=377*2*50/60; 

ktt=0.207; 

%ktt=0.244; 

end; 

if num==3;c1=168.e-6;wr=377*2*55/60; 

ktt=0.215; 

%ktt=0.27; 

end; 

for x=1:1:41; 

lamx=(x-1)*ktt/40; 



lamm=lamx; 

lam(num,x)=lamx; 

rm2=7.24*lamm^2-4.25*lamm+1.58; 

ls2=-0.55*lamm^2+0.09*lamm+0.0385; 

lm=-0.44*lamm^2+0.085*lamm+0.0373; 

rm1=-4.05*lamm^2-1.47*lamm+1.217; 

ls1=-0.36*lamm^2+0.09*lamm+0.0385; 

r1=rr1+rm1; 

r2=rr2+rm2; 

lls2=ls2-lm;  

lls1=ls1-lm; 

e=1/((1/lm+1/lls1+1/lls2)*lls1); 

f=1/((1/lm+1/lls1+1/lls2)*lls2); 

ts1=-ls2/(ls1*ls2-lm^2);bs1=lm/(ls1*ls2-lm^2); 

ts2=-ls1/(ls1*ls2-lm^2);bs2=lm/(ls1*ls2-lm^2); 

tss1=-r1*ls2/(ls1*ls2-lm^2);bss1=r1*lm/(ls1*ls2-lm^2); 

tss2=-r2*ls1/(ls1*ls2-lm^2);bss2=r2*lm/(ls1*ls2-lm^2); 

 

aa=-c1*c2*lo*(tss1+tss2); 

ba=c1*lo*(2*tss1+tss2)*c2*wr; 

ca=lo*c2*(bs1*bss2-ts1*tss2)+c2*(tss1+tss2)-c1*lo*((tss1*ts2-

bss1*bs2)+c2*wr^2*tss1); 

da=lo*c2*wr*(ts1*tss2-bs1*bss2)-(2*tss1+tss2)*c2*wr; 



ea=(tss1*ts2-bss1*bs2)+c2*wr^2*tss1; 

 

fa=c1*c2; 

ga=-2*c1*c2*wr; 

ha=c1*c2*(bss2*bss1-tss2*tss1)+ts1*c2+ts2*c1+c1*c2*wr^2; 

ia=wr*c1*c2*(tss1*tss2-bss1*bss2)-2*ts1*c2*wr; 

ja=(ts1*ts2-bs1*bs2)+ts1*c2*wr^2; 

                                              

la=-c1*c2*(tss1+tss2); 

ma=2*c1*c2*tss1*wr+c1*c2*tss2*wr; 

na=c2*(bs1*bss2-ts1*tss2)+c1*(bss1*bs2-tss1*ts2)-c1*c2*tss1*wr^2; 

oa=c2*wr*(ts1*tss2-bs1*bss2); 

 

sa=-c1*c2*lo; 

ta=2*c1*c2*lo*wr; 

ua=-lo*ts1*c2-lo*ts2*c1+c2-c1*c2*lo*(bss2*bss1-tss2*tss1)-c1*c2*lo*wr^2; 

va=2*lo*ts1*c2*wr-2*c2*wr+c1*c2*lo*wr*(bss2*bss1-tss2*tss1); 

xa=lo*(bs1*bs2-ts1*ts2)-lo*ts1*c2*wr^2+c2*(bss2*bss1-tss2*tss1)+c2*wr^2+ts2; 

ya=-c2*wr*(bss2*bss1-tss2*tss1); 

aw1=-fa*sa; 

bw1=-fa*ta-ga*sa; 

cw1=aa*la-fa*ua-ga*ta-ha*sa; 

dw1=aa*ma+ba*la-fa*va-ga*ua-ha*ta-ia*sa; 



ew1=(aa*na+ba*ma+ca*la-fa*xa-ga*va-ha*ua-ia*ta-ja*sa); 

fw1=(aa*oa+ba*na+ca*ma+da*la-fa*ya-ga*xa-ha*va-ia*ua-ja*ta); 

gw1=(ba*oa+ca*na+da*ma+ea*la-ga*ya-ha*xa-ia*va-ja*ua); 

hw1=(ca*oa+da*na+ea*ma-ha*ya-ia*xa-ja*va); 

iw1=(da*oa+ea*na-ia*ya-ja*xa); 

jw1=(ea*oa-ja*ya); 

cw=[aw1 bw1 cw1 dw1 ew1 fw1 gw1 hw1 iw1 jw1]; 

w1=roots(cw); 

for mm=1:1:9; 

if imag(w1(mm))==0,test1=1;else test1=0;end;  

if real(w1(mm))>1,test2=1;else test2=0;end; 

if real(w1(mm))<wr,test3=1;else test3=0;end; 

kw=test1*test2*test3*mm; 

if kw>0,km=kw; 

end;    

end; 

ww1(num,x)=w1(km); 

ww2(num,x)=wr-ww1(num,x); 

ro(num,x)=-

(sa*ww1(num,x)^5+ta*ww1(num,x)^4+ua*ww1(num,x)^3+va*ww1(num,x)^2+xa*ww1

(num,x)+ya)/(la*ww1(num,x)^3+ma*ww1(num,x)^2+na*ww1(num,x)+oa); 

ao=ts1*(ro(num,x)-ww1(num,x)*lo*j)/(1-ww1(num,x)^2*c1*lo-

ww1(num,x)*c1*ro(num,x)*j); 



bo=bs1*(ro(num,x)-ww1(num,x)*lo*j)/(1-ww1(num,x)^2*c1*lo-

ww1(num,x)*c1*ro(num,x)*j); 

k11=bss2-bs2/(-ww2(num,x)*c2*j);k12=-ww2(num,x)*j+tss2-ts2/(-ww2(num,x)*c2*j); 

lamqds1=(k12*lamx)/(e*k12-f*k11);  

lamqds2=-(k11*lamx)/(e*k12-f*k11); 

k21=ao+ww1(num,x)*j+tss1;k22=bo+bss1; 

lamqdss1=(k22*lamx)/(e*k22-f*k21); 

lamqdss2=-(k21*lamx)/(e*k22-f*k21); 

vqds1(num,x)=ao*lamqds1+bo*lamqds2; 

vp(num,x)=sqrt(real(vqds1(num,x))^2+imag(vqds1(num,x))^2); 

iqds1(num,x)=-ts1*lamqds1-bs1*lamqds2; 

ip(num,x)=sqrt(real(iqds1(num,x))^2+imag(iqds1(num,x))^2); 

vqds2(num,x)=-(ts2*lamqds2+bs2*lamqds1)/(ww2(num,x)*c2*j); 

iqds2(num,x)=-ts2*lamqds2-bs2*lamqds1; 

vs(num,x)=sqrt(real(vqds2(num,x))^2+imag(vqds2(num,x))^2); 

is(num,x)=sqrt(real(iqds2(num,x))^2+imag(iqds2(num,x))^2); 

iqdo(num,x)=vqds1(num,x)/(ro(num,x)-ww1(num,x)*lo*j); 

io(num,x)=sqrt(real(iqdo(num,x))^2+imag(iqdo(num,x))^2); 

po(num,x)=3*io(num,x)^2*ro(num,x)/2.0; 

rro(num,x)=1.0/ro(num,x); 

f2(num,x)=ww2(num,x)/(2.0*pi); 

f1(num,x)=ww1(num,x)/(2.0*pi); 

end; 



end; 

end; 

 

Appendix 4C 

 

ACSL PROGRAM 

 Double-Fed Generator Starting Transient Dynamic Simulation 

.............................CONSTANT PHASE=2.094395,R11=1.4392,R22=0.7233,RO=16 

 CONSTANT C1=168.E-6,C2=360.E-6,LO=0.00015,RD1=2.6568 

           CONSTANT RD2=2.3022,LSD1=0.0373,LSD2=0.0385,LMD=0.0164 

 CONSTANT MQSIC1=5.e-5,MDSIC1=5.e-5,MQSIC2=5.e-5 

            CONSTANT MDSIC2=3.e-2,VQIC1=5.e-5,VDIC1=5.e-5 

 CONSTANT IQIC=1.e-4,IDIC=1.e-5,WEIC=0.0 

 CONSTANT VQIC2=5.e-5,VDIC2=2.0,THIC=0.0,NRIC=0.0 

           CONSTANT PI=3.1412,WRR=377.0, RO2=16.0, RO1=16.0 

 CONSTANT TSTOP=0.8,NSTOP=0.8 

 CINTERVAL CINT=1.E-4 

 MAXTERVAL MAXT=5.E-4 

 

INITIAL 

 RQ1=RD1             

 RQ2=RD2              

 LSQ1=0.0373           



 LSQ2=0.0385            

 LMQ=0.0164              

           LLSD1=(LSD1-LMD) 

 LLSD2=(LSD2-LMD) 

 LLSQ1=(LSQ1-LMQ)           

 LLSQ2=(LSQ2-LMQ)            

 LMMQ=1.0/(1.0/LMQ+1.0/LLSQ1+1.0/LLSQ2) 

           GUNC1=1.0/C1 

 GUNC2=1.0/C2 

END 

 

DYNAMIC 

DERIVATIVE 

 WR=WRR*2.0*55/60 

 THETAR=INTEG((W1-WR),NRIC) 

 THETER=INTEG((W1),THIC) 

            RO=RSW((T.LT.1.0),RO1,RO2) 

LAMQS1=INTEG((VQS1+TSSQ1*LAMQS-                                                                                                                      

W1*LAMDS1+BSSQ1*LAMQS2),MQSIC1) 

LAMDS1=INTEG((VDS1+TSSD1*LAMDS1+W1*LAMQS1+BSSD1*LAMDS

2),MDSIC1) 

 

LAMQS2=INTEG((VQS2+TSSQ2*LAMQS2-(W1-

WR)*LAMDS2+BSSQ2*LAMQS1),MQSIC2) 



LAMDS2=INTEG((VDS2+TSSD2*LAMDS2+(W1-

WR)*LAMQS2+BSSD2*LAMDS1),MDSIC2)           

VQ=GUNC1*TSQ1*LAMQS1+BSQ1*GUNC1*LAMQS2-W1*VDS1-

GUNC1*IQO 

         VQS1=INTEG(VQ,VQIC1) 

VD=GUNC1*TSD1*LAMDS1+BSD1*GUNC1*LAMDS2+W1*VQS1-

GUNC1*IDO 

 VDS1=INTEG(VD,VDIC1) 

VQS2=INTEG((GUNC2*TSQ2*LAMQS2+BSQ2*GUNC2*LAMQS1-(W1-

WR)*VDS2),VQIC2) 

VDS2=INTEG((GUNC2*TSD2*LAMDS2+BSD2*GUNC2*LAMDS1+(W1-

WR)*VQS2),VDIC2)   

  IQO=INTEG((VQS1/LO-RO*IQO/LO-W1*IDO),IQIC) 

  IDO=INTEG((VDS1/LO-RO*IDO/LO+W1*IQO),IDIC)    

             IQS1=-(TSQ1*LAMQS1+BSQ1*LAMQS2) 

  IDS1=-(TSD1*LAMDS1+BSD1*LAMDS2) 

  IQS2=-(TSQ2*LAMQS2+BSQ2*LAMQS1) 

 IDS2=-(TSD2*LAMDS2+BSD2*LAMDS1) 

 VAS1=(VQS1*COS(THETER)+VDS1*SIN(THETER))*SQRT(2.0/3.0) 

VBS1=(VQS1*COS(THETER-PHASE)+VDS1*SIN(THETER-

PHASE))*SQRT(2.0/3.0) 

VCS1=(VQS1*COS(THETER+PHASE)+VDS1*SIN(THETER+PHASE))*SQR

T(2.0/3.0) 



            VAS2=(VQS2*COS(THETAR)+VDS2*SIN(THETAR))*SQRT(2.0/3.0)*2.0 

VBS2=(VQS2*COS(THETAR+PHASE)+VDS2*SIN(THETAR+PHASE))*SQR

T(2.0/3.0) 

VCS2=(VQS2*COS(THETAR-PHASE)+VDS2*SIN(THETAR-

PHASE))*SQRT(2.0/3.0) 

 VS1=SQRT(VQS1**2+VDS1**2) 

 VS2=SQRT(VQS2**2+VDS2**2) 

 IAS1=(IQS1*COS(THETER)+IDS1*SIN(THETER))*SQRT(2.0/3.0) 

IBS1=(IQS1*COS(THETER-PHASE)+IDS1*SIN(THETER-

PHASE))*SQRT(2.0/3.0) 

ICS1=(IQS1*COS(THETER+PHASE)+IDS1*SIN(THETER+PHASE))*SQRT(2

.0/3.0) 

  Ipa=ias1 

Vpa=vas1 

IAS2=(IQS2*COS(THETAR)+IDS2*SIN(THETAR))*SQRT(2.0/3.0)/2.0 

IBS2=(IQS2*COS(THETAR+PHASE)+IDS2*SIN(THETAR+PHASE))*SQRT(

2.0/3.0) 

ICS2=(IQS2*COS(THETAR-PHASE)+IDS2*SIN(THETAR-

PHASE))*SQRT(2.0/3.0) 

  

         WA=VDS1*LLSD2+VDS2*LLSD1-LLSD1*WR*LAMQS2 

WB=LAMDS1*(TSSD1*LLSD2+BSSD2*LLSD1-LLSD2**2*BSSD1/LLSD1-         

LLSD2*TSSD2) 



         W1=-(WA+WB)/(LLSD2*LAMQS1+LLSD1*LAMQS2) 

          w2=wr-w1 

          f1=w1/(2.0*pi) 

         f2=w2/(2.0*pi) 

            TSSQ1=-RQ1*LSQ2/(LSQ1*LSQ2-LMQ**2.0) 

 BSSQ1=RQ2*LMQ/(LSQ1*LSQ2-LMQ**2.0) 

            TSSD1=-RD1*LSD2/(LSD1*LSD2-LMD**2.0) 

 BSSD1=RD1*LMD/(LSD1*LSD2-LMD**2.0) 

 TSSQ2=-RQ2*LSQ1/(LSQ1*LSQ2-LMQ**2.0) 

 BSSQ2=RQ2*LMQ/(LSQ1*LSQ2-LMQ**2.0) 

 TSSD2=-RD2*LSD1/(LSD1*LSD2-LMD**2.0) 

 BSSD2=RD2*LMD/(LSD1*LSD2-LMD**2.0) 

 TSQ1=-LSQ2/(LSQ1*LSQ2-LMQ**2.0) 

 BSQ1=LMQ/(LSQ1*LSQ2-LMQ**2.0) 

 TSD1=-LSD2/(LSD1*LSD2-LMD**2.0) 

 BSD1=LMD/(LSD1*LSD2-LMD**2.0) 

 

 TSQ2=-LSQ1/(LSQ1*LSQ2-LMQ**2.0) 

 BSQ2=LMQ/(LSQ1*LSQ2-LMQ**2.0) 

 TSD2=-LSD1/(LSD1*LSD2-LMD**2.0) 

 BSD2=LMD/(LSD1*LSD2-LMD**2.0) 

PROCEDURAL 

 LAMQM=LMMQ*(LAMQS1/LLSQ1+LAMQS2/LLSQ2) 



 LAMM=ABS(LAMQM) 

 RME1=-4.05*LAMM**2.0-1.47*LAMM+1.217 

 RME2=7.24*LAMM**2.0-4.25*LAMM+1.58 

 LME=-0.44*LAMM**2.0+0.0851*LAMM+0.0164 

 LSE1=-0.36*LAMM**2.0+0.0906*LAMM+0.0373 

.......................................................LSE2=-0.55*LAMM**2.0+0.09*LAMM+0.0385 

  

           RM1=RSW((LAMM.GE.0.2),0.7608,RME1) 

 RM2=RSW((LAMM.GE.0.2),0.7408,RME2) 

 LSQ1=RSW((LAMM.GE.0.2),0.041,LSE1) 

 LSQ2=RSW((LAMM.GE.0.2),0.0345,LSE2) 

 LMQ=RSW((LAMM.GE.0.2),0.01577,LME)      

 RQ1=R11+RM1 

 RQ2=R22+RM2 

 LLSQ1=(LSQ1-LMQ) 

 LLSQ2=(LSQ2-LMQ) 

 LMMQ=1.0/(1.0/LMQ+1.0/LLSQ1+1.0/LLSQ2) 

END 

END 

 TERMT(T.GE.TSTOP) 

END 

END  

 



 

 

Appendix 5A 

 

Control Winding Mathematical Model of doubly-fed synchronous reluctance machine 
with dc control winding excitation. 
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Replacing the Vas, Ias with the equation (5.17) and (5.18) gives 
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Removing the ‘Re’ operator on both sides of the equation obtains the q-d complex-form 

equation of the power winding 
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Appendix 5B 
 
 
Power Winding Mathematical Model of doubly-fed synchronous reluctance machine with 
dc control winding excitation. 
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Replacing Vap, Iap, Ias, Ibs and Ics with the equations (5.10), (5.11), (5.17) and (5.18) 

gives 
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Removing the ‘Re’ operator from two sides of the equation obtains 
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Appendix 5C 
 
 

Torque equation of doubly-fed synchronous reluctance machine with dc control winding 
excitation. 
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The final form of torque equation is 
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Appendix 6A 

 
 
The parameters of the lead acid battery [61] 

Battery capacitance Cbp = 54,000 F 

Discharging resistance Rb1 = 0.001Ω 

Discharging capacitance Cb1 = 1.0F 

Self-charging Resistance Rbp = 10,000 Ohms 

Open circuit battery voltage = 24 V 

Connecting resistance  Rbt = 0.05Ω 

Internal resistance Rbs = 0.002Ω 

 
 



Appendix 7A 

 

%Program to obtain the electrical characteristics of DF machine 

%for a wide speed range including above base speed and below speed range. 

%rate value calculation: 

clear all 

basetime=4; 

for mm=1:1:3 

%Ojo's machine parameters   

%vpm=187;rp=0.7;wp=377;lp=0.043;lm=0.0385;ipm=9.3477;pr=8; 

%Wu's machine parameters   

 vpm=187;rp=1.4;wp=377;lp=0.041;lm=0.021;ipm=11.7107;pr=4; 

   if mm==1;iqs=16;end 

   if mm==2;iqs=8;end 

   if mm==3;iqs=2;end 

 %calculate the peak rate current.   

 %ipm=(wp*lm*rp*iqs)/(rp^2+wp^2*lp^2)+sqrt((wp*lm*iqs*rp)^2... 

 %-(rp^2+wp^2*lp^2)*((wp*lm*iqs)^2-vpm^2))/(rp^2+wp^2*lp^2) 

 %iss(mm)=ipm 

 %vpm=sqrt((rp^2+wp^2*lp^2)*ipm^2+wp^2*lm^2*iqs^2-2*wp*lm*rp*iqs*idp) 

 %ipm=(wp*lm*rp*iqs)/(rp^2+wp^2*lp^2)+sqrt((wp*lm*iqs*rp)^2... 

 %-(rp^2+wp^2*lp^2)*((wp*lm*iqs)^2-vpm^2))/(rp^2+wp^2*lp^2) 

 %calculate the base speed. 

 ssa=lp^2*ipm^2+lm^2*iqs^2;ssb=-2*lm*rp*iqs*ipm;ssc=rp^2*ipm^2-vpm^2; 



 wbb(mm)=-ssb/(2*ssa)+sqrt(ssb^2-4*ssa*ssc)/(2*ssa)    

 %approximated equation to calculate the base speed by chossing rp=0; 

 awbb(mm)=vpm/sqrt(lp^2*ipm^2+lm^2*iqs^2)  

%boundary point between Mode I and Mode II 

la=ipm^2*lp^4-lm^2*lp^2*iqs^2; 

lb=2*rp^2*lp^2*ipm^2-lm^2*rp^2*iqs^2-lp^2*vpm^2; 

lc=ipm^2*rp^4-rp^2*vpm^2; 

ld=2*vpm*lm*rp*iqs*lp; 

le=2*vpm*lm*rp^2*iqs; 

kk1=la^2; 

kk2=2*la*lb; 

kk3=lb^2-ld^2+2*la*lc; 

kk4=2*lb*lc-le^2; 

kk5=lc^2; 

mwm=[kk1 kk2 kk3 kk4 kk5]; 

wn=roots(mwm); 

awnn=sqrt(wn); 

w12(mm)=max(awnn) 

wee=w12(mm); 

nwee=w12(mm); 

if wee>=basetime*377; wee=basetime*377; nwee=basetime*377; end; 

%approximated equation to calculate the boundary speed by choosing rp=0; 

aw12(mm)=vpm/sqrt(lp^2*ipm^2-lm^2*iqs^2) 



%below the base speed 

for nn=1:1:21; 

   wbe(mm,nn)=wbb(mm)*(nn-1)/20; 

   wp=wbe(mm,nn); 

   iidp(mm,nn)=ipm; 

   iiqp(mm,nn)=0; 

   tor(mm,nn)=1.5*4*iqs*iidp(mm,nn)*lm; 

   po(mm,nn)=tor(mm,nn)*wbe(mm,nn)/4; 

   iip(mm,nn)=sqrt(iidp(mm,nn)^2+iiqp(mm,nn)^2); 

   vpo(mm,nn)=sqrt((rp^2+wp^2*lp^2)*iip(mm,nn)^2+wp^2*lm^2*iqs^2... 

      +2*wp^2*lm*lp*iqs*iiqp(mm,nn)-2*wp*lm*rp*iqs*iidp(mm,nn)); 

end 

for nn=1:1:21; 

   nwbe(mm,nn)=-wbb(mm)*(nn-1)/20; 

   wp=abs(nwbe(mm,nn)); 

   niidp(mm,nn)=ipm; 

   niiqp(mm,nn)=0; 

   ntor(mm,nn)=1.5*4*iqs*niidp(mm,nn)*lm; 

   npo(mm,nn)=ntor(mm,nn)*nwbe(mm,nn)/4; 

   niip(mm,nn)=sqrt(niidp(mm,nn)^2+niiqp(mm,nn)^2); 

   nvpo(mm,nn)=sqrt((rp^2+wp^2*lp^2)*niip(mm,nn)^2+wp^2*lm^2*iqs^2... 

      +2*wp^2*lm*lp*iqs*niiqp(mm,nn)-2*wp*lm*rp*iqs*niidp(mm,nn)); 

end 



%above the base speed 

%Mode I 

for nn=22:1:72; 

   wbe(mm,nn)=wbb(mm)+(wee-wbb(mm))*(nn-21)/51; 

   wp=wbe(mm,nn); 

   s1=10e-4*(vpm^2-(rp^2+wp^2*lp^2)*ipm^2-wp^2*lm^2*iqs^2); 

   s2=10e-4*(2*wp*lm*rp*iqs);s3=10e-4*(2*wp^2*lm*lp*iqs); 

   ta=s2^2+s3^2;tb=2*s1*s2;tc=s1^2-s3^2*ipm^2; 

   iidp(mm,nn)=-tb/(2*ta)+sqrt(tb^2-4*ta*tc)/(2*ta); 

   iiqp(mm,nn)=(s1+s2*iidp(mm,nn))/s3; 

   tor(mm,nn)=1.5*4*iqs*iidp(mm,nn)*lm; 

   po(mm,nn)=tor(mm,nn)*wbe(mm,nn)/4; 

   iip(mm,nn)=sqrt(iidp(mm,nn)^2+iiqp(mm,nn)^2); 

   vpo(mm,nn)=sqrt((rp^2+wp^2*lp^2)*iip(mm,nn)^2+wp^2*lm^2*iqs^2... 

      +2*wp^2*lm*lp*iqs*iiqp(mm,nn)-2*wp*lm*rp*iqs*iidp(mm,nn));    

end 

for nn=22:1:72; 

   nwbe(mm,nn)=-wbb(mm)+(-nwee+wbb(mm))*(nn-21)/51; 

   wp=abs(nwbe(mm,nn)); 

   s1=10e-4*(vpm^2-(rp^2+wp^2*lp^2)*ipm^2-wp^2*lm^2*iqs^2); 

   s2=10e-4*(2*wp*lm*rp*iqs);s3=10e-4*(2*wp^2*lm*lp*iqs); 

   ta=s2^2+s3^2;tb=2*s1*s2;tc=s1^2-s3^2*ipm^2; 

   niidp(mm,nn)=-tb/(2*ta)+sqrt(tb^2-4*ta*tc)/(2*ta); 



   niiqp(mm,nn)=(s1+s2*iidp(mm,nn))/s3; 

   ntor(mm,nn)=1.5*4*iqs*niidp(mm,nn)*lm; 

   npo(mm,nn)=ntor(mm,nn)*nwbe(mm,nn)/4; 

   niip(mm,nn)=sqrt(niidp(mm,nn)^2+niiqp(mm,nn)^2); 

   nvpo(mm,nn)=sqrt((rp^2+wp^2*lp^2)*niip(mm,nn)^2+wp^2*lm^2*iqs^2... 

      +2*wp^2*lm*lp*iqs*niiqp(mm,nn)-2*wp*lm*rp*iqs*niidp(mm,nn));    

end 

%mode II     

for nn=73:1:123; 

   wbe(mm,nn)=wee+(basetime*377-wee)*(nn-73)/50; 

    wp=wbe(mm,nn); 

    iiqp(mm,nn)=-wp^2*lm*lp*iqs/(rp^2+wp^2*lp^2); 

    iidp(mm,nn)=(wp*lm*rp*iqs+vpm*sqrt(lp^2*wp^2+rp^2))/(rp^2+wp^2*lp^2); 

    tor(mm,nn)=1.5*4*iqs*iidp(mm,nn)*lm; 

    po(mm,nn)=tor(mm,nn)*wbe(mm,nn)/4; 

    iip(mm,nn)=sqrt(iidp(mm,nn)^2+iiqp(mm,nn)^2); 

    vpo(mm,nn)=sqrt((rp^2+wp^2*lp^2)*iip(mm,nn)^2+wp^2*lm^2*iqs^2... 

       +2*wp^2*lm*lp*iqs*iiqp(mm,nn)-2*wp*lm*rp*iqs*iidp(mm,nn)); 

 end;  

 for nn=73:1:123; 

    nwbe(mm,nn)=-nwee+(-basetime*377+nwee)*(nn-73)/50; 

    wp=abs(nwbe(mm,nn)); 

    niiqp(mm,nn)=-wp^2*lm*lp*iqs/(rp^2+wp^2*lp^2); 



    niidp(mm,nn)=(wp*lm*rp*iqs+vpm*sqrt(lp^2*wp^2+rp^2))/(rp^2+wp^2*lp^2); 

    ntor(mm,nn)=1.5*4*iqs*niidp(mm,nn)*lm; 

    npo(mm,nn)=ntor(mm,nn)*nwbe(mm,nn)/4; 

    niip(mm,nn)=sqrt(niidp(mm,nn)^2+niiqp(mm,nn)^2); 

    nvpo(mm,nn)=sqrt((rp^2+wp^2*lp^2)*niip(mm,nn)^2+wp^2*lm^2*iqs^2... 

       +2*wp^2*lm*lp*iqs*niiqp(mm,nn)-2*wp*lm*rp*iqs*niidp(mm,nn)); 

end; 

end 

 

 

 

 

Appendix 7B 

 

Control Scheme I: 

Ka =35.54 

Kb = 0.1042 

Kc = 2.4019 

Kq =15791 

Kd = 0.6955 

J = 0.0025 Kg-m2 

B = 0.0. 

Control Scheme II: 



KI = 2.871 

Kp = 0.58 

J = 0.0025 Kg-m2 

B = 0.0. 

 

Appendix 7C 

 

%Program used to calculate the IP parameters for two-order speed loop. 

%aao/(s^2+aa1*s+aa2) 

%main program--KIP2.m and subprogram---KIP.m 

clear all 

%parameters 

global u1 c1 h1 tre k1; 

pr=4;lm=0.02;iqs=8;tre=0.4;k1=-2;lp=0.041; 

J=0.0025;b=1/J;B=0.0; kt=(3/2)*pr*lm*iqs; 

uo=5;co=1;ho=1 

ss=fsolve('KIP',[uo co ho]') 

u1=ss(1) 

c1=ss(2) 

h1=ss(3) 

u2=u1+c1^2 

ki=u1*u2/(kt*b) 

kp=((u1+u2)/b-B)/kt 



end; 

 

%Subprogram Kip2.m 

function q=KIP(p) 

global u1 c1 h1 tre k1; 

u1=p(1);c1=p(2);h1=p(3); 

q=zeros(3,1); 

%coefficiences parameter 

q(1)=h1/u1-h1/(u1+c1^2)-1; 

q(2)=h1^2/(2*u1)-h1^2*(1-k1)/(2*u1+c1^2)-k1*h1^2/(2*u1+2*c1^2); 

q(3)=0.9-((h1/u1)*(1-exp(-u1*tre))-(h1/(u1+c1^2))*(1-exp(-(u1+c1^2)*tre))); 

end; 

 

Appendix 7D 

 

%program used to calculate the IP parameters for three-order speed loop. 

%aao/(S^3+aa2*S^2+aa1*S+aao) 

%main program--KIP3.m and subprogram---KIPP.m 

clear all 

%parameters 

global u1 c2 c3 h2 h3 tre k1 k2; 

k1=1.2;k2=-2;tre=0.4; 

uo1=20;co2=2;co3=2;ho2=0.3;ho3=3; 



ss=fsolve('KIPP',[uo1 co2 co3 ho2 ho3]') 

u1=ss(1) 

c2=ss(2) 

c3=ss(3) 

h2=ss(4) 

h3=ss(5) 

u2=u1+c2^2; 

u3=u1+c2^2+c3^2; 

aa2=u1+u2+u3; 

aa1=u1*u2+u2*u3+u3*u1; 

aao=u1*u2*u3; 

%Dr.Ojo controller 

pr=4;lm=0.02;lp=0.04;iqs=10;j=0.0025; 

z=(3*pr^2*lm*iqs)/(4*j); 

k3=lp*aa2 

kd=lp*aao/(z*k3) 

k2=lp*aa1/(z*k3) 

end; 

%Subprogram of Kip3.m 

function q=KIPP(p) 

global u1 c2 c3 h2 h3 tre k1 k2; 

u1=p(1);c2=p(2);c3=p(3);h2=p(4); h3=p(5); 

q=zeros(5,1); 

%coefficiences parameter 



q(1)=-(h2+h3)*((u1+c2^2)+(u1+c2^2+c3^2))+h2*(u1+(u1+c2^2+c3^2))... 

   +h3*(u1+(u1+c2^2)); 

q(2)=-(h2+h3)/u1+h2/(u1+c2^2)+h3/(u1+c2^2+c3^2)-1; 

q(3)=0.9-(-(h2+h3)*(1-exp(-u1*tre))/u1... 

   +h2*(1-exp(-(u1+c2^2)*tre))/(u1+c2^2)... 

   +h3*(1-exp(-(u1+c2^2+c3^2)*tre))/(u1+c2^2+c3^2)); 

q(4)=(-(h2+h3)*h2/(u1+(u1+c2^2))+h2^2/(2*(u1+c2^2))... 

   +h2*h3/((u1+c2^2)+(u1+c2^2+c3^2)))... 

   -k1*(-(h2+h3)*h3/(u1+(u1+c2^2+c3^2))... 

   +h2*h3/((u1+c2^2)+(u1+c2^2+c3^2))+h3^2/(2*(u1+c2^2+c3^2))); 

q(5)=((h2+h3)^2/(2*u1)-(h2+h3)*h2/(u1+(u1+c2^2))... 

   -(h2+h3)*h3/((u1+c2^2+c3^2)+u1))... 

   -k2*((-(h2+h3)*h2/(u1+(u1+c2^2))... 

   +h2^2/(2*(u1+c2^2))+h2*h3/((u1+c2^2)+(u1+c2^2+c3^2)))... 

   +(-(h2+h3)*h3/(u1+(u1+c2^2+c3^2))+h2*h3/((u1+c2^2)+(u1+c2^2+c3^2))... 

   +h3^2/(2*(u1+c2^2+c3^2)))); 

end; 
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