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A two horsepower interior permanent magnet (IPM) synchronous machine was 

used in the modeling, analysis, and nonlinear controller technique implementation in this 
research. This thesis presents an accurate model of the interior permanent magnet 
synchronous machine, which considers iron-loss resistance in parallel with the inductance 
of the machine to account for the core loss. The q-d equivalent circuits with shunt iron-
loss resistance are given. The influence of magnetic saturation and armature reaction on 
the performance of the interior permanent magnet synchronous machine was investigated 
by simulations and experiments. Ansoft’s RMxprt was found to be an excellent tool for 
the finite element analysis of the machine. The parameters of the machine were validated 
with result obtained experimentally by using this software. 
 

Different fault conditions for star- and delta-connected stator windings of the IPM 
and induction motor were investigated both experimentally (for feasible faults) and 
simulation using Matlab (Simulink). The faults considered are those which occur either at 
the terminal of the machine or in the winding of the machine. The necessary conditions 
for different faults were derived; dynamic simulations and some experimental results are 
used to show the response of the machines during faults. The fault tolerance of these 
machines were studied for different fault conditions.  
 

For continuous operation, reconfiguration of the modulation scheme of the VSI-
PWM when one inverter phase leg is damaged was derived. The faulted leg is replaced 
with a split dc capacitor once fault in one of the phase legs is detected and the modulation 
scheme is reconfigure for this topology. By this scheme, the reliability of the system is 
improved. Simulation results are used to confirm this scheme for different speed of 
operation. 
 

The principles of nonlinear control input-output linearization with decoupling are 
used to design the controllers for speed (or torque) control of the IPM with minimization 
of the total loss along the line. The machine was modeled with the inclusion of iron loss 
resistance to account for the iron loss in the machine; by this, the total loss comprising 
the copper loss and iron loss are being minimized as one of the objectives and speed (or 
torque) as the other objective to be controlled. Simulation results show some 
improvement in the performance of the machine when compared to the torque per ampere 
operation. Experimental results are expected to confirm same results. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Introduction 

 

The availability of modern permanent magnet (PM) with considerable energy 

density led to the development of dc machines with PM field excitation in the 1950s. 

Introduction of PM to replace electromagnets, which have windings and require an 

external electric energy source, resulted in compact dc machines. The synchronous 

machine, with its conventional field excitation in the rotor, is replaced by the PM 

excitation; the slip rings and brush assembly are dispensed with. With the advent of 

switching power transistors and silicon-controlled-rectifier devices in the latter part of 

1950s, the replacement of the mechanical commutator with an electronic commutator in 

the form of an inverter was achieved. These two developments contributed to the 

development of PM synchronous and brushless dc machines. The armature of the dc 

machine need not be on the rotor if the mechanical commutator is replaced by its 

electronic version. Therefore, the armature of the machine can be on the stator, enabling 

better cooling and allowing higher voltages to be achieved; significant clearance space is 

available for insulation in the stator. The excitation field that used to be on the stator is 

transferred to the rotor with PM poles. These machines are nothing but “an inside out dc 

machine” with the field and armature interchanged from the stator to rotor and rotor to 

stator, respectively [1]. 
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A sample geometry of an interior permanent magnet (IPM) synchronous machine is 

shown in Figure 1.1. As the name implies, interior permanent magnet synchronous 

machine is a type of synchronous machine with interesting characteristics due to the 

presence of permanent magnets mounted inside the steel rotor core in either radial or 

circumferential orientations. Although this may at first be a relatively modest variation of 

the surface permanent magnet geometry, the process of covering each magnet with a steel 

pole piece in the IPM geometry produces several significant effects on the motor’s 

operating characteristics. For example, burying the magnets inside the rotor provides the 

basis for a mechanically robust rotor construction capable of high speeds since the 

magnets are physically contained and protected.  

This thesis contains the description of the Interior Permanent Magnet (IPM) 

synchronous machine; derivation of its dynamic models with and without iron losses; 

parameters determination; performance and influence of iron loss, armature reaction and 

magnetic flux saturation; analysis of the machine under fault situation; and torque and 

speed controller design. 
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Materials 
1. Stator iron 
2. Solid iron shaft 
3. Permanent magnet  
4. Rotor conductors 
5. “A” phase conductors 
6. “B” phase conductors 
7. “-C” phase conductors 
8. Rotor iron 
9. Air gap 

 

Figure 1. 1 One pole cross section of a four pole, buried magnet, permanent magnet 

synchronous machine showing material boundaries. 



 
 

1.2. Literature Review 

 

The basic IPM rotor configuration has been known for many years. The 

introduction of Alnico magnets nearly 65years ago created a considerable interest in 

permanent magnet alternator development using interior permanent magnet motor 

geometries [2]. Soft iron pole shoes in these alternators provided a means of 

concentrating the flux of the thick Alnico magnets. Improvements in PM materials in 

following years turned attention to integral-horsepower applications for PM synchronous 

motors. A combination of an induction motor squirrel cage and the interior permanent 

magnet geometry provided possibilities for efficient steady-state operation as well as 

robust line starting. Work in this area accelerated during the past decade, following 

dramatic increase in the cost of energy. 

The first commercially available rare earth permanent magnet was the samarium 

cobalt magnet which was introduced in 1970. This magnet have coercive forces three to 

five times that of Alnico magnet and, from a technical standpoint, are ideally suited for 

rotating electric machines; however, their cost was prohibitively high and is expected to 

remain so.  

In order to understand the operating characteristics of an IPM synchronous motor 

drive, it is necessary first to appreciate the distinguishing electromagnetic properties of 

the interior PM motor itself. In particular, it is important to recognize that burying the 

magnets inside the rotor introduces saliency into the rotor magnetic circuit which is not 

present in other types of PM machines [2].  

 4
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As reported in some literature cited in [2], the relative magnitudes of the d- and q-

axis inductance values depend on the details of the rotor geometry. And also the torque 

production in the IPM motor is altered as a result of the rotor saliency, providing design 

flexibility which can be exercised to shape the motor output characteristics beneficially 

since the q-axis inductance of the IPM synchronous motor (Lq) typically exceeds the d-

axis inductance (Ld), a feature which distinguishes the IPM motor from conventional 

wound-rotor salient-pole synchronous motors for which Ld > Lq [3, 4]. 

A samarium-cobalt IPM machine is described in [5, 6]. In [6], the author points 

out that, due to the inverse saliency of the IPM machine, the output voltage tends to rise 

as the load is increased, and that this tendency could be exploited in the design of an IPM 

generator so that no external voltage regulation schemes are needed.  

The neodymium-iron-boron (NdFeB) rare earth permanent magnet, introduced in 

1983, has the same advantages over the ceramic and Alnico magnets as does the 

samarium cobalt magnets; but the production cost of the NdFeB rare earth permanent 

magnet was (and is) much lower. It was with the introduction of the NdFeB rare earth 

permanent magnet that a tremendous amount of new and renewed interest in PM 

machines have risen.  

The numerical analysis of PM machines utilizing finite element techniques has 

been greatly aided by the astronomical increase in computer hardware and software 

capabilities. An optimal design technique for a PM machine, presented in [7], provides a 

technique to obtain a quick “first cut” determination of the overall dimensions of a PM 

machine which is to be used as a generator. The work in [8] explains a method by which 
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the computation of the magnetic field of permanent magnets in iron cores may be 

determined. In [9], a detailed finite element examination of interior and surface magnet 

machines is presented. With the advances in computational power (and the renewed 

interest in PM machines) there have been numerous recent programs created to analyze 

the PM machine in greater detail. The works in [3, 10-12] offer various ways in which to 

analyze and design PM machines. 

Although considerable amount of literature exists about modeling of permanent 

magnet motors at steady state and transient conditions [2, 5, 13], the influence of losses 

has not yet been included in performance analysis of the machine [14]. Due to the rotor 

configuration of the permanent magnet motors which is schematically shown in Figure 

1.1, a significant level of iron loss is present because of the high values of current that 

flow in the stator circuits even at no-load as the terminal voltage is increased or reduced 

from its open circuit value [15]. Several circumstances concur to produce this effect, 

which can be viewed as a result of the combined action of the magnet excitation with the 

complicated rotor magnetic structure. The flux redistribution that occurs due to saturation 

of the leakage flux paths produces the distortion of the air gap flux, and time harmonics 

appear that induce additional losses [16]. Unlike conventional synchronous machines 

where the iron loss is essentially connected to the terminal voltage, the usual no-load test 

with fixed excitation and variable terminal voltage does not allow separation of the core 

loss since a significant component of such loss is due to the current [4]. 

The changing d-axis inductance and inclusion of constant core loss resistance in 

the model of the PM synchronous machines was set forth in [4-6, 15, 17-21], while 
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methods for determining changing axis inductances and demonstrating their impact on 

the torque capability of the machine were reported in [5, 6]. 

The torque production of the inverter is affected by either a fault on the interior 

permanent magnet machine or the inverter feeding it impresses unbalanced voltage sets. 

The first step in designing the re-configurable inverter control scheme is the 

determination of the models of the converters and machines under anticipated fault 

conditions. Past work on analyses of inverter fed wye-connected interior permanent 

magnet motors and surface permanent magnet (brushless) motors with such faults as an 

open phase have been reported in [22-26]. The simulation and analysis of utility fed 

synchronous machines with field and damper windings based on q-d-o models have also 

been earlier reported in [27-28]. Model of the IPM in the stationary reference frame is 

developed since the stationary reference frame is the best reference frame to study 

imbalances and faults on electric machines[29]. Similar work on fault analysis on either 

the machine or the inverter system have also been reported in [30-33], whereby one of the 

inverter phase legs broken/damaged was replaced with a split DC capacitor bank in order 

to avoid the loss of functionality of the drive and increasing its reliability [34]. 

The operating efficiency depends on the control strategies and losses can be 

minimized by the optimal control strategy [35-36]. So far, the Id = 0 control method, in 

which the armature current vector is in phase with the back-EMF due to permanent 

magnets and d-axis component of armature current Id does not exist, is applied in general 

in order to avoid irreversible demagnetization of permanent magnets. The recent 

development of the permanent magnets, however, has brought materials with high 
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coercivity and high residual magnetism. Therefore, several control methods have been 

proposed to improve the performance of the PM motor drives [2, 37-41]. In such control 

methods, the d-axis component of armature current is actively controlled according to the 

operating speed and load conditions. 

Nevertheless, the PM synchronous machines are strongly nonlinear systems. 

Salient-pole motors, in particular, present an additional complexity. Specifically, their 

torque can be decomposed into two components. The first component is the so-called 

reluctance torque, which is due to the saliency effect in the machine and is expressed as a 

nonlinear product of the d- and q- components of the currents. The second component, 

referred to as the hybrid torque, is produced through the interaction between the stator 

rotating magnetic field and the rotor magnets. It represents the largest component of the 

two and is a linear function of the current Iq. 

The progress accomplished recently in the area of nonlinear control [42] and 

microprocessor technology [43, 44] has allowed the implementation of sophisticated 

control schemes; and performing nonlinear control laws to sinusoidal synchronous 

motors [46-48] and to various other types of electrical motors [49, 50-52], in order to 

improve their dynamic performances. These control strategies are either based on a direct 

scheme, in which the park transformation or feedback linearization techniques are used in 

order to linearize directly the voltage-torque relationship [45, 48] (or voltage-speed or 

voltage-position in the case of speed or position control, respectively), or on an indirect 

and more classical current-control scheme, in which the appropriate current repartition is 

imposed in stator phases by the use of internal current loops [2, 52-54]. 
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In order to simplify the control strategy of the machine, however, most of the 

direct and indirect scheme algorithms take only the hybrid part of the torque into account, 

even for salient-pole motors [45, 54]. The direct component of the stator current Id is then 

forced to zero, which consequently orientates the stator magnetic field perpendicularly to 

the rotor field. Thus, the reluctance torque is canceled. As a result, the maximum torque 

obtainable for a given current is not maximized, and the copper losses are not minimized 

and, thus, nor is the power consumption of the motor. 

The motor losses consist of mechanical loss, copper loss and iron loss. The 

mechanical loss is speed dependent and not controllable. The controllable losses are 

copper loss and iron loss. The copper loss can be minimized by the maximum torque-per-

amp control, in which the armature current vector is controlled in order to produce the 

maximum torque per armature current ampere [2]. The iron loss can be reduced by flux-

weakening control [38-41], in which the d-axis current is controlled in order to reduce the 

air gap flux by the demagnetizing effects due to the d-axis armature reaction, because the 

iron loss is roughly proportional to flux density squared. 

On the other hand, some control strategies allowing Id to have nonzero values are 

proposed in the literature [2, 52]. They are all indirect current-control schemes and, as 

such, present several drawbacks. First, they assume a high-performance internal current 

loop, since it is always difficult to impose arbitrary currents in inductive stator windings 

[53]. Second, the design of the internal current loop is based on the assumption of a time-

scale separation between the mechanical and electrical time constants. For PM ac motors, 
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the mechanical and electrical time constants can be of the same order of magnitude, and 

the assumption of time-scale separation may, therefore, not be satisfied. 

Another drawback of this type of scheme is that torque regulation is achieved 

through an open-loop feedforward torque controller, which converts the desired torque 

into the required stator phase currents. Aside from the robustness issues that feedforward 

controllers raise, the choice of the phase currents references is not an easy task, since 

there is an infinite number of candidates for a given desired torque.  

In [2], the saliency effect is used, and the current references which insure a 

maximum torque/ampere are found graphically. This lookup table approach has to be 

reapplied, however, for every different motor. In [52], an internal current loop scheme is 

used for torque tracking. The motor used is a hybrid step motor, and the general model in 

which the inductance and back EMF functions are nonsinusoidal is considered. Exact 

feedback linearization is used to design the internal current controller, while feedforward 

compensation is used to decouple the electrical and mechanical subsystems. The 

arbitrariness in choosing the current references is formally expressed in terms of a free 

function, which can be selected in such a way as to minimize the power loss in the motor. 

The resulting scheme is interesting in terms of its generality. It is, however, 

computationally complex. The computation of the current references is performed in a 

feedforward manner and may involve time derivatives of the input torque command. This 

may be circumvented by augmenting the order of the controller. 

Most vector controlled ac drives have been performed under the assumption that 

there is no iron loss in motors. As the employment of vector controlled ac motors, 
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especially induction motor, permanent magnet synchronous motor (PMSM), synchronous 

reluctance motor has become standard in industrial drives, the improvement of ac motor 

drives has been important issue. For this reason, several attempts have been made to 

consider the iron loss in vector controlled ac motor drives. Influences of the iron loss on 

the synchronous reluctance motors has experimentally been investigated [55] and various 

strategies which compensate the influence of the iron loss have been proposed in [56-60]. 

Influences of the iron loss on the flux linkage deviation, its orientation error, and torque 

deviation of a vector controlled induction motor have analytically been investigated [61] 

and various compensation strategies have been investigated in [62-64]. Although a 

number of work dealing with vector controlled ac motor drive taking the iron loss into 

account have been published, only a few paid attention to PMSM drives [17, 65].  In [17], 

the optimal control method of armature current vector, according to the operating speed 

and the load conditions, is proposed in order to minimize the controllable losses. The 

reluctance torque and d-axis armature reaction are utilized to minimize the losses in the 

control algorithm. This work is similar to the same idea presented in [63]. Maximum 

torque per ampere method has been introduced to enhance torque production and reduce 

input current assuming constant machine parameters [40, 33, 66]. A recent effort seeks to 

improve the efficiency of the machine by including the effects of changing q and d axis 

inductances which are measured on line [67, 68]. With a static mapping of the q and d-

axis currents to the electromagnetic torque and using the classical IPM torque control 

scheme in [33], it is shown that including saturation dependence of the axis inductances, 

higher torque and higher efficiency result if the maximum torque per ampere trajectory of 
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the machine is implemented. On-line computation of the parameters has also been part of 

the work discuss in another type of permanent magnet synchronous machine [69] where 

the d-axis inductance is a function of the d-axis current. 

 

1.3. Research Motivation 

 

The PM synchronous motor offers several advantages for applications which 

require high acceleration and a good torque quality (i.e., no ripples), namely a high 

torque-to-inertia ratio and an excellent power factor close to unity, since the copper losses 

are essentially located only in the stator. In the applications of continuous long time 

operation such as electric vehicles and compressor drives, the efficiency is one of the 

most important performances. Therefore, the PM motor is suitable for such applications.  

Literature survey yields some important information of this machine: 

(a) Various efforts have been made to establish proper dynamic model and accurately 

analyze the performance of the interior permanent magnet synchronous motor in the past 

years but the influence of armature reaction, magnetic saturation and iron loss, has not yet 

been included in performance analysis of the machine. The impact of changing axis 

inductance on torque capability of the machine was reported in [5,6], the analysis has 

been done without iron loss resistance. Hence, a model whose equations consider the 

general case which includes the influence of armature reaction, magnetic saturation and 

iron loss was developed for the analysis of the performance of the interior permanent 

magnet synchronous machine. The determination of the parameters of the machine are 
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therefore necessary. Thus, the parameters (namely the mutual inductances in the d and q 

axes and the flux linkage created by the magnet) must be function of the operating 

conditions. Hence, finite element method and experimental measurement are used in 

determining these parameters and the validation of the two methods is done to compare 

their results. 

(b) There have been work that has considered some analysis of some faults condition on 

IPM synchronous machine, there have been none that has considered faults on delta-

connected stator machines. The analysis done on this topic has applied stationary 

reference frame of the model of the machines (IPM and induction machine) in the 

analysis of the machine in both star and delta connected stator winding. Instead of 

shutting down the system in the occurrence of a fault on one of the inverter legs, a 

modulation scheme of the PWM-VSI can be re-configure for the faulted/damaged 

inverter phase legs by replacing the phase with a split DC capacitor, this will improve the 

reliability of the whole system when a fault is sense. 

(c) Most vector controlled ac drives have been performed under the assumption that there 

is no iron loss in motors. There have been work reported in on maximum torque per 

ampere method [40, 33, 66] to enhance torque production and reduce input current 

assuming constant machine parameters. A recent effort seeks to improve the efficiency of 

the machine by including the effects of changing q and d axis inductances which are 

measured on-line [67, 68] have been reported. With a static mapping of the q and d-axis 

currents to the electromagnetic torque and using the classical IPM torque control scheme 

in [33], it is shown that including saturation dependence of the axis inductances, higher 
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torque and higher efficiency result if the maximum torque per ampere trajectory of the 

machine is implemented. And with the advent of microprocessor technology and 

accomplishment in the area of nonlinear control law, the implementation of sophisticated 

control law has been made possible. Hence, it is necessary to combine the influence of 

parameters variation; iron loss and nonlinear control law to achieve the objective of 

optimal control of the machine, which gives minimum loss, and the ability to control the 

machine the speed (or torque) of the machine. 

 The motivation for this work was inspired from the above discussion. The 

objectives are to obtain proper understanding of the response and performance of 

electrical machines in the situation of fault; and their operating characteristics due to the 

geometric structure will be well laid out in determining their performance. With the use 

of PWM converter and digital signal processor (DSP), the proposed research will strive 

towards promoting effective and flexible control of the IPM synchronous machine in 

industrial applications.   

 

1.4. Scope of Work 

 

The research is carried out using a two horsepower IPM machine and the 

implementation of the total loss minimization control scheme is being implemented using 

an Analog DSP (ADMC 401). 

Chapter 2 of this thesis discusses the fault tolerant of an interior permanent 

magnet synchronous motor with the stator winding in star and delta connection. Since the 
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torque production of the inverter is affected by either a fault on the interior permanent 

magnet machine or the inverter impresses unbalanced  voltage sets on the machine, the 

first step in designing the re-configurable inverter control scheme is the determination of 

the models of the converters and machines under anticipated fault conditions. Simulation 

and experimental results are presented for these different fault conditions. 

Chapter 3 presents similar fault tolerant analysis of an induction motor under 

different faults conditions and; simulation results for star- and delta- connected stator 

winding induction type motor is also analyzed. 

Chapter 4 presents the mathematical modeling of a VSI-PWM with four switches 

and two capacitors in the dc link. The system has been derived using the generalized 

modulation theory to generate three-phase balanced voltages when a fault is detected in 

any of the legs of the inverter. 

Chapter 5 presents the determination of the parameters of the IPM using an 

electrical equivalent circuit model without the iron loss included [70]. The modeling of 

the IPM includes the effects caused by the changing saturation and armature reaction 

dependent axes inductances and magnet flux linkage. The experimental tests used a two 

horsepower operating in generator mode in this literature.  

Chapter 6 investigates the combined influence of magnetic flux saturation and the 

stator current armature reaction on the steady-state torque capability and efficiency of an 

interior permanent magnet machine (IPM). These effects are reflected in the classical qdo 

equivalent circuit model of the machine in the following fashion: The core loss is 

represented with a stator flux linkage dependent core loss resistance, the armature 
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reaction effect is accounted for by the changing magnet flux linkage and magnetic 

saturation effect is reflected in the changing d and q-axis inductances of the machine. The 

steady-state modeling and analysis of the machine, the nature of the variations of the 

machine parameters and how they influence the machine torque and efficiency are clearly 

laid out and eventually confirmed by simulation and experimental results. Finite element 

analysis results for an experimental 2 hp(horsepower) IPM are also presented to further 

validate the conclusions drawn from calculation and experimental results.  

The final chapter of this thesis is based on a nonlinear controller based on a direct 

scheme which directly controls the rotor speed (or torque). The nonlinear controller 

achieves both objectives used in [2] and [52], namely, torque regulation and minimization 

of power losses without recurring to an internal current loop nor to any feedforward 

compensation. It is also applied to rotor speed control with total loss minimization 

implemented during operation of the IPM. In both of these cases, the electrical model of 

the PM synchronous motor account for the iron losses and copper losses as in [17]. The 

control scheme is based on an input-output linearization method where the inputs are the 

stator voltages which is similar to [71]. By defining an output linked to the total loss (iron 

loss and copper loss) which when forced to zero, leads to maximum machine efficiency 

of better improvement compare to when only the copper loss is minimized. Simulation 

and experimental results are used to compare the results of the two schemes, 

minimization of total loss and minimization of copper loss also referred to as torque-per-

ampere operation. To test some of the control strategies outline in Chapter 7, an 
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experimental system was developed. This system is based on an Analog (ADMC401) 

DSP and custom built power electronic hardware using IGBT’s. 
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CHAPTER 2 

INTERIOR PERMANENT MAGNET MACHINE UNDER VARIOUS FAULTS 

 

2.1. Introduction 

 

An interior permanent magnet synchronous machine (IPMSM) with damper 

winding is analyzed in this chapter under different fault conditions. Interior permanent 

magnet synchronous machines are attractive for a variety of applications because of their 

high power density, wide constant-power speed range, and excellent efficiency. However 

faults in either the machine or inverter create special challenges in any type of PM 

synchronous machine drive because of the presence of spinning rotor magnets that cannot 

be turned off at will. It is very important to understand the IPM drive’s fault response in 

order to prevent fault-induced damage to either the machine, the inverter, or to the 

connected load. 

This chapter investigates six important fault classes in all for an IPM machine in 

which the stator winding are either connected in star or delta form. These types of fault 

can be caused by mechanical failure of a machine terminal connector, an internal winding 

rupture, electrical failure of one of the three-phase supply line or by an electrical failure 

in one of the inverter phase legs.  

The concepts of a fault tolerant machine is that it will continue to operate in a 

satisfactory manner after sustaining a fault. The term “satisfactorily” implies a minimum 

level of performance once faulted. The degree of fault that must be sustainable should be 
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related to the probability of its occurrence. For most safety critical applications it is 

accepted that the drive must be capable of rated output after the occurrence of any one 

fault. 

The principal electromagnetic faults which may occur within the machine are: 

(1) Winding open-circuit; 

(2) Winding short-circuit (phase/phase); 

(3) Winding short circuit at terminals. 

Within the power converter the faults under consideration are as follows: 

(1) Power device open-circuit; 

(2) Power device short circuit; 

(3) DC link capacitor failure. 

 

Analytical techniques appropriate for the IPM machine fault conditions are 

presented in the next sections, followed by simulations of all the fault conditions (within 

the IPM machine for either star or delta connected stator winding) and some experimental 

verification test results. 

 

2.2. Derivation of Machine Equations 

 

 These analyses are effectively carried out when the dq voltage equations are 

represented in stationary reference frame [29].  
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The qd model equations of the normal IPM machine in the rotor reference frame 

are given as [74] 

Ve
qs

 = rsIe
qs + pλe

qs  + ωr λe
ds      (2.1) 

Ve
ds

 = rsIe
ds + pλe

ds   – ωr λe
qs       (2.2) 

Ve
os = rsIe

os + pλe
os       (2.3) 

Ve
qr

 = rrIe
qr + pλe

qr          (2.4) 

Ve
dr

 = rrIe
dr + pλe

dr         (2.5) 

Ve
or = rrIe

or + pλe
or         (2.6) 

where the angular rotor speed is ωr, phase stator and referred rotor resistances are rs and 

rr, respectively, the stator and rotor qd flux linkages are λqdos and λqdor, respectively, the 

currents in the stator and rotor circuits are Iqdos and Iqdor, respectively, the input voltages to 

the stator and rotor windings are Vqdos and Vqdor, respectively, and the magnet flux is λm.  

Using inter-reference frame transformation [75] 

 fqdos
y = xKy fqdos

x       (2.7) 

where  and the reference frame angles of y and 

x reference frames are, respectively, given as θ


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y and θx . 

Variables f x
q , f x

d,  and f x
o  can be mapped into f y

q ,  f y
d,  and f y

o , and vice-

versa. Hence, the model equations expressed in rotor reference frame as given in 

Equations (2.1–2.6) can be transformed to stationary reference frame equations. 

Generally, transforming from rotor reference frame to stationary reference frame gives 
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f sq = f eq
 cos(θr) + f ed

 sin(θr) 

f sd = –f eq
 sin(θr) + f ed

 cos(θr)     

f so = f eo .        (2.8) 

Similarly, transforming from stationary reference frame to rotor reference frame gives 

f eq = f sq
 cos(θr) – f sd

 sin(θr) 

f ed = f sq
 sin(θr) + f sd

 cos(θr)        

f eo = f so .        (2.9) 

where θr is reference angle in the rotor reference frame. In both transformation given in 

(2.8) and (2.9), the zero variables remain the same. 

In rotor reference frame, the flux linkages can be expressed as 

λe
qs

 = LqsIe
qs + Lmq Ie

qr                          (2.10a) 

λe
qr

 = LqrIe
qr + Lmq Ie

qs  ⇒  Ie
qr

   = λe
qr/ Lqr

  – (Lmq/ Lqr)Ie
qs .  (2.10b) 

Substitute (2.10b) in (2.10a) gives 

λe
qs

 = LqqIe
qs + Lmq/ Lqrλe

qr       (2.10c) 

where   Lqq  = Lqs – L2
mq/ Lqr   

λe
ds 

 = LdsIe
ds + Lmd Ie

dr + λm      (2.11a) 

λe
dr

 = LdrIe
dr + Lmd Ie

ds + λm  ⇒ Ie
dr

   = λe
dr/ Ldr

  - (Lmd/ Ldr)Ie
ds – λm/ Ldr . (2.11b) 

Substitute (2.11b) in (2.11a) gives 

λe
ds

  = LddIe
ds

 + (Lmd/ Ldr)λ e
dr + λmm     (2.11c) 

where   Ldd  = Lds – L2
md/ Ldr , λmm 

 =  λm [1 – Lmd/ Ldr] . 
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Transforming the stator flux linkages and the rotor currents from rotor reference 

frame to stationary reference frame as defined in Equation (2.8) gives 

λs
qs = λe

qs
 cos(θr) + λe

ds
 sin(θr)     (2.12) 

λs
ds = –λe

qs
 sin(θr) + λe

ds
 cos(θr)     (2.13) 

Is
qr = Ie

qr
 cos(θr) + Ie

dr
 sin(θr)      (2.14) 

Is
dr = -Ie

qr
 sin(θr) + Ie

dr
 cos(θr) .     (2.15) 

The stator currents and rotor flux linkages are also transformed from the stationary 

reference frame to rotor reference frame by making use of Equation (2.9) 

Ie
qs = Is

qs
 cos(θr) – Is

ds
 sin(θr)      (2.16) 

Ie
ds = Is

qs
 sin(θr) + Is

ds
 cos(θr)      (2.17) 

λe
qr = λs

qr
 cos(θr) – λs

dr
 sin(θr)      (2.18) 

λe
dr = λs

qr
 sin(θr) + λs

dr
 cos(θr) .     (2.19) 

Substituting (2.10c), (2.11c), (2.16), (2.17), (2.18), and (2.19) into (2.12) and (2.13) gives 

λs
qs

  = Is
qs

 [L2 – L1 cos(2θr)] + Is
ds

 L1 sin(2θr) + λs
qr

 [L4 – L3 cos(2θr)]  

+ λs
dr

 L3 sin(2θr) + λmm sin(θr)     (2.20) 

λs
ds 

 = Is
qs

 L1 sin(2θr) + Is
ds [L2 + L1 cos(2θr)] + λs

qr
 L3 sin(2θr)  

+ λs
dr

 [L4 + L3 cos(2θr)] + λmm cos(θr).   (2.21) 

Differentiating Equations (2.20) and (2.21) with respect to time, t, whereby  dθr/dt = ωr  

gives 
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pλs
qs

  = pIs
qs

 [L2 - L1 cos(2θr)] + pIs
ds

 L1 sin(2θr) + pλs
qr

 [L4 - L3 cos(2θr)]  

+ pλs
dr

 L3 sin(2θr) + ωr [Is
qs

 2L1sin(2θr) + Is
ds2L1cos(2θr) + λs

qr
 2L3sin(2θr)  

+ λs
dr

 2L3 cos(2θr) + λmm cos(θr)]       (2.22) 

pλs
ds

  = pIs
qs

 L1 sin(2θr) + pIs
ds [L2 + L1 cos(2θr)] + pλs

qr
 L3 sin(2θr)  

+ pλs
dr

 [L4 + L3 cos(2θr)] + ωr [Is
qs

 2L1cos(2θr) – Is
ds2L1 sin(2θr) + λs

qr
 2L3cos(2θr)  

– λs
dr

 2L3sin(2θr) – λmm sin(θr)] .       (2.23) 

Substituting Equations (2.10b), (2.11b), (2.16), (2.17), (2.18), and (2.19) in Equations 

(2.14) and (2.15), it can be shown that 

Is
qr

  = λs
qr

 [L6 – L5 cos(2θr)]  + λs
dr

 L5 sin(2θr) + Is
qs [L3 cos(2θr) – L4] – Is

ds
 L3sin(2θr)  

– (λm/ Ldr)sin(θr)         (2.24) 

Is
dr

  = λs
qr

 L5 sin(2θr)  + λs
dr

 [L6 + L5cos(2θr)] – Is
qsL3sin(2θr) – Is

ds
 [L3 cos(2θr) + L4]  

– (λm/ Ldr)cos(θr)         (2.25) 

where 

L1 = (Ldd– Lqq)/2 , L2 = (Ldd + Lqq)/2 , L3 = (Lmd/ Ldr – Lmq/ Lqr)/2 ,  

L4 = (Lmd/ Ldr + Lmq/ Lqr)/2, L5 = (1/ Ldr – 1/ Lqr)/2 , L6 = (1/ Ldr + 1/ Lqr)/2 . 

The stationary reference frame stator voltage equations can be expressed as follows: 

Vs
qs

 = rsIs
qs + pλs

qs          (2.26) 

Vs
ds

 = rsIs
ds + pλs

ds   .       (2.27) 

Substitute pλs
qs

  in Equation (2.22) in (2.26) and pλs
ds in Equation (2.23) in (2.27), 

these give the qd voltage equations of the stator in stationary reference frame as a 

function of the stator currents, magnet flux, and rotor fluxes as expressed below. 
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Vs
qs

 = rsIs
qs + pIs

qs
 [L2 - L1 cos(2θr)] + pIs

ds
 L1 sin(2θr) + pλs

qr
 [L4 - L3 cos(2θr)]  

+pλs
dr

  L3 sin(2θr)  + ωr [Is
qs

 2L1sin(2θr) + Is
ds2L1cos(2θr) + λs

qr
 2L3sin(2θr)  

+ λs
dr 2L3 cos(2θr) + λmm cos(θr)] 

       = pIs
qs

 [L2 – L1 cos(2θr)] + pIs
ds

 L1 sin(2θr) + Vs
y
     (2.28) 

Vs
ds

 = rsIs
ds

 + pIs
qs

 L1 sin(2θr) + pIs
ds [L2 + L1cos(2θr)] + pλs

qr
 L3sin(2θr)  

+ pλs
dr

 [L4 + L3 cos(2θr)]  + ωr [Is
qs

 2L1cos(2θr) – Is
ds2L1 sin(2θr) + λs

qr 2L3cos(2θr)  

– λs
dr

 2L3sin(2θr) – λmm sin(θr)]  

       = pIs
qs

 L1 sin(2θr) + pIs
ds[L2 + L1cos(2θr)] + Vs

x     (2.29) 

where Vs
y
  and  Vs

x
  are variables which depends on the state variables pIs

qs and pIs
ds . 

Vs
y
  = rsIs

qs
 + pλs

qr
 [L4 - L3 cos(2θr)] + pλs

dr
  L3 sin(2θr)  

+ ωr [Is
qs

 2L1sin(2θr) + Is
ds2L1cos(2θr) + λs

qr 2L3sin(2θr) + λs
dr

 2L3 cos(2θr) + λmm cos(θr)] 

Vs
x

 = rsIs
ds

 + pλs
qr

 L3sin(2θr) + pλs
dr

 [L4 + L3 cos(2θr)] + ωr [Is
qs

 2L1cos(2θr)  

– Is
ds2L1 sin(2θr) + λs

qr
 2L3cos(2θr) – λs

dr
 2L3sin(2θr) – λmm sin(θr)] 

The stationary reference frame rotor voltage equations can be expressed as follows: 

Vs
qr

 = rrIs
qr + pλs

qr  – ωr λs
dr       (2.30) 

Vs
dr

 = rrIs
dr + pλs

dr  + ωr λs
qr .      (2.31) 

Solving Equations (2.28) and (2.29) for pIs
qs

  and pIs
ds while Equations (2.30) and (2.31) 

are solved for pλs
qr

 and pλs
dr gives the following results. 

LddLqqpIs
qs

 = [(–L2L4 + L2L3cos(2θr) – L1L4cos(2θr) + L3L1)pλs
qr

  

+ (L4L1 – L2L3)sin(2θr) pλs
dr

   – Is
qs [rs(L1cos(2θr) + L2)+2L1L2ωrsin(2θr)]+Is

ds[rsL1sin(2θr) 

 –2ωrL1(L2cos(2θr)+L1)] – λs
qrωr2L2L3sin(2θr) – λs

dr2ωrL3(L2cos(2θr)+L1) 
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 – λmmωrcos(θr)Ldd + (L1cos(2θr) + L2)Vs
qs – L1sin(2θr)Vs

ds]      (2.32a) 

or, 

LddLqqpIs
qs = [Vs

qs – Vs
y] [L2 + L1cos(2θr)] – [Vs

ds – Vs
x]L1 sin(2θr)   (2.32b) 

LddLqqpIs
ds

 = [(–L2L4 – L2L3cos(2θr)+L1L4cos(2θr) +L3L1)pλs
dr+(L4L1 – L2L3)sin(2θr)pλs

qr
  

 + Is
qs (rsL1sin(2θr) + 2ωrL1[L1 – L2cos(2θr)]) + Is

ds [rs(L1cos(2θr) – L2) + 2L1L2ωrsin(2θr)]  

+ λs
qr2ωrL3[L1–L2cos(2θr)] + λs

drωr2L2L3sin(2θr) + λmmωrsin(θr)Ldd + [L2–L1cos(2θr)]Vs
ds     

– L1sin(2θr)Vs
qs]         (2.33a) 

or, 

LddLqq pIs
ds = [Vs

ds – Vs
x] [L2 - L1 cos(2θr)] – [Vs

qs – Vs
y] L1 sin(2θr)  (2.33b) 

pλs
qr

  = Vs
qr

 – rr[λs
qr (L6 – L5cos(2θr)) + λs

dr L5sin(2θr) + Is
qs (L3cos(2θr) – L4) 

 – Is
dsL3sin(2θr)  – (λm/Ldr)sin(θr)] + ωr

 λs
dr        (2.34) 

pλs
dr

 = Vs
dr

 – rr[λs
dr (L6 + L5cos(2θr)) + λs

qr L5sin(2θr) – Is
ds (L3cos(2θr) + L4)  

– Is
qsL3sin(2θr) – (λm/Ldr)cos(θr)] – ωrλs

qr
      (2.35) 

The torque equation is expressed as 

Te = 3P(λs
dsIs

qs
 – λs

qsIs
ds)/4       (2.36) 

where P is the number of poles. 

Substituting λs
qs

 and  λs
ds

  in (2.36) gives the following expression for torque: 

Te = 3P[{Is
qsL1sin(2θr) + λs

qrL3sin(2θr) + λs
dr [L4 + L3cos(2θr)] + λmmcos(θr)}Is

qs
  

- { Is
dsL1sin(2θr) + λs

qr [L4 – L3cos(2θr)] + λs
drL3sin(2θr) +  λmmsin(θr)}Is

ds 

 + 2Is
qsIs

dsL1cos(2θr)]/4       (2.37) 
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Te = J(2/P)pωr + TL  .        (2.38) 

The following sections investigates three important fault classes that can occur in an IPM 

synchronous machine for each different type of machine stator connection, star, and 

delta-connected stator as shown in Figure 2.1, some of which have been reported in 

earlier works [22-26]. The simulation and analysis of utility fed synchronous machines 

with field and damper windings based on q-d-o models have also been earlier reported in 

[27-28]. With the stator state variables in qd currents and the rotor states variables in qd 

flux linkages makes it possible and easier to simulate the different stator fault situations. 

Laboratory experiments were also carried out for some realistic/probable fault situations 

in IPMSM to confirm the computer simulation results. The IPMSM requires a high Vdc 

for starting to overcome the inertia of the magnet on the rotor, which can then be reduced 

when the machine has run up to speed. Table 2.1 shows the machine parameters of the 2-

hp, 115/230 V, 60 Hz, 1800 rpm IPMSM used in the computer simulations. 

 

2.3. Delta-Connected Stator 

 

 The delta-connected stator interior permanent magnet synchronous machine is 

shown in Figure 2.2 with the phase voltages expressed as follows: 

 Van = Vab = eag – ebg        (2.39) 

 Vbn = Vbc = ebg – ecg        (2.40) 

 Vcn = Vca = ecg – eag .       (2.41) 
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Figure 2. 1 Shows fault in (a) Delta-connected IPMSM (b) Star-connected IPMSM. 
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Table 2. 1 Interior Permanent Magnet Synchronous Machine Parameters 
 Rated Line Voltage 220 V 

Stator Resistance, Rs 1.5 ohms 

Stator Leakage Inductance, Lls 1.6 mH 

q-axis mutual Inductance, Lmq 0.1084H 

d-axis mutual Inductance, Lmd 0.0334H 

Magnetic flux, λm 0.21Wb 

Damper q-axis Inductance, Lqr 0.1195H 

Damper d-axis Inductance, Ldr 0.0495H 

Rotor Resistance, Rr 0.816 ohms 

No. of Poles, P 4 

Synchronous Speed, We 377 rad/sec 

Inertia, J 0.089 kg/m2 
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Figure 2. 2 Shows Delta-connected Stator Interior Permanent Magnet Machine  
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The IPMSM with delta-connected stator model is simulated with normal three-phase 

supply with supply line voltage of 73.5V(rms) at 60Hz and PWM-VSI supply (Vdc = 

200V) at 50Hz. Figures 2.3-2.6 show the simulation results of the IPM synchronous 

machine under normal situation. 

 

2.4 Fault Analysis using Stationary Reference Frame Unbalance in Delta-Connected 

IPMSM 

2.4.1 Supply Line “A” Open-Circuit Response 

 
 Figure-2.1a (i) shows the schematic for an unbalance condition in which the 

supply line ‘a’ to a delta-connected stator of an IPMSM is open-circuited.  

Note: 

  Vbn = Vbc = ebg – ecg         

  Ica  = Iab 

  Vab + Vbc + Vca = 0 ⇒ Vos
s
 = 0 .       

It can be shown for this unbalance condition that 

  Vs
qs = 2Vab/3 – Vbc/3– Vca/3 = Vab     (2.42) 

  Vs
ds

 = [Vca – Vbc]/√3 = [–Vab – 2Vbc]/√3    (2.43) 

  – Vs
qs /√3 = Vds

s + 2Vbc/√3      (2.44) 

Is
qs

 = 2Iab/3 – Ibc/3– Ica/3 = [Iab – Ibc]/3     (2.45) 

Is
ds

 = [Ica – Ibc]/√3 = [Iab – Ibc]/√3     (2.46) 

  Is
ds = √3Iqs

s        (2.47) 

Is
os = [Iab + Ibc + Ica]/3 = [2Iab+ Ibc]/3 .     (2.48) 
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Figure 2. 3 Shows the starting transient of a delta-connected IPMSM with normal three-

phase supply, from top: phase ‘a’ current, phase ‘b’ current, phase ‘c’ current, rotor 

speed, torque, phase ‘a’ voltage.  

 
Figure 2. 4 Shows the steady state of a delta-connected IPMSM with normal three-phase 

supply, from top: phase ‘a’ current, phase ‘b’ current, phase ‘c’ current, rotor speed, 

torque, phase ‘a’ voltage. 
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Figure 2. 5 Shows starting transient of a delta-connected IPMSM with PWM-VSI supply 

under Transient from top: phase ‘a’ current, phase ‘b’ current, phase ‘c’ current, rotor 

speed, torque, phase ‘a’ voltage. 

 
Figure 2. 6 Shows steady state of a delta-connected IPMSM with PWM-VSI supply, 

from top: phase ‘a’ current, phase ‘b’ current, phase ‘c’ current, rotor speed, torque, 

phase ‘a’ voltage. 
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With the supply line ‘a’ open, the knowledge of the fault conditions is established, which 

shows a coupling between the q-axis and d-axis.  

Substitute Equations (2.28) and (2.29) in (2.44) 

pIs
qs

 L1 sin(2θr) + pIs
ds [L2 + L1cos(2θr)] + Vs

x
 + 2Vbc/√3 = –pIs

qs
 [L2 – L1 cos(2θr)]  

– pIs
ds

 L1 sin(2θr) – Vs
y/√3 .      (2.49) 

Substitute Equation (2.47) in (2.49) whereby pIs
ds

  = √3 pIs
qs  gives 

pIs
qs

  = [–Vs
y
 – Vs

x
 – 2Vbc]/[2√3L1sin(2θr) + 4L2 + 2L1cos(2θr)] .   (2.50) 

With pIs
qs

  known, this is substituted back in Equations (2.28) and (2.29) to 

determine Vs
qs and Vs

ds  during fault situations. Since Vs
os

 
 is known, then Is

os can be 

determined. 

Vs
os = Is

osrs + Lls pIs
os      (2.51) 

The simulation results are as shown in Figures 2.7-2.8 while Figure 2.9 shows the 

experimental result of this fault condition. 

Under this fault situation, Figures 2.7 and 2.8 the response of the IPM shows that 

the machine was able to maintain synchronous speed with a load of 1 Nm already applied 

on the machine but the machine experiences oscillation as seen on the torque and the 

speed. The tolerance of IPMSM was confirmed experimentally as shown in Figure 2.9. 

Similar changes were observed in the magnitude of the currents in all the phases.   
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Figure 2. 7 Shows delta-connected IPMSM with a supply line open feeded with a normal 

three-phase supply, from top: phase ‘a’ current, phase ‘b’ current, phase ‘c’ current, rotor 

speed, torque, phase ‘a’ voltage. 

 
Figure 2. 8 Shows delta-connected IPMSM with a supply line open with PWM-VSI 

supply, from top: phase ‘a’ current, phase ‘b’ current, phase ‘c’ current, rotor speed, 

torque, phase ‘a’ voltage. 
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Figure 2. 9 Experimental results  of phase ‘a’ line open for delta connection.   (1) 

Inverter line-line voltage  @Vdc = 90V,  (2) Ias = 7A before and after fault,  (3) Ics = 7A 

before and after fault, (4) Ibs = 7A before and 13A after fault. 

 

2.4.2 Stator Phase “A” Open-Circuit Response 

 

 Figure-2.1a (ii) shows the schematic of an unbalance in which the stator phase ‘a’ 

of the delta-connected IPMSM is opened.  

The machine is analyze and it can be shown that the following equations apply. 

Note: 

Iab = 0 

Vbn = Vbc = ebg – ecg  

Vcn = Vca = ecg – eag  

ebg – eag  = Vbc  + Vca . 
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Hence, after simplifications, it can be shown that 

Vs
qs = 2Vab/3 – Vbc/3– Vca/3 

       = 2Vab/3 – [ebg –  eag]/3       (2.52) 

Vs
ds

 = [Vca – Vbc]/√3 .       (2.53) 

Simplifying further gives 

Is
qs = – Is

os          (2.54) 

Vs
qs

 = 2Vs
os + eag – ebg       (2.55) 

Vs
os = Is

osrs + LlspIs
os       (2.56) 

Vs
qs

 = eag – ebg – 2Is
osrs – 2Lls pIs

os     (2.57) 

Iab = Is
qs – Is

qs = 0       (2.58) 

Ibc = –Is
qs/2 – √3Is

ds/2 – Is
qs

 = –3Is
qs/2 – √3Is

ds/2    (2.59) 

Ica = –Is
qs/2 + √3Is

ds/2 – Is
qs

 = –3Is
qs/2 + √3Is

ds/2  .   (2.60) 

As already shown above, the phase ‘a’ of the machine is open-circuited which means Iab 

= 0; it has been shown that Is
qs = –Is

os and Vs
qs

 = 2Vs
os + eag – ebg, these conditions are 

necessary and sufficient in the simulation of this fault situation. 

From above, Vs
ds  is known, therefore solving Equations (2.28) and (2.29) for Vs

qs , pIs
qs , 

and pIs
ds becomes 

 Vs
ds

 – Vs
x  = pIs

qs
 L1 sin(2θr) + pIs

ds [L2 + L1cos(2θr)]       (2.61) 

Vs
qs – Vs

y = pIs
qs

 [L2 – L1 cos(2θr)] + pIs
ds

 L1 sin(2θr) .          (2.62) 

From Equation (2.61), 

pIs
ds

 = [Vs
ds

  –  Vs
x –  pIs

qs
 L1 sin(2θr)]/ [L2 + L1cos(2θr)] .       (2.63) 

Substitute (2.63) in (2.62), 
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s

L L  pI + V L  sin(2θ ) – V L  sin(2θ ) = [L + L cos(2θ )] [V   – V ]  .   (2.64) dd qq
s
qs

 s
ds

 
1 r

s
x

 
1 r 2 1 r

s
qs

s
y

From (2.64), it can be shown that 

pI = [V  [L + L cos(2θ )] – V L  – [V L cos(2θ ) – V L  sin(2θ )]  s
qs

 s
qs 2 1 r

s
y 2 

s
y 1 r

s
x

 
1 r

– Vs
ds

 L1 sin(2θr)]/ LddLqq ;              (2.65) 

therefore pI qs
  and  Vs

qs can be determined by solving Equations (2.65) and (2.57). Hence, 

substituting Equation (2.65) in Equation (2.57) gives 

Vs
qs

 = ea – eb – 2rsIs
qs

 + 2Lls[Vs
qs [L2 + L1cos(2θr)] – Vs

yL2  – [Vs
yL1cos(2θr)  

– Vs
x

 L1 sin(2θr)] – Vs
ds

 L1 sin(2θr)]/ LddLqq . 

Simplifying gives 

Vs
qs [1 – 2Lls[L2 + L1cos(2θr)]/LddLqq] = ea – eb – 2rsIs

qs
 + 2Lls[–Vs

yL2  – [Vs
yL1cos(2θr)  

– Vs
x

 L1 sin(2θr)] – Vs
ds

 L1 sin(2θr)]/ LddLqq .     (2.66) 

Note:  

[Vs
yL1cos(2θr) – Vs

x
 L1 sin(2θr)] = rsL1[Is

qscos(2θr) – Is
dssin(2θr)] + pλs

qr [L1L4cos(2θr)  

– L1L3] – pλs
drL1L4sin(2θr) + ωrIs

ds2L2
1

 + λs
drωr2L1L3 + λmωrL1cos(θr) . 

Vs
qs is obtained from Equation (2.66) and substituted back in (2.65) which is now 

substituted in (2.63). 

 The simulation results are as shown in Figures 2.10 – 2.11 while the experimental 

result with PWM-VSI supply is as shown in Figure 2.12. Both simulation and experiment 

shows similar changes in current flowing in the stator phases. Figures 2.10, 2.11, and 

2.12 show that the magnitude of the current in phase ‘b’ is highest during this fault 

situation and that zero current flows through phase ‘a’. The IPMSM was able to maintain 

synchronous speed during this fault situation after some initial transient when the fault 
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occurs. As would be expected, the motor oscillates during this unbalance as will be seen 

in the torque and the speed in Figures 2.10 and 2.11. 

 

2.4.3 Shorted Stator Phase “A” Open-Circuit Response 

 

 Figure-2.1a (iii) shows the schematic of an unbalance in which the stator phase ‘a’ 

of the delta-connected IPMSM is shorted and supply line ‘b’ is open.  

 The machine is analyze and it can be shown that the following equations apply. 

Note: 

  Vab = 0 

  Vbc= eag – ecg 

  Vca= ecg – eag . 

Hence, 

Vs
qs = –[Vbc + Vca]/3 = 0      (2.67) 

Vs
ds = [Vca – Vbc]/√3 = 2[ec – ea]/√3     (2.68) 

Vs
os = [Vab + Vbc + Vca]/3 = 0 . 

With Vs
qs and Vs

ds known, then solving Equations (2.32) and (2.33) gives pIs
qs and pIs

ds , 

respectively. The simulation results are as shown in Figures 2.13-2.14. Though the 

IPMSM was able to maintain synchronous speed, the magnitudes of the stator currents 

are high. 
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Figure 2. 10 Shows Delta-connected IPMSM for stator phase open with Normal three-

phase supply from top: phase ‘a’ current, phase ‘b’ current, phase ‘c’ current, rotor speed, 

torque, phase ‘a’ voltage. 

 
Figure 2. 11 Shows Delta-connected IPMSM for stator phase open with PWM-VSI from 

top: phase ‘a’ current, phase ‘b’ current, phase ‘c’ current, rotor speed, torque, phase ‘a’ 

voltage. 
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Figure 2. 12 Experimental results of phase ‘a’  winding  open for delta connection. (1) 

Inverter line-line voltage  @Vdc = 90V,  (2) Ias = 5A before and 0A after fault,  (3)  Ics = 

5A before and 6.5A after fault, (4) Ibs = 5A before and 13A after fault. 

 

Figure 2. 13 Shows Delta-connected IPMSM for shorted stator phase with Normal three-

phase supply from top: phase ‘a’ current, phase ‘b’ current, phase ‘c’ current, rotor speed, 

torque, phase ‘a’ voltage. 



 

 

Figure 2. 14 Shows Delta-connected IPMSM for shorted stator phase with PWM-VSI 

from top: phase ‘a’ current, phase ‘b’ current, phase ‘c’ current, rotor speed, torque, 

phase ‘a’ voltage. 

 

2.5 Star-Connected Stator 

 

 The star-connected stator interior permanent magnet synchronous machine is as 

shown in Figure 2.15 and the phase voltages can be expressed as follows: 

  eag = Vas + Vsn        (2.69) 

  ebg = Vbs + Vsn        (2.70) 

  ecg = Vcs + Vsn  .       (2.71) 

The IPMSM with star-connected stator model is simulated with normal three-phase 

supply with supply line voltage of 220-V (rms) at 60Hz and  PWM-VSI supply with Vdc 

 40
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of 250V at 50Hz with a load of 1Nm. Figures 2.16-2.19 show the simulation results under 

no fault situations. 

A

B

C

Ias

Ibs

Ics

eas

ebs

ecs

 

Figure 2. 15 Shows Star-connected stator Interior Permanent Magnet Machine 

 
 

 

Figure 2. 16 Shows starting transient of a star-connected IPMSM with normal three-

phase supply, from top: phase ‘a’ current, phase ‘b’ current, phase ‘c’ current, rotor 

speed, torque. 



 

 

Figure 2. 17 Shows steady state of a star-connected IPMSM with normal three-phase 

supply under Steady-state from top: phase ‘a’ current, phase ‘b’ current, phase ‘c’ 

current, rotor speed, torque. 

 

Figure 2. 18 Shows starting transient of a star-connected IPMSM with PWM-VSI 

supply, from top: phase ‘a’ current, phase ‘b’ current, phase ‘c’ current, rotor speed, 

torque. 
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Figure 2. 19 Shows steady state of a star-connected IPMSM with PWM-VSI supply, 

from top: phase ‘a’ current, phase ‘b’ current, phase ‘c’ current, rotor speed, torque, 

phase ‘a’ voltage, line voltage. 

 

2.6 Fault Analysis using Stationary Reference Frame Unbalance in Star-Connected 

IPMSM 

2.6.1 Supply Line “A” Open-Circuit Response 

 

Figure-2.1b (i) shows the schematic for an unbalance condition in which the 

supply line ‘a’ to a star-connected stator of an IPMSM is open-circuited.  

With the supply line ‘a’ open, 

Ias = 0 

Ias + Ibs + Ics = 0 ⇒ = Ibs = –Ics . 

Hence,  
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Is
qs

 = 2Ias/3 – Ibs/3– Ics/3  = 0       (2.72) 

  Ias + Ibs + Ics = 0 ⇒ = Ios = 0      (2.73)  

Is
ds

 = [Ics – Ibs]/√3 = 2Ics/√3      (2.74) 

 Vos = [Vas + Vbs + Vcs]/3      (2.75) 

Vs
qs

 = 2Vas/3 – Vbs/3– Vcs/3 .      (2.76) 

From (2.70), 

2Vos = [2Vas + 2Vbs + 2Vcs]/3 .     (2.77) 

Hence, 

  Vs
qs

 = 2Vos – Vbs– Vcs ⇒ Vos + Vs
qs = Vas     (2.78) 

Vs
ds = [Vcs – Vbs]/√3 = [ecg – ebg]/√3 .    (2.79) 

Two fault conditions has been established from above (Is
qs

 = 0 and Vs
ds = [ecg – ebg]/√3) 

which is sufficient in simulating this fault situation. 

Hence from Equation (2.72), 

pIs
qs = 0  .        (2.80) 

Substituting Equations (2.80) and (2.72) in (2.28) and (2.29) reduces to 

Vs
qs = pIs

dsL1 sin(2θr) + pλs
qr

 [L4 - L3 cos(2θr)] + pλs
dr

 L3 sin(2θr) + ωr [Is
ds2L1cos(2θr)  

+ λs
qr

 2L3sin(2θr) + λs
dr

 2L3 cos(2θr) + λmm cos(θr)]     (2.81) 

Vs
ds

 = rsIs
ds

  + pIs
ds [L2 + L1cos(2θr)] + pλs

qr
 L3sin(2θr) + pλs

dr
 [L4 + L3 cos(2θr)] 

+ ωr [– Is
ds2L1 sin(2θr) + λs

qr
 2L3cos(2θr) – λs

dr
 2L3sin(2θr) – λmm sin(θr)] .  (2.82) 

Since Vds
s is known from the conditions above, then pIds

s can be determined from (2.82) 

as follows: 
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pIs
ds [L2 + L1cos(2θr)] = Vs

ds
 – rsIs

ds
 – pλs

qr
 L3sin(2θr) – pλs

dr
 [L4 + L3 cos(2θr)] 

– ωr [– Ids
s2L1 sin(2θr) + λqr

 s2L3cos(2θr) – λdr
 s2L3sin(2θr) – λmm sin(θr)] . 

Simplifying for pIds
s from above reduces to 

pIs
ds

 = (Vs
ds

 – rsIs
ds

 – pλs
qr

 L3sin(2θr) – pλs
dr

 [L4 + L3 cos(2θr)]– ωr [– Is
ds2L1 sin(2θr)  

+ λs
qr

 2L3cos(2θr) – λs
dr

 2L3sin(2θr) – λmm sin(θr)])/[L2 + L1cos(2θr)] .  (2.83) 

Substituting (2.83) in (2.81) gives Vqs
s as 

Vs
qs [L2 + L1cos(2θr)] = pλs

qr
 [L2L4 – L2L3cos(2θr) + L1L4cos(2θr) – L1L3]  

+ pλs
dr

 sin(2θr)[L2L3 – L1L4] + ωrλs
qr

 2L2L3sin(2θr) + ωrλs
dr

 2L3[L2cos(2θr) + L1] 

+ Is
dsωr[2L1L2cos(2θr) + 2L2

1 – rsL1sin(2θr)/ωr] + ωrλmmcos(θr)Ldd  

+ Vs
ds L1sin(2θr).          (2.84) 

The following simulation results for this fault are shown in Figures 2.20 – 2.21, 

and the experimental result is as shown in Figure 2.22. 

The simulation results show that the machine was able to exhibit some tolerance 

during fault situation; this is shown from the synchronous speed, which remains constant 

after an initial transient. 

Experimental and simulation results shows that the current in phase ‘a’ is zero 

while in other phases, the currents changed to approximately an equal value, the machine 

also oscillates while the fault persist. 
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Figure 2. 20 Shows star-connected IPMSM for supply line open with normal three-phase 

supply from top: phase ‘a’ current, phase ‘b’ current, phase ‘c’ current, rotor speed, 

torque. 

 

Figure 2. 21 Shows star-connected IPMSM for supply line open with PWM-VSI from 

top: phase ‘a’ current, phase ‘b’ current, phase ‘c’ current, rotor speed, torque, phase ‘a’ 

voltage, line voltage. 



 

 

Figure 2. 22 Experimental results of  three-leg IPM motor with phase ‘a’ open. (1) 

Inverter line-line voltage  @Vdc = 250V,  (2) Ias = 3A before and 5A after fault, (3) Ica = 

3A before and 0A after fault, (4) Ibc = 3A before and 5A after fault. 

 

2.6.2 Supply Line-to-Line Fault Response 

 

 Figure-2.1b (ii) shows the schematic for an unbalance condition in which the 

supply line ‘b’ and ‘c’ of a star-connected stator of an IPMSM are short-circuited and the 

corresponding supply line is open-circuited. From Figure 2.1b(ii), 

  eag = Vas + Vsn 

Vbs = Vcs . 

Hence,  

Vs
ds = [Vcs – Vbs]/√3 = 0      (2.85) 
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Vs
qs = 2Vas/3 – Vbs/3– Vcs/3 = 2Vas/3 – 2Vbs/3 .   (2.86) 

Also, 

Ics = –Ibs  

Ias + Ibs + Ics = 0 ⇒ = Ias = 0 

Is
qs

 = 2Ias/3 – Ibs/3– Ics/3 = 0       (2.87) 

Is
ds

 = [Ics – Ibs]/√3 = 2Ics/√3 .      (2.88)  

With Vs
ds = 0 and Is

qs
 = 0 ⇒ pIs

qs
 = 0, solving Equations (2.29) and (2.28), 

0 = rsIs
ds

 + pIs
ds [L2 + L1cos(2θr)] + pλs

qr
 L3sin(2θr) + pλs

dr
 [L4 + L3 cos(2θr)]  

+ ωr [– Is
ds2L1 sin(2θr) + λs

qr 2L3cos(2θr) – λs
dr

 2L3sin(2θr) – λmm sin(θr)]  

pIs
ds [L2 + L1cos(2θr)] = –rsIs

ds – pλs
qr

 L3sin(2θr) – pλs
dr

 [L4 + L3 cos(2θr)] 

 – ωr[– Is
ds2L1 sin(2θr) + λs

qr 2L3cos(2θr) – λs
dr

 2L3sin(2θr) – λmm sin(θr)]  (2.89) 

Vs
qs

 = pIs
ds

 L1 sin(2θr) + pλs
qr

 [L4 - L3 cos(2θr)] + pλs
dr

  L3 sin(2θr) 

+ ωr [Is
ds2L1cos(2θr) + λs

qr
 2L3sin(2θr) + λs

dr 2L3 cos(2θr) + λmm cos(θr)] .  (2.90) 

Since pIs
ds is known, then Vs

qs
 can be determined. The simulation results in 

Figures 2.23-2.24 show that a circulating current is flowing in phase ‘b’ and ‘c’ while 

phase ‘a’ current is zero. The speed drops and the IPMSM went into generating mode 

showing the severity of this fault situation.  

 

2.6.3 Shorted Stator Phases 

 

 Figure-2.1b (iii) shows the schematic for an unbalance condition in which the 

supply line ‘b’ and ‘c’ of a star-connected stator of an IPMSM are short-circuited and 
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Figure 2. 23 Shows star-connected IPMSM for line-line fault with normal three-phase 

supply from top: phase ‘a’ current, phase ‘b’ current, phase ‘c’ current, rotor speed, 

torque, phase ‘a’ voltage, line voltage. 

 

Figure 2. 24 Shows star-connected IPMSM for line-line fault with PWM-VSI from top: 

phase ‘a’ current, phase ‘b’ current, phase ‘c’ current, rotor speed, torque, phase ‘a’ 

voltage, line voltage. 
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supply line ‘b’ is open-circuited. From Figure 2.1b(iii): 

  eag = Vas + Vsn 

  ebg = Vcs + Vsn 

  ecg = Vcs + Vsn . 

Hence, 

  Vbs = Vcs . 

Therefore, 

Vs
qs = 2Vas/3 – Vbs/3– Vcs/3 = 2Vas/3 – 2Vbs/3 

       = 2[eag – ecg]/3      (2.91) 

Vs
ds = [Vcs – Vbs]/√3 = 0     (2.92) 

Ias + Ibs + Ics = 0 ⇒ = Ios = 0 .     (2.93) 

 

Substitute Equations (2.91) and (2.92) in Equations (2.32) and (2.33), this give the value 

of pIs
qs and pIs

ds necessary for the simulation for this fault situation. Figures 2.25-2.26 

show a large increase in current flowing through the stator phase of the IPMSM even 

though the machine was able to run at synchronous speed. 
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Figure 2. 25 Shows star-connected IPMSM for shorted stator phase with normal three-

phase supply from top: phase ‘a’ current, phase ‘b’ current, phase ‘c’ current, rotor speed, 

torque, phase ‘a’ voltage, line voltage. 

 

Figure 2. 26 Shows Star-connected IPMSM for shorted stator phase with PWM-VSI 

from top: phase ‘a’ current, phase ‘b’ current, phase ‘c’ current, rotor speed, torque, 

phase ‘a’ voltage, line voltage. 
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CHAPTER 3 

INDUCTION MACHINE UNDER VARIOUS FAULTS 

 

3.1 Introduction 

 

 This chapter presents the analysis of an Induction machine and the different 

unbalance situations that are involved. Similar analytical techniques used in Chapter 2 are 

also applied here. The star-connected stator and delta-connected stator induction 

machine’s model equations are derived in stationary reference frame, since this is the best 

reference frame to imbalances and faults on electric machines [29]. For faults on the 

stator, the stator state variables are the qd currents and the states of the rotor circuit are 

the rotor flux linkages.  

 

3.2 Voltage Equations 

 

The voltage equations in machine variables may be expressed having referred all 

rotor variables to the stator windings by appropriate turns ratio [73]. 

abcsabcssabcs pirV λ+=                                                                  (3.1) 

abcrabcrrabcr pirV '''' λ+=                                                             (3.2) 

where 

















=








abcr

abcs

r
T

sr

srs

abcr

abcs

i
i

LL
LL

'''

'

' )(λ
λ

                                                 (3.3) 
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dt
dp =   .                                                                                    (3.4)   

Transforming the variables associated with the symmetrical stator and rotor windings to 

the arbitrary reference frame using the following transformation for the stator and rotor, 

respectively: 

                          (3.5) abcssqdos fKf =

''
abcrrqdor fKf =                      (3.6) 

∫ += )0(θωθ dt                                                                     (3.7)    

∫ += )0(rrr dt θωθ                                                               (3.8) 

rθθβ −=                                                                                    (3.9) 

where 

 















+−
+−

=
2/12/12/1

)3/2sin()3/2sin(sin
)3/2cos()3/2cos(cos

3
2 πθπθθ

πθπθθ

sK  
















+−
+−

=
2/12/12/1

)3/2sin()3/2sin(sin
)3/2cos()3/2cos(cos

3
2 πβπββ

πβπββ

rK  

fqdos  , fabcs Stator circuit qdo and abc reference frame variables 

f’
qdor  , f’

abcr Referred rotor circuit qdo and abc reference frame variables 

  Ks  Stator reference frame transformation 

  Kr  Rotor reference frame transformation 

θ  Stator reference frame angular displacement (rad) 

θr  Rotor angular displacement (rad) 
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β  Rotor reference frame angular displacement (rad) 

ω Stator reference frame angular velocity (rad/sec) 

ωr  Rotor angular velocity (rad/sec) 

iqs, ids   Stator quadrature and direct axis currents (A) 

iqr, idr   Rotor quadrature and direct axis currents (A) 

λqs, λds  Stator quadrature and direct axis flux linkages (Wb) 

λqr, λdr  Rotor quadrature and direct axis flux linkages (Wb) 

Lqs, Lds  Stator quadrature and direct axis inductances (H) 

Lqr, Ldr  Rotor quadrature and direct axis inductances (H) 

Te  Electromagnetic Torque (Nm) 

P  Number of poles 

J  Inertia of the rotor 

TL  Torque (load). 

The voltage equations in arbitrary reference frame are thus expressed below [74]: 

dqsqdosqdossqdos pirV ωλλ ++=                                                   (3.10)    

dqrrqdorqdorrqdor pirV ''''' )( λωωλ −++=                                 (3.11)   

where 

]0[)( qsds
T

dqs λλλ −=                                                    (3.12) 

]0[)( '''
qrdr

T
dqr λλλ −=                                                   (3.13)    

)( ''
qrqsmqqslsqrmqqsqsqs iiLiLiLiL ++=+=λ                             (3.14)    

)( ''
drdsmddslsdrmddsdsds iiLiLiLiL ++=+=λ                             (3.15)  
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)( '''''
qrqsmqqrlrqsmqqrqrqr iiLiLiLiL ++=+=λ   (3.16) 

)( ''''''
drdsmqdrlrdsmddrdrdr iiLiLiLiL ++=+=λ   (3.17) 

oslsos iL=λ        (3.18) 

orlror iL ''' =λ  .       (3.19) 

In stationary reference frame, the machine equations can be expressed as follows: 

[ ]qdrmqdssqdssqdosqdossqdos ILILpIrpirV ++=+= λ    (3.20) 

[ ] 0

)( ''''''

=++

−=−++=

qdsmqdrr

dqrrqdrrdqrrqdorqdorrqdor

ILILp

IrpirV λωλωλ
 .  (3.21) 

From Equations (3.16) and (3.17), it can be shown that 

 
r

qdsmqdr
qdr L

IL
I

−
=
λ

, qds
r

m

r

qdr
qdr pI

L
L

L
p

pI −=
λ

 .  (3.22) 

Hence, simplifying Equation (3.20) with pIqdr  replaced with the above expressions, the 

state equations can be expressed in terms of the stator current: 









−−+−

∆
= drrmqsr

r
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qrr

r

m
rqssqsrqs LIr

L
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L
L

LIrVLpI λωλ
2

'1  (3.23)         
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= qrrmdsr
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drr

r

m
rdssdsrds LIr

L
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L
L

LIrVLpI λωλ
2

'1  (3.24) 

where 

2
msr LLL −=∆ .     (3.25) 

Note:   mmdmq LLL ==

while the rotor state equations can be expressed in terms of flux as given below:  
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drr
r

qsmqr
rqr L

IL
rp λω

λ
λ +











 −
−=

'

   (3.26) 

qrr
r

dsmdr
rr L

IL
rp λω

λ
λ −







 −
−=  .   (3.27) 

The torque equation is given as 

( )dsqsqsdse iiPT λλ −=
4

3  .    (3.28) 

The torque and the rotor speed are related by 

   Lre Tp
P

J +





= ω2T  .    (3.29) 

The waveforms from computer simulations using Matlab/SIMULINK from the qd 

voltage equations and the torque equations derived are shown in Figures 3.1-3.2 for a 

three-phase induction motor with star-connected stator winding with 220V (rms) at 60Hz; 

and Figures 3.3- 3.4 for PWM-VSI supply with 280V-Vdc at 60Hz, with a load of 10Nm 

applied at steady state. The analysis of the steady state, transient and dynamic 

characteristics of these drive systems has been evaluated in the past [73-76]. Table 3.1 

shows the parameters of the Induction machine used in these simulations. 

As will be expected in an induction motor, the speed drops when a load is applied at 

steady state. 

Computer simulations using the derived model equations for both star-connected 

stator and delta-connected stator type are used to show the induction machine 

performance/response under different fault situations. Generally, during fault situations 

the machine oscillates as will be seen in the torque of the motor and the rotor speed. 
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Figure 3.1 Shows starting transient of a star connected Induction machine with 

220V(rms) three-phase supply with load from top: phase currents ‘a’, ‘b’, ‘c’, mechanical 

speed, torque, phase voltage. 

 

Figure 3.2  Shows the steady state characteristics of a star connected Induction machine 

with 220V(rms) three-phase supply with load from top: phase currents ‘a’, ‘b’, ‘c’, 

mechanical speed, torque, phase voltage. 



 

 
Figure 3.3 Shows a star-connected Induction machine with PWM-VSI supply with 280V 

Vdc with load from top: phase currents ‘a’, ‘b’, ‘c’, mechanical speed, torque, phase 

voltage. 

 

Figure 3.4 Shows the steady state characteristics of a star-connected Induction machine 

with PWM-VSI supply with 280V Vdc with load from top: phase currents ‘a’, ‘b’, ‘c’, 

mechanical speed, torque, phase voltage. 
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 Table 3. 1 Induction Machine Parameters 
 

Rated Line Voltage 220 V 
Stator Resistance, Rs 0.435 ohms 
Stator Leakage Inductance, 
Lls 

2 mH 

Rotor Resistance, Rr 0.816 ohms 
Rotor Leakage Inductance, 
Llr 

2 mH 

Mutual Inductance, Lms 0.0693 H 
No. of Poles, P 4 
Synchronous Speed, We 377 rad/sec 
Inertia, J 0.04 kg/m2 

 
 
 
 
 
 
 
 
 
 

 

 

3.3 Unbalances in Star-Connected Induction Machine 

3.3.1 Supply Line “A” Open-Circuit Response 

 

Figure 3.5 shows a star-connected induction machine with the supply line ‘a’ 

opened. 

The fault analysis is done in stationary reference frame.  

With supply line ‘a’ open,   

0=asI  .      (3.30) 

Note:  The Kirchhoff current law applies hence, 

0=++ csbsas III      (3.31) 

csbs II −=  .      (3.32) 

Hence, in stationary reference frame: 

][3/1 csbsqs III +−=      (3.33) 

qsocbos IIIII −=⇒+= ][3/1    (3.34) 
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A

B

C

Ias

Ibs

Ics

eas

ebs

ecs

 
Figure 3. 5 Shows star-connected stator Induction machine with supply line ‘a’ 

open. 

 

 

[ ] 00
3
1

=⇒=++= qscbaos IIIII     (3.35) 

][
3

1
bscsds III −=       (3.36) 

while the ds-voltage in stationary reference frame can be expressed as 

[ ] [ ]bgcgbncnds eeVVV −=−=
3

1
3

1  .    (3.37) 

From the above, it has been shown that Iqs = 0 and Vds is known from (3.37). These are 

sufficient conditions to simulate the fault. Substituting Equation (3.35) in Equation (3.20) 

which is rewritten below, 

qsqssqs pIrV λ+=         

               ][ qrmqqsqsqss ILILpIr ++=  

                =  .       (3.38) qrmq pIL

Therefore, from Equation (3.22) 
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r

qr
qr L

p
pI

λ
=  .       (3.39) 

Substitute (3.39) in (3.38), 

qr
qr

m
qs p

L
L

V λ=   .      (3.40) 

With Vqs, Vds, and pIqs (Iqs) known, pIds can be solved from (3.24). 

The torque equation thus reduces to 

[ dsqsqsdse IIPT λλ −=
4

3 ]     (3.41) 

              [ ]dsqs IP λ−
4

3
=  

                [ ]dsqr
qr

mq I
L
LP λ−

4
3

=   . 

Computer simulation results of the motor are shown in the Figures 3.6 and 3.7 

with a load applied in steady state before the supply line is opened.  

The machine was able to tolerate the fault during this unbalance as shown by the 

simulation result, the machine speed drops to some low value. The current in phase ‘a’ 

becomes zero as earlier derived.  
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Figure 3.6 Shows a star-connected Induction machine with supply line ‘a’ open-circuited 

with 220V(rms) three-phase supply with load, from top: phase currents ‘a’, ‘b’, ‘c’, 

mechanical speed, torque, phase voltage. 

 

Figure 3.7 Shows a star-connected Induction machine with supply line ‘a’ open-circuited 

with PWM-VSI supply with load, from top: phase currents ‘a’, ‘b’, ‘c’, mechanical speed, 

torque, phase voltage. 
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3.3.2 Stator Line to Line Fault 

 

An unbalance in a star-connected induction machine with the stator phase ‘b’ and  

‘c’ shorted is shown in Figure 3.8, this can also be referred to as line-to-line fault.  

The following analysis are valid for this unbalance condition: 

snasag VVe +=         (3.42) 

csbs VV =         (3.43) 

0=++ cb IIIa         (3.44) 

         (3.45)      xbc III =−=

   .        (3.46) 0=aI

Hence, the currents in qs-ds stationary reference frame are given as 

0
3
1

3
1

3
2

=−−= csbsasqs IIII       (3.47) 

[ ]
3

2
3

1 cs
bscsds

IIII =−=  .      (3.48) 

ecs

ebs

eas A

B

C Ics

Ibs

Ias

 

Figure 3. 8 Shows star-connected stator Induction machine with 2 stator phases 

shorted. 
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And the voltages as 

[ ] 0
3

1
=−= bscsds VVV       (3.49) 

   
3
2

3
2

3
1

3
1

3
2

bsascsbsasqs VVVVVV −=−−= .    (3.50) 

Substituting Equation (3.47) in Equation (3.20), it can be shown that 

qrmqs pILV =  .        (3.51) 

With Vqs, Vds, and pIqs (Iqs) known, pIds can be solved from (3.24). 

Computer simulation results are shown in Figures 3.9-3.10 with and without load, 

respectively, for 220V (rms) supply, Figure 3.11 shows the performance of the machine 

when a PWM-VSI is used as the supply voltage. The performance of this machine is 

dependent on the load applied on it when the fault occurs. 

 

Figure 3.9 Shows from top: Phase voltage Torque Speed Phase current without  

Load applied 



 

 

Figure 3.10 Shows a star-connected Induction machine with 2 stators winding shorted 

with 220V(rms) three-phase supply with load, from top: phase currents ‘a’, ‘b’, ‘c’, 

mechanical speed, torque, phase voltage. 

 

Figure 3. 11 Shows a star-connected Induction machine with 2 stators winding shorted 

with PWM-VSI supply with load, from top: phase currents ‘a’, ‘b’, ‘c’, mechanical speed, 

torque, phase voltage. 
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3.3.3 Stator Line “B” and “C” Shorted to Supply Line Voltage “C” 

 

 The schematic for an unbalance with the stator phase ‘b’ and ‘c’ shorted is 

described in Figure 3.12. The performance of this motor under this fault situation is 

analyzed and the results from computer simulation are shown in Figures 3.13 and 3.14. 

From this fault situation, it can be shown that 

   e snasag VV +=       (3.52) 

   snbscg VVe +=       (3.53)  

   V       (3.54) csbs V=

   sncscg VVe +=  .     (3.55) 

Hence, in stationary reference frame, the voltage are given as 

   csbsasqs VVV
3
1

3
1

3
2

−−=V  

 [ ]cgcsasqs eVVV −=−= age
3
2

3
2

3
2    (3.56) 

 [ ] 0
3

1
=−= bscsds VVV  .    (3.57) 

With the voltages known, these are substituted in Equations (3.23) and (3.24); this is 

sufficient to simulate this fault.  

 Figure 3.13 shows the simulation result of the fault with three-phase supply of 

220V (rms) supply while Figure 3.14 shows the simulation result when a PWM-VSI is 

used as the supply source, the fault occur after a load of 10Nm was applied to the motor. 
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The simulation shows that the currents magnitude increases and the speed drops making 

the machine goes into a generating mode.  

 

3.4 Delta Connected Stator 

 

 The delta-connected stator induction machine is as shown in Figure 3.15 and the 

phase voltages can be expressed as follows: 

   V bgagaban VVV −==      (3.58) 

   V cgbgbcbn VVV −==      (3.59) 

   V agcgcacn VVV −==  .    (3.60) 

The q-axis and d-axis voltage equations at stationary reference frame and the 

electromagnetic torque expression given by Equations (3.20)-( 3.29) still applies in the 

analysis of this motor. Figures 3.16-3.19 shows the characteristics of the induction 

machine under normal situation using a 73.4V (rms) three-phase supply and PWM-VSI 

supply of 208V Vdc with a load of 10Nm applied in steady state. 
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Figure 3. 12 Shows star-connected stator Induction machine with a phase open-circuited 

and 2 shorted stator phases. 

 

Figure 3. 13 Shows a star-connected Induction machine with 2 stators winding shorted 

while a phase is open-circuited, with 220V(rms) three-phase supply with load, from top: 

phase currents ‘a’, ‘b’, ‘c’, mechanical speed, torque, phase voltage. 



 

 

Figure 3. 14 Shows a star-connected Induction machine with 2 stators winding shorted 

while a phase is open-circuited, with PWM-VSI supply with load, from top: phase 

currents ‘a’, ‘b’, ‘c’, mechanical speed, torque, phase voltage. 
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Figure 3. 15 Shows an Induction machine with delta-connected stator. 
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Figure 3. 16 Shows delta-connected Induction machine with 104V three-phase supply 

with load from top: phase currents ‘a’, ‘b’, ‘c’, mechanical speed, torque, phase voltage. 

 

Figure 3. 17 Shows the steady state characteristics of an Induction machine with 104V 

three-phase supply with load from top: phase currents ‘a’, ‘b’, ‘c’, mechanical speed, 

torque, phase voltage. 
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Figure 3. 18 Shows Induction machine with PWM-VSI supply with 208V Vdc with load 

from top: phase currents ‘a’, ‘b’, ‘c’, mechanical speed, torque, phase voltage. 

 

Figure 3. 19 Shows the steady state characteristics of an Induction machine with PWM-

VSI supply with 208V Vdc with load from top: phase currents ‘a’, ‘b’, ‘c’, mechanical 

speed, torque, phase voltage. 
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3.5 Unbalances in Delta-Connected Induction Machine 

3.5.1 Supply Line “A” Open-Circuit Response 

 

 Figure 3.20 shows the schematic for an unbalance condition in which the supply 

line ‘A’ is open.  Therefore, it can be shown for this unbalance condition that 

   V cgbgbbc eeV −==      (3.61) 

    .      (3.62) ac II =

Note: 

   00 =⇒=++ oscba VVVV  .    (3.63) 

The voltages can be shown below in qs-ds stationary reference frame as 

   acbaqs VVVV =−−=
3
1

3
1

3
2V     (3.64) 
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Figure 3. 20 Shows a delta-connected Induction machine with supply line ‘a’ open-

circuited. 
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  [ ] [ ] [ ]bqsbabcds VVVVVV 2
3

12
3

1
3

1
−−=−−=−=V  (3.65) 

and the current can be expressed as 

33
1

3
1

3
2 ba

cbaqs
II

IIII
−

=−−=    (3.66) 

[ ] [ babcds IIIII −=−=
3

1
3

1 ]    (3.67) 

qsds II 3=       (3.68) 

[ ] [ bacbao IIIIII +=++= 2
3
1

3
1 ]  .   (3.69) 

From Equation (3.22) (which is repeated below),  

r

qdsmqdr
qdr L

IL
I

−
=
λ

 

[ ] qds
r

m
qdr

r

m
qdrm pI

L
L

p
L
L

pIL
2

−= λ  .   (3.70) 

From (3.70), 

qs
r

m
qr

r

m
qrm pI

L
L

p
L
L

pIL
2

−= λ     (3.71) 

ds
r

m
dr

r

m
drm pI

L
Lp

L
L

pIL
2

333 −= λ  .  (3.72) 

Substituting (3.68) in (3.72) gives 

qs
r

m
dr

r

m
drm pI

L
L

p
L
L

pIL
2

333 −= λ  .  (3.73) 

By substituting Equation (3.20) in (3.65), and replacing pIqr and pIdr as given in (3.71) 

and (3.73), respectively, it can be shown that 
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024344
2

=++−++ qr
r

m
bqs

r

m
dr

r

m
qssqss p

L
L

VpI
L

Lp
L
L

pILIr λλ  .  (3.74) 

From Equation (3.74), the currents are known and hence the subsequent voltages during 

fault can be calculated. Also, Vos = 0 ⇒ Ios = 0. 

 Figures 3.21 and 3.22 show the waveforms from the computer simulation for this 

fault situation. The machine shows little decrease in the speed during while the faults 

persists indicating an high fault tolerance. Phase ‘b’ stator current shows an increase in 

magnitude. 

 

3.5.2 Stator Phase “A” Open-Circuit Response 

 

 Figure 3.23 shows the schematic of an unbalance in which the stator phase of the 

delta-connected induction machine is opened.  

The machine is analyzed and it can be shown that the following equations apply: 

0=aI         (3.75) 

cbb eeV −=        (3.76) 

acc eeV −=        (3.77) 

cbab VVee +=−  .      (3.78) 

The qs and ds voltages are given as 

( )
33

2
3
1

3
1

3
2 ca

acbaqs
VV

VVVVV
+

−=−−=    (3.79) 

[ ]aba eeV −−=
3
1

3
2  
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Figure 3.21 Shows a delta-connected Induction machine with supply line ‘a’ open-

circuited with 104V three-phase supply with load, from top: phase currents ‘a’, ‘b’, ‘c’, 

mechanical speed, torque, phase voltage. 

 

Figure 3. 22 Shows a delta-connected Induction machine with supply line ‘a’ open-

circuited with PWM-VSI supply with load, from top: phase currents ‘a’, ‘b’, ‘c’, 

mechanical speed, torque, phase voltage. 



 

 76

[ bcds VVV −=
3

1 ]  .      (3.80) 

Also, the currents are given as 

qso II −=        (3.81) 

0=−= qsqsa III       (3.82) 

dsqsqsdsqsb IIIIII
2
3

2
3

2
3

2
1

−−=−−−=     (3.83) 

dsqsqsdsqsc IIIIII
2
3

2
3

2
3

2
1

+−=−+−=  .  (3.84) 

It can be shown that 

baosqs eeVV −+= 2       (3.85) 

qslsqssbaqs pILIreeV 22 −−−=  .    (3.86) 

By substituting Equation (3.23) in Equation (3.86), Vqs can be determined, while Vds is 

known from (3.80), then this fault can be simulated. 

Figures 3.24-3.25 shows a little or no change in the speed of machine during fault except 

for the oscillations. The current in phase ‘a’ is zero as derived while the current in the 

other phases increased.   
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Figure 3. 23 Shows a delta-connected Induction machine with phase ‘a’ open-circuited. 

 

Figure 3.24 Shows a delta-connected Induction machine with phase ‘a’ open-circuited 

with 104V three-phase supply with load applied, from top: phase currents ‘a’, ‘b’, ‘c’, 

mechanical speed, torque, phase voltage. 
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Figure 3.25 Shows a delta-connected Induction machine with phase ‘a’ open-circuited 

with PWM-VSI supply with load applied, from top: phase currents ‘a’, ‘b’, ‘c’, 

mechanical speed, torque, phase voltage. 

 

3.5.3 Supply Line “B” Open and Stator Phase “A” Shorted 

 

 Figure 3.26 shows the schematic for the unbalance in which the stator phase ‘a’ of 

a delta-connected induction motor is shorted. 

From this fault, it can be shown from Figure 3.26 that 

   Vab = 0       (3.87) 

   Vbc= eag – ecg      (3.88) 

   Vca= ecg – eag .     (3.89) 

Hence, the qs and ds voltages in stationary reference frame are given as 
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0=qsV       (3.90) 

   [ acds ee −=
3

2 ]

0

V      (3.91) 

   0 =⇒= osos IV .     (3.92) 

With Vqs and Vds known from Equations (3.90) and (3.91), respectively, the fault can be 

simulated. The simulation results of this fault are shown in Figures 3.27-3.28 with a load 

(10N.m) already applied in steady state. The rotor speed continues to drop, and shown 

also is the phase ‘a’ voltage which is zero due to the short circuit. 

Ias

Ibs

Ics

Ibc

Iab

a

b

eag

ebg

ecg

Ica

 

Figure 3. 26 Shows a delta-connected Induction machine with phase ‘a’ short-circuited. 

 



 

 

Figure 3. 27 Shows a delta-connected Induction machine with phase ‘a’ short-circuited 

with 104Vthree-phase supply with load applied, from top: phase currents ‘a’, ‘b’, ‘c’, 

mechanical speed, torque, phase voltage. 

 

Figure 3. 28 Shows a delta-connected Induction machine with phase ‘a’ short-circuited 

with PWM-VSI supply with load applied, from top: phase currents ‘a’, ‘b’, ‘c’, 

mechanical speed, torque, phase voltage. 
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CHAPTER 4 

A THREE-PHASE VOLTAGE SOURCE INVERTER WITH A FAULTED LEG 

 

4.1 Introduction 

 

One approach suggested to ensure motor drive operation when one of the inverter 

phase legs (power converter faults) is broken/damaged is the use of a split DC capacitor 

arrangement shown also in Figure 4.2. When it is sensed that an inverter leg has been 

lost, the motor phase winding connected to the broken leg is transferred to midpoint of 

the split capacitors. The modulation signals in the two other phase legs are re-configure 

to generate three phase balanced voltages. The scheme allows continuous operation of the 

machine instead of being shut down, hence, increasing the reliability of the drive system. 

 

4.2 System Model 

 

Figure 4.1 shows the structure of a three-phase VSI-PWM inverter with six 

switches connected to a Y-connected three-phase ac induction motor at adjustable voltage 

and frequency. With a fault on one of the inverter legs, the VSI-PWM inverter can be 

modeled with four power switches and a two-split capacitor dc high voltage link as 

shown in Figure 4.2. 

From Figure 4.2, it is assumed that the fault is on phase A leg of the inverter in 

which the two switches Sap and San are replaces by capacitors C1 and C2. This inverter-
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switching requirement can be stated as follows. Given a desired set of three-phase 

voltages and a set of three-phase currents for the output of the inverter: 

a b cn

Sap

San

  Sbp

  Sbn

Scp

    Scn

2
Vd

2
Vd Ias

Ibs

z

z

z

Ics

b

a

 

Figure 4. 1 Conventional PWM-VSI inverter system. 
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Figure 4. 2 PWM-VSI topology with a split DC capacitor replacing the faulted phase of 

the PWM-VSI inverter system 
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  V ( )tVas 00 cos ω=   

  





 −=

3
2cos 00
πω tVbsV   

  





 +=

3
2cos 00
πω tVcsV        (4.1) 

where V  is the magnitude of the output voltages.  0

Determining the modulation function, S, that will produce a desired set of line-to-ground 

voltages: 

  







=








+
+

cncp

bnbp

socs

sbs

SS
SS

VV
VV 0

















−
2

2
d

d

V

V

,     (4.2) 

  ; 1 1=+ bnbp SS =+ cncp SS ;      (4.3) 

  
22
d

asoas
V

VV −=+V        (4.4) 

and the dc capacitor voltages Va1 and Va2 are given by 

  V  .       (4.5) daa VV =+ 21

It can be shown by substituting Equation (4.3) into (4.2) that 

  [ ] sobsbp
d VVS

V
+=−12

2
      (4.6) 

  [ ] socscp
d VVS

V
+=−12

2
.      (4.7) 

Since V  for a balance load voltage then,   0=++ csbsas VV
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3323

2 d
cp

d
bp

da
so

V
S

V
S

VV
++−=V  .     (4.8) 

Substituting Vso into the expressions in Equations (4.6) and (4.7), the resulting equations 

can be solved as follows: 

  =       

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
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
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dd
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
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


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d
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d

aas S
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S
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333

2
2 −−=V  .     (4.9) 

Defining the modulation function for the devices as 

  ( )bbp MS += 1
2
1  

( ccp MS += 1
2
1 )        (4.10) 

where from Equation (4.9): 

  ( 221
acsbs

d
bp VVV

V
++= )S        

  ( 221
abscs

d
cp VVV

V
S ++= )  .      (4.11) 

Combining Equations (4.10) and (4.11), the modulating signals Mb and Mc needed to 

synthesis the desired three-phase voltage can be defined as 

  
( )

1
222 2 −+

+
=

d

a

d

csbs
b V

V
V

VV
M    

  
( )

1
222 2 −+

+
=

d

a

d

bscs
c V

V
V

VV
M      (4.12) 
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for operation in the linear region, the modulation index M is defined in Volt/Hertz as 

follows: 

   
dV
V

M 032
= ,   |M| ≤  1 .     (4.13) 

The input current Io will be 

  1adcpcsbpbso pVCSISII ++=  

                   2adcncsbnbso pVCSISII −+=−                 (4.14) 

where capacitor C1 = C2= Cd , it can be shown that  

  ( )∫ ∫ =−=+=− σdtI
C

II
C

V as
d

csbs
d

aa
11

12V    (4.15) 

from Equation (4.5), Va2 and Va1 can be expressed as follows: 

  
222
σ

+= d
a

V
V          

  
221
σ

−= d
a

V
V  .       (4.16) 

 

4.3 Simulation Results 

 

This sections investigates the characteristic response of this model when 

connected to a star-connected Induction machine (IM). The computer simulation under 

free acceleration at rated frequency is carried out and the result is as shown in Figure 4.3. 

The Induction machine is also connected to a load of 10N.m at the rated frequency of 

60Hz at steady state and also removed after sometime and the simulation result is as  
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Table 4. 1 Induction Machine Parameters 
 
 Rated Line Voltage 220 V 

Stator Resistance, Rs 0.435 ohms 
Stator Leakage Inductance, 

Lls 
2 mH 

Rotor Resistance, Rr 0.816 ohms 
Rotor Leakage Inductance, 

Llr 
2 mH 

Mutual Inductance, Lms 0.0693 H 
No. of Poles, P 4 

Synchronous Speed, We 377 rad/sec 
Inertia, J 0.04 kg/m2 

 
 
 
 
 
 
 
 
 
 
 

 

shown in Figure 4.4.  

The simulation results for three other different frequencies 5Hz, 30Hz, and 70Hz with 

load connected are as shown in the Figures 4.5,4.6, and 4.7, respectively. The machine 

parameters used are as shown in Table 4.1 and the two capacitors (C1=C2=Cd) are 

2000µF. 

The simulation was carried out with the machine operating with the three VSI-

PWM intact and then a fault occur in one of the leg, the fault was sensed and the 

modulation scheme is switched to the scheme describe above almost immediately to keep 

the machine in operation. Figure 4.8 shows the simulation result for this case. With the 

capacitor replaced with a larger value of 50000µF (the capacitors voltage charged to Va1 

= Va2 = Vd/2 during the period of no failure in any of the switches) to be able to retain the 

DC voltage when fault occurs. The fault occurs at 1.3sec. and as shown in Figure 4.8, the 

induction motor experiences a little drop in speed but most of all there is no stoppage in 

operation, hence, increasing the availability of the machine despite loss of an inverter leg. 
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(a)      (b) 

   
                              (c)                                     (d)  

 
   (e)      (f) 

Figure 4. 3 Shows free acceleration characteristic of the Induction Machine (a)  top: 

Speed, bottom: Torque (b) Stator phase Voltages from top: a,b,c (c) Steady state Stator 

current (d) Transient response of the stator current (e) Modulating signal top: Mb, bottom: 

Mc (f) Top: upper capacitor va2, middle: lower capacitor va1, bottom: difference of the 

two-capacitor va2-va1  
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   (a)      (b) 

 

(c) (d) 

Figure 4. 4 Shows Induction Machine with load 10N.m at steady state and remove 

afterwards (a) top: Speed, bottom: Torque (b) Stator phase Voltages from top: a,b,c (c) 

From Top: lower capacitor va1,  upper capacitor va2, difference of the two-capacitor va2-

va1 , Modulating signal Mb, Modulating signal Mc  (d) Steady state Stator current. 
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   (a)      (b) 

 

(c) (d) 

Figure 4. 5 Shows free acceleration characteristic of the Induction Machine at 30Hz (a)  

top: Speed, bottom: Torque (b) Stator phase Voltages from top: a,b,c (c) From Top: lower 

capacitor va1,  upper capacitor va2, difference of the two-capacitor va2-va1 , Modulating 

signal Mb, Modulating signal Mc  (d) Steady state Stator current. 
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   (a)      (b) 

 

(c) (d) 

Figure 4. 6 Shows free acceleration characteristic of the Induction Machine at 5Hz (a)  

top: Speed, bottom: Torque (b) Stator phase Voltages from top: a,b,c (c) From Top: lower 

capacitor va1,  upper capacitor va2, difference of the two-capacitor va2-va1 , Modulating 

signal Mb, Modulating signal Mc  (d) Steady state Stator current. 
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   (a)      (b) 

 

(c) (d) 

Figure 4. 7 Shows free acceleration characteristic of the Induction Machine at 70Hz (a)  

top: Speed, bottom: Torque (b) Stator phase Voltages from top: a,b,c (c) From Top: lower 

capacitor va1,  upper capacitor va2, difference of the two-capacitor va2-va1 , Modulating 

signal Mb, Modulating signal Mc  (d) Steady state Stator current. 
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      (a)     

 
(b) 

Figure 4. 8 Shows the transient and steady state response of the Induction Machine at 

60Hz (a) top: phase “a” current; phase “b” current; phase “c” current; Speed wrm; Torque, 

Te (b) From Top: lower capacitor va1, upper capacitor va2, difference of the two-capacitor 

va2-va1 , Modulating signal Mb, Modulating signal Mc  (c) Steady state Stator current. 
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CHAPTER 5 

PARAMETER DETERMINATION 

 

5.1 Introduction 

 

Experimental tests on the two horsepower interior permanent magnet (IPM) 

synchronous machine to determine the parameters is reported in this chapter. Parameter 

determination is considered very important in order to carry out any analysis on the 

performance of the machine. Due to the effects of saturation at heavy load and 

demagnetization of the magnet at light loads, the parameters of the machine changes 

significantly as the load presented to it changes. Thus, the parameters, namely, the direct 

and quadrature axes inductances Ld and Lq and the magnet flux linkage, λm, created by 

the magnet, must be functions of the operating conditions. 

Generally, when effects due to saturation are included in an analysis, the 

parameters are made functions of either the total mutual flux λm or the total stator current 

Is. The decision was made to make the parameters functions of stator peak current  

because, when the parameters were plotted as a function of flux, there were regions in 

which two possible values of a particular parameter exists for a given value of flux 

(which could be problematic when solving equations to determine which of the value is 

right to be use). Since the magnet flux linkage λm is also a varying parameter which vary 

with load due to saturation, it is necessary to determine its variation for different load 



 

 94

conditions, hence, there is justification in making the parameters functions of the stator 

current. 

An equivalent circuit of the interior permanent magnet (IPM) synchronous 

machine without the iron loss is considered in this analysis, hence the effects of iron loss 

on the flux level and the harmonic fields produced by saturation cannot be modeled in 

this circuit. No-load as well as loaded operating conditions of the machine (as a generator 

and motor) are taken into account for the determination of the machine parameters. A 

method of determining the magnet flux linkage with respect to the air gap voltage value 

at different operating conditions. 

 

5.2 Experiments to Determine the Parameters 

 

Figure 5.1 shows the d-q axes equivalent circuits of the IPMSM without 

considering the effect of iron loss.  

The conventional d-q voltage equations in the synchronous reference frame for the 

IPMSM are 

dsrqsqsqssqs pILIRV λω++=  

qsrdsdsdssds pILIRV λω−+=      (5.1) 

where 

mdsdsds IL λλ += , qsqsqs IL=λ  .    (5.2)  
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Under steady-state (when the damper transients have decayed to negligible levels, hence 

not included in the analysis of the IPM), the derivatives of the state variables of Equation 

(5.1) are zero so, at steady state the voltage equations may be written as 

mrdsdsrqssdsrqssqs ILIRIRV λωωλω ++=+=  

qsqsrdssqsrdssds ILIRIRV ωλω −=−=  .   (5.3) 

The stator resistive values Rs was found by applying a dc voltage across two 

terminals of the stator and measuring both the voltage and the current which flowed 

through the terminals (shown in Figure 5.2). The stator resistance for a single phase is 

given as 

dc

dc
s I

V
R

2
=  .       (5.4) 

The value of the stator resistance was found to be 1.5 Ω. 

The voltage and currents in Equation (5.3) were found by varying a three phase 

balanced resistive load from a high value to a low value and recording the terminal 

voltage and the current output from the machine when running as a generator. 

ωλds

Vqs

RS

Iqs

Lls

Lmq

    

ωλqs

Vds

RS

Ids

Lls

Lmd

 

Figure 5. 1 Electric equivalent circuit model of an Interior Permanent Magnet 

Synchronous Motor (IPMSM) without iron-loss. 
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 The measurements made were line to line voltages and phase currents. In order to 

convert the voltages and currents to their dq components, the torque angle δ was needed. 

The power factor of the machine is also needed in parameter determination, but, since the 

generator was feeding a resistive load, the current out of the generator was in phase with 

the voltage at the terminals, so the power factor was unity. The torque angle was found 

by measuring the difference in angle of the voltages of the search coil located across 

phase “A” of the stator and the terminal voltage appearing at the stator terminal of phase 

“A.” This method was not an ideal way to measure the torque angle because the 

oscilloscope used to measure the angle between the two voltages gave a varying readout 

even though the load and speed of the generator were constant. An average of the 

numbers was taken and used as the torque angle. It would have been much easier 

(probably more accurate) to have a commercially available torque angle measuring 

device, stroboscope; however, no such device was available. Nevertheless, the strong 

corroboration between measured and predicted results suggests that the method used was  

 

D C

A

B

C

Idc

 

Figure 5. 2 schematic diagram of dc test used to determine the stator resistance 
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)

 

an acceptable means of obtaining the torque. Once the stator voltages, currents, and 

torque angle are known, the dq voltages and currents can be found as follows: 

   cos(δsqs V=V  

)sin(δsds VV −=  

   )cos(γsqs II =  

)sin(γsds II −=      (5.5) 

where Vs is the peak line to neutral voltage, Is is the peak stator current, and γ is the sum 

of the torque angle δ and the power factor angle θ. Since the power factor is unity (since 

the generator is feedinga purely resistive load), then γ is equal to δ. 

With the dq voltages and currents and the stator resistance known, the inductance in the q 

axis can easily be found and is given as 

   
qsr

dssds
qs I

IRV
L

ω
−

−=  .    (5.6) 

The inductance in the d axis and the magnet flux linkage are not easy to find as the q axis 

inductance. As stated in [77], it is not possible to separate the induced magnet EMF 

(ωrλm=Eo) from the product of Ids and Xds (ωrLds) at load. 

One method of finding the magnet flux involves running a no load test on the PM 

machine for a range of frequencies and measuring the terminal voltage of the machine 

and the voltage across the terminals of the search coil. An empirical relationship between 

the search coil voltage and the magnet (and thus the magnet flux linkage) can be 

developed since, at a no load condition, the terminal voltage of the machine is equal to 
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the magnet voltage. Figure 5.3 shows the plot of the rms voltage of the magnet vs. the air 

gap voltage for both the series connection (high voltage) and parallel connection (low 

voltage) of the stator winding of the PM machine while Table 5.1 shows the experimental 

data. 

The low voltage connection was not used in any of the experiments reported in this thesis 

(except for the one just described). The main reason for this is that, since the machine is 

being operated in generator mode, one would normally like a high terminal voltage and 

the low voltage is, as one would expect, one half of the terminal voltage of the high 

voltage connection for any particular operating frequency. 

 

Figure 5. 3 Measured line to neutral terminal generator voltage (rms) vs air gap voltage 

for no load condition for machine connected in high and low voltage stator connections 
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Table 5. 1 Experimental measurements at no-load condition 

Low voltage connection 
Vab(rms) Vbc(rms) Vca(rms) Vag(rms) fs(Hz) 

15 15 15 105 7 
20 20 20 132 9 
22 22 22 146 10 
30 30 30 202 14 
40 40 40 260 18 
49 47 47 320 22 
56 55 55 376 26 
60 59 60.5 404 28 

64.5 64 64 435 30 
69 68 68 466 32 
73 71 73 492 34 
77 76 76 520 36 
81 80 81 552 38 
85 84 85 580 40 

High voltage connection 
29 31 31 111 7 
39 40 40 134 9 
42 44 44 148 10 
60 60 60 205 14 
77 77 77 263 18 
95 93 94 322 22 
112 110 110.5 380 26 
120 117 119 410 28 
129 126 127 437 30 
137 134 136 467 32 
146 142 144 497 34 
154 152 154 526 36 
162 160 162 553 38 
170 168 170 582 40 
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This brings up one other interesting point, which is that one would ideally like to 

have a generator having a magnet voltage greater than 120 volts rms when operating at 

60 Hertz since most loads were designed to operate at or near that particular voltage. 

Although not shown explicitly on Figure 5.3, the machine is operating at 60 Hertz when 

the air gap voltage is approximately 520mV. 

This operating point corresponds to a magnet voltage of about 88 Volts line to 

neutral rms which is certainly low if one wanted to drive, for example an induction motor 

with it. Incidentally, the lower voltage of this IPM machine is not an indication of poor 

design; rather, it is an indication that it was designed to be used as a motor. 

The empirical relationship between the air gap voltage (Vag) and the magnet voltage on a 

per phase rms basis (Eo) was found to be 

1128.0*1683.0 −= ago VE  .     (5.7) 

With this relationship established, the magnet voltage (and thus the magnet flux) 

could be approximated under load conditions by measuring the air gap voltage at each 

operating condition. While this is not entirely accurate since, under load conditions, the 

voltage across the search coil is also affected by the current flowing in the mutual 

inductances of the d and q windings of the stator, the approximation seems reasonable. 

After the magnet flux term has been determined (by λm=Eo/ωr), then Lds can be found by 

dsr

mrqssqs
ds I

IRV
L

ω
λω−−

=  .     (5.8) 

The plots of Lqs, Lds, and λm are given in Figure 5.4, while Table 5.2 shows the 

experimental data for load test with measurements of the line voltages (rms), phase 
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current (rms), air gap voltage (rms), and the torque angle δ recorded. The empirical 

relationships of the parameters as a function of peak stator current Is are given as 

790.08684.02303.00293.0013.01ln 234 ++−+−=









ssss

qs

IIII
L

 

505.19096.0210.00251.0011.01ln 234 ++−+−=







ssss

ds

IIII
L

 

1863.00208.00041.00002.0 23 ++−= sssm IIIλ  .    (5.9) 

As described earlier, burying the magnets inside the rotor of the IPM synchronous 

motor has several important effects on the machine’s electromagnetic characteristics- 

some rather obvious and others subtler. The key to understanding these effects is 

recognition that covering each magnet with an iron pole piece creates high-permeance 

paths for the magnetic flux across these poles and orthogonal to the magnet flux. This 

saliency effects on the IPM motor distinguishes it from conventional wound-rotor salient 

synchronous machines by the fact that the IPM stator phase inductance with direct-axis 

(magnet) alignment Lds is less than the quadrature-axis inductance Lqs as shown in Figure 

5.4. This phenomenon, called inverse saliency, is simply caused by the magnet depth 

appearing as basically an air gap in the d-axis since the incremental permeability of 

ceramic and rare-earth magnet materials is nearly that of free space, the magnet 

thicknesses appear as large series air gap in the d-axis magnetic flux paths. 
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    (a)     (b) 

 

 

   (c) 

Figure 5. 4 Stator q and d axis inductances and magnet flux (a) Lqs, (b) Lds,  (c) λm 
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Table 5. 2 Experimental measurements of the load test  

Vab(V) Vbc(V) Vca(V) Iz(A) Ib(A) Ic(A) -39o-δ Vag (V) 
23 23 23 6.2 6.2 6.3 44.5 287 
37 38 38 6 6 6 42 306 
54 54 54 5.7 5.7 5.7 39.4 330 
90 90 90 4.9 4.85 4.9 33 396 
100 100 104 4.25 4.3 4.25 30 425 
112 112 114 4.0 4.0 4.0 27.5 440 
120 122 121 3.55 3.5 3.4 25.6 458 
123 123 124 3.35 3.4 3.35 25 465 
127 127 128 3 3 3 23.1 472 
129 129 130 2.82 2.85 2.84 21.8 477 
130 130 133 2.73 2.75 2.8 21.2 480 
131 131 133 2.5 2.6 2.55 19.5 481 
134 134 135 2.35 2.4 2.35 18.5 485 
135 135 136 2.05 2.1 2.05 16 485 
135 135 137 1.7 1.7 1.7 13 481 
135 135 137 1.6 1.7 1.6 12 480 
135 134 136 1.35 1.4 1.4 10 475 
133 132 132 0.81 0.88 0.85 3 461 
131 132 131 0.7 0.7 0.7 2 458 

129.5 130 130 0.55 0.6 0.6 1 449 
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CHAPTER 6 

THE INFLUENCE OF MAGNETIC SATURATION AND ARMATURE 

REACTION ON THE PERFORMANCE INTERIOR PERMANENT  

MAGNET MACHINES 

 

6.1 Introduction 

 

The employment of vector-controlled ac motors, especially induction motor, 

permanent magnet synchronous motor, synchronous reluctance motor has become 

standard in industrial drives, the improvement of ac motor drives has been important 

issue. For this reason, several authors have made an attempt to consider iron loss in 

vector controlled ac motor drives.  

This thesis makes use of finite element method to determine the q and d axis 

inductance of this interior permanent magnet synchronous motor; modeling and analysis 

of the machine; investigate the influence of the parameters variation and iron losses on 

the efficiency of the interior permanent magnet synchronous motor based on the 

developed mathematical model using both simulations and experiment.  In this model, the 

iron loss resistance is defined, hence there is need to determine its values experimentally. 
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6.2 Parameters Determination using Finite Element Method 

 

Figure 6.1 shows the d-q axes equivalent circuits of the IPMSM which are 

traditionally utilized to consider iron loss. In this circuit, an iron loss resistance Rc is 

inserted in parallel with the armature inductance. Thus, the d-q axes line currents 

( )qsds II ,  are divided into iron loss currents ( )cqcd II ,  and magnetizing currents ( )'' , qsds II . 

The voltage equation of these circuits is expressed as 

cqqssqs VIRV +=  

cddssds VIRV +=       (6.1) 

   V  ccqdsrqsqscq RIpIL =+= λω'

   V     (6.2) ccdqsrdsdscd RIpIL =−= λω'

where    

   
c

dsrqsqs

c

qssqs
cq R

pIL
R

IRV
I

λω+
=

−
=

'

 

   
c

qsrdsds

c

dssds
cd R

pIL
R

IRV
I

λω−
=

−
=

'

    (6.3) 

cqqsqs III += ' ,      (6..4) cddsds III += '

mdsdsds IL λλ += ' ,     (6.5) '
qsqsqs IL=λ

where V  and V  are the d- and q-axis components of the terminal voltage,  and  

are the d- and q-axis components of armature self-inductance, 

ds qs dsL qsL

dsλ  and qsλ  are the d- and 
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q-axis components of the flux linkage, mλ  is the magnet flux , and p is differential 

operator define as 
dt
d . 

Under steady state operation, the q-d variables are constant given in Equations 

(6.1- 6.5), and their derivatives with respect to time are zero.  

The measured values of the load-dependent parameters, d- and q-axis inductance 

as well as the magnet flux linkage due to the magnet, have been determined 

experimentally as described in Chapter 5 earlier. These measurements uses Equations 

(6.1-6.5) in steady-state to estimate the parameters. The measured values are shown in 

Figure 5.4 plotted against the peak stator current. 

In Figure 6.2(a-c) (with Figure 5.4 included), the variation of the d- and q-axis 

inductances and the magnet flux linkage are shown indicating that both the inductances 

are current dependent reflecting the influence of current distribution on the air-gap flux 

density. The magnet flux linkage also changes due to the influence of stator current 

armature reaction. It is observed that at low currents when the d-axis currents are  

ωλds

Vqs

RS

Rc

Iqs Icq

Vcq

Lls

I’qs

Lmq

  

ωλqs

Vds

RS

Rc

Ids Icd

Vcd

Lls

I’ds

Lmd

    

Figure 6. 1 Electric equivalent circuit model of an Interior Permanent Magnet 
Synchronous Motor (IPMSM) with core-loss included. 
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generally negative, the axis inductances are larger due to the demagnetization of the 

buried magnets and they tend to be smaller and relatively constant at high load currents 

when both the d- and q- axis currents are generally positive with the magnet operating in 

the magnetization mode. The shape of the magnet flux is determined by both the 

influence of d-axis current and the saturation of the bridge and steel parts surrounding the 

magnet. 

The accurate calculation of saturated machine performance can be accomplished 

through the use of finite element magnetic field solution techniques. 

As rather large values of current flow in the stator circuits of a permanent magnet motor, 

a sort of flux redistribution occurs due to saturation (even at no-load operations), hence, 

the d- and q-axis inductances changes with the armature current. The armature reaction 

effect on the values of the magnet flux is also noticed using this method 

Figure 6.3 schematically shows the rotor design of the experimental IPM machine 

under consideration. The parameter and material characteristics of the 2hp, interior 

permanent magnet motor (in the Appendix A) was specified in the RMxprt software. By 

changing the rated power input in order to obtain different loading conditions of the 

interior permanent magnet synchronous machine, the RMxprt software (Ansoft product) 

is executed to determine the steady state value of the q and d axis inductance under 

different full load current. 

There is close correlation between calculated and measured parameters at high 

load currents as shown in Figure 6.2(a-c) but could substantially deviate when the phase 

current is relatively small as the magnet is likely demagnetizing. While in almost all 
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published papers, the magnet flux and the q-axis inductance are considered to be 

constant, our experimental results and Finite Element Analysis indeed show that 

significant variations can be experienced by these parameters. 

The air-gap flux density (Bg) is composed of three components due to the 

armature currents and rotor buried magnets: q and d axis flux densities (Baq and Bad 

respectively), due to the three-phase armature currents and the flux density due to the 

buried magnets, Bf. These components which influence the saturation of the main iron 

parts of the machine affect the magnitudes of the axis inductances as magnitudes and 

signs of the q and d-axis currents change due to changes in operating points. Of these 

components, the sign of the d-axis currents influences the magnitude of the d-axis flux 

density Bad as the armature changes from magnetizing (positive d-axis current) to 

demagnetizing (negative d-axis current) in the process of which the permeability in the 

steel bridges and flux density of  the magnet are greatly influenced. Consequently the 

axis inductances and the magnet voltage (open circuit voltage) vary [3].  

By injecting d and q axis stator current (the current define in Ansoft software 

called Maxwell 2D has to be ampere turns) in the stator winding of the one-quarter 

geometry created by the RMxprt software, the flux density plots in Figure 6.4 were 

obtained. Flux density plots in Figure 6.4 demonstrate the impact of current distribution 

in the air-gap flux density and hence, the machine parameters changes when the rated 

current is applied to the d-axis (the flux density diminishes) compared to when applied to 

the q-axis. Since the flux density is directly proportional to machine inductance, the d-

axis inductance is less than the q-axis inductance. This is because the d-axis current 
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significantly demagnetizes the magnet and hence influences the air-gap flux. Compared 

to the no-load current, which reflects essentially the influence of the buried magnet, 

magnetization and demagnetization due to armature current increase the harmonics of the 

air gap flux when under load condition. The depression observed on the flux density is 

due to the nature of the geometry of the IPM machine, as the flux flows through the rotor 

and stator slots opening.  

At rated condition, the steady state characteristics of the IPM synchronous 

machine are as shown in Figure 6.5 (a-d) and Figure 6.6 (a-d). These steady state plots 

confirm the advantages of the IPM synchronous motor, which is why it is being use in 

several application which require high acceleration and a good torque quality (as shown 

in Figure 6.5 (a)), the torque comprise the magnet torque and the reluctance torque; an 

excellent power factor close to unity (Figure 6.5 (b)), since the copper losses are 

essentially located only in the stator, hence, an IPM is an highly efficient machine as 

shown in Figure 6.5 (d). In the applications of continuous long time operation such as 

electric vehicles and compressor drives, the efficiency is one of the most important 

performances and as it is obvious from Figure 6.5 (d), the efficiency of this machine 

cover a wide range of operation with sufficiently high efficiency.  

Figure 6.6 (b) shows the air gap flux density at no load, this is mainly the 

fundamental of the magnet flux density since at no-load, the magnet is the only 

component that contribute to the flux density along the air-gap. Figure 6.6 (d) shows the 

induced coil voltages at no load, which is mainly due to the magnet and this voltage is 
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referred to as the magnet voltage; and in a slot winding, the total induced voltage is the 

sum of the induced voltages in one turn times the winding turns in a slot (Figure 6.5 (b)).   

 

 
(a)      (b) 

   

(c ) 

Figure 6. 2 Experimental and Finite Element Analysis results for a 2hp IPM. (a) q-axis 

inductance, (b) d-axis inductance, (c) magnet flux linkage. 
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Figure 6. 3 Shows the cross section of the four-pole 2hp interior permanent magnet 

motor 
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 (a)  

 

 (b)  

 (c)             

Figure 6. 4(a-c): flux path and air-gap flux density, (b) no-load current, (c) q-axis rated 

current, (d) d-axis rated current.  
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   (a)       (b) 

 

 

(c) (d) 

Figure 6. 5: (a) Torque vs. speed, (b) power factor vs. torque angle (c) Input line current 

vs. torque angle (d) efficiency vs. torque angle 
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   (a)       (b) 

 

(c) (d) 

Figure 6. 6: (a) Air gap power vs. torque angle (b) Induced winding voltage at no-load 

vs. electrical degree (c) Air gap flux density at no-load vs. electric degree (d) Induced 

coil voltage vs. electric degree 
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6.3 Determination of Iron Loss Resistance 

 

In steady state condition, the electrical input power Pin is the sum of the copper 

loss Pc and iron loss Pi when the IPMSM is running on no-load condition as given by 

Equation (6.6): 

   Pin = Pc + Pi       (6.6) 

Pc = 3I2
phRs  .       (6.7) 

The iron loss resistance is determined by the following procedure: 

(1) The IPMSM operates at constant speed at no-load condition 

(2) Several input power Pin, input voltage Vrms, input current Iph(rms), and power 

factor are measured. 

(3) Using the measurement data by step 2, the iron loss is calculated as 

Pi = Pin – Pc  .       (6.8) 

(4) The armature resistance voltage drop is approximately negligible, i.e. IphRs ≈ 0, 

hence, the voltage across the core loss resistance is given as 

Vc ≈ Vph  .       (6.9) 

(5) The iron loss resistance Rc is straightforwardly calculated from the core loss Pc as 

follows: 

   Rc = 3V2
c/Pi .      (6.10) 

Figures 6.7(a-d) shows the various plot of the no-load experimental test. Figure 

6.7(a) shows the plot of the iron loss, Pi, as it varies with input voltage; Figure 6.7(b) 
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shows the variation of the input power, Pin, versus the input voltage; Figure 6.7 (c) 

shows iron loss resistance against input voltage and Figure 6.7(d) shows the terminal 

current versus the input voltage. 

 

 
(a)      (b) 

 

(c)      (d) 

Figure 6. 7: (a) Iron loss against input voltage (b) Input power against input voltage 

(c) Iron loss resistance against input voltage (d) Terminal phase current against input 

voltage. 
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The iron loss resistance is a function of the terminal input voltage for this  

operating speed (rated speed). It can be seen that the iron loss has a minimum value as the 

terminal voltage equals the no-load EMF Eo(minimum stator current or negligible stator 

current), then it increases again as the input voltage decreases. 

 

6.4 Influence of the Iron Loss and Parameter Variations on the Efficiency of 

IPMSM 

 

By computation, the influence of the iron losses and parameter variation on the 

efficiency of the IPMSM is determined for different load conditions at rated speed. 

The steady state voltage equation of this model is expressed as 

ccqmrdsdsrdsrcq RIILV =+== λωωλω '  

cqqssqs VIRV +=       (6.11) 

ccdqsqsrqsrcd RIILV =−=−= 'ωλω  

cddssds VIRV += .      (6.12) 

The electromagnetic torque equation is given by 

[ ]  ''

4
3

dsqsqsdse IIPT λλ −=

     ( )[ ]'''

4
3

qsdsqsdsqsm IILLIP
−+λ=  .    (6.13) 

Note that the magnetizing currents in the IPMSM model can be expressed as follows: 

2'2''
dsqss III +=   
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2'2'2'
dssqs III −=  .      (6.14)  

Equation (6.13) can be rewritten as: 

   ( )[ 2'2'
2

3
4

qsqsdsmqs
e ILLI

P
T

−+=





 λ ]     (6.15) 

Substitute Equation (6.14) in (6.15) gives the following expression: 

   ( ) ( )[ 2'2'2'
2

3
4

qsqsdsmdss
e ILLII

P
T

−+−=





 λ ]  .   (6.16) 

The following procedure is taken in the computation of the efficiency, total loss, 

copper loss, and core loss of the IPMSM for different torque generated by the motor 

considering the influence of parameter variation and iron loss: 

(1) With the assumption that the magnetizing current magnitude is less than the rated 

current, that is 

0  ≤ I’
s ≤ Irated .      (6.17) 

(2) Determine the parameters of the motor (Lqs, Lds and λm) depending on the 

magnetizing current I’
s. 

(3) For a given torque, solve for I’
ds by varying I’

s in Equation (6.16) . 

(4) Determine the value of the q-axis magnetizing current I’
qs from Equation (6.14). 

(5) Determine the core loss resistance voltages (Vcd and Vcq) using Equations (6.11) 

and (6.12). 

(6) Compute the magnitude of the core loss resistance voltage Vc 

222
cdcqc VVV +=   .      (6.18) 
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(7) Determine the corresponding core loss resistance by interpolation using Figure 

6.7(c). 

(8) Determine the iron loss currents using: 

   
c

cq
cq R

V
I = , 

c

cd
cd R

V
I =  .     (6.19) 

(9) Compute the terminal currents using Equation (6.4). 

(10)Compute the total loss of the IPMSM, ignoring frictional and mechanical losses, 

as follows: 

( )22

2
3

qsdssc IIRP +=       (6.20) 

( )22

2
3

cqcdci IIRP +=       (6.21) 

   PLoss = Pc + Pi .      (6.22) 

(11) The efficiency of the IPMSM is given by 

Loss
r

e

r
e

PT

T

+













=

2

2
ω

ω

η  .     (6.23) 

  

Figures (6.8) shows the computational result of the influence of the iron losses 

and parameter variation on the performance of the IPMSM at the rated speed. 

The range of operation decreases with increase in load, hence, as the load increases the 

current demand increases and also the total losses as shown by Figure 6.8 (a). 

This computation shows that a high efficiency can be achieved for different load torque 

by proper selection of the q- and d- axis currents as shown by Figures 6.8 (b) and (d). An 
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efficiency of above  90% is obtainable up to the rated torque which is possibly due to the 

consideration of saturation and iron-loss in the computation of the performance of the 

IPM.  

The point of minimum current does not necessarily has to be the most efficient 

point of operation as shown in Figure 6.8(b). Hence, for a given torque, the proper 

determination of the d and q axis current with optimize the performance of the machine. 

Figure 6.8(c) shows that the iron loss becomes approximately constant at a high current 

for different load, showing that the core loss is independent of the armature current at 

high values. 

Figure 6.9 shows the experimental result for different loads, the result follow similar 

trends confirming that by operating at the required voltage, better performance based on 

the efficiency of the system can be attained. The experiment was carried out using the 

2hp IPM for two different loads and the procedure for determining the efficiency and 

performance of the IPM are as follows: 

(1) The IPMSM operates at constant speed. 

(2) Several input power Pin, input voltage Vphrms, input current Iph(rms), and power 

factor are measured. 

(3) Compute the voltage across the core loss resistance by : 

Vc = Vph - IphRs .     (6.24) 

(4) Estimate the core loss resistance from Figure 6.7(c). 

(5) Compute the core loss as 

Pi = 3V2
c/Rc .     (6.25) 
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(6) Compute the copper loss as 

Pc = 3I2
phRc .    (6.26) 

(7) Total losses, ignoring the mechanical losses, is therefore given as 

PL = Pi + Pc .     (6.27) 

(8) Compute the output power as 

Pout = Pin – PL .     (6.28) 

(9) Determine the efficiency of the motor as 

100
in

out

P
P

=η   .     (6.29) 
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(a)      (b) 

     

(c)      (d) 
Figure 6. 8: Performance curves of the IPM. (a) Total losses, (b) efficiency (c) core loss 

(d) q-d current for torque values of 4Nm, 5Nm, 6Nm, and 7Nm for 60 Hz supply 

frequency. 
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(a)      (b) 

   
(c)      (d) 

 

(e)      (f) 

Figure 6. 9:  Measured performance curves of the IPM for supply frequency of 60 Hz. 

(a) No-load loss against input voltage,  (b) efficiency against input current, (c) total loss 

against input current,  (d) Input power against input current (e) input current against input 

voltage,  (d) core losses against input current.  
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CHAPTER 7 

EFFICIENCY OPTIMIZATION OF THE INTERIOR PERMANENT MAGNET 

SYNCHRONOUS MACHINE 

 

7.1 Introduction 

 

In the past few years, nonlinear control theory has been used in some electrical 

machine control systems [48,69,83,84]. The main reason of using nonlinear control 

techniques is to improve the existing control system and achieve high performance. The 

principles of nonlinear control input-output linearization with decoupling are used to 

design the controllers [60,71,80-85]. The literature in [60] has successfully used this 

control technique to control the torque as well as to reduce the total loss of a synchronous 

reluctance motor, while literature in [71] has implemented experimentally the torque-per-

amp operation using this control technique for a permanent magnet synchronous motor. 

The attention in this chapter is focus on the speed control and total loss 

minimization. The concept of input-output linearization control technique is sets forth in 

the implementation of the speed control of the interior permanent magnet motor drives 

which simultaneously ensures the minimization of the losses – the copper and core losses. 

This control scheme is unique in that saturation dependent parameters such as the d and q 

axis inductances and the armature reaction dependent magnet flux linkage are included in 

the controller structure formulation and implementation. The proposed control scheme 

differs from known schemes which are either based on perturbation and search methods 
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or on steady curve fitted graphs that map the command q and d axis currents based on 

reference torque. Unlike these methods, an optimization formulation that dynamically 

determines the reference currents/voltages required to achieve high performance speed 

control and total loss minimization is used. The control structure methodology, the nature 

of the variations of the machine parameters and how they influence the machine 

efficiency are clearly laid out .    

 

7.2 Interior Permanent Magnet Synchronous Machine (IPMSM) Model 

including Iron Losses 

 

Figure 7.1 shows the d- and q-axis equivalent circuits in the d-q coordinate, which 

rotate synchronously with an electrical angular velocity rω . The equivalent circuits 

include the effects of the copper loss and the iron loss.  represents the armature copper 

loss resistance. The iron loss consists of hysteresis loss and eddy current loss, but here 

they are added into a single quantity and the iron loss is represented by the iron loss 

resistance  inserted in parallel with the armature inductance [33,34,40,67,68,71]. Thus, 

the d-q axis line currents 

sR

cR

( )qsds II ,  are divided into iron loss currents ( )cqcd II ,  and 

magnetizing currents ( )'' ,ds II qs . 

From Figure 7.1, the voltage equations of the interior permanent magnet synchronous 

motor is expressed as 

cqqssqs VIRV +=  
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cddssds VIRV +=       (7.1) 

   V  ccqdsrqsqscq RIpIL =+= λω'

   V     (7.2) ccdqsrdsdscd RIpIL =−= λω'

where   

   
c

dsrqsqs

c

qssqs
cq R

pIL
R

IRV
I

λω+
=

−
=

'

 

c

qsrdsds

c

dssds
cd R

pIL
R

IRV
I

λω−
=

−
=

'

    (7.3) 

cqqsqs III += ' ,      (7.4) cddsds III += '

mdsdsds IL λλ += ' ,     (7.5) '
qsqsqs IL=λ

where V  and V  are the d- and q-axis components of the terminal voltage,  and  

are the d- and q-axis components of armature self-inductance, 

ds qs dsL qsL

dsλ  and qsλ  are the d- and 

q-axis components of the flux linkage, mλ  is the magnet flux linkage , and p is 

differential operator define as 
dt
d . 

ωλds

Vqs

RS

Rc

Iqs Icq

Vcq

Lls

I’qs

Lmq

     

ωλqs

Vds

RS

Rc

Ids Icd

Vcd

Lls

I’ds

Lmd

 

Figure 7.1: Electric equivalent circuit model of an Interior Permanent Magnet 

Synchronous Motor (IPMSM) with core-loss included. 
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Expressing the terminal voltage equations in terms of the magnetizing currents rather 

than terminal currents, hence substituting Equations (7.2)-( 7.5) in Equation (7.1) gives 









++








++=

c

s
dsr

c

s
qsqsqssqs R

R
R
R

pILIRV 11'' λω  









+−








++=

c

s
qsr

c

s
dsdsdssds R

R
R
R

pILIRV 11'' λω  .  (7.6) 

By choosing d- and q-axes magnetizing currents as the state variable, the Interior 

permanent magnet synchronous motor model given by Equation (7.6) can be written in 

the following explicit form: 
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From the equivalent circuit, the electromagnetic torque Te is proportional to the 

vector product of flux linkages and currents and can be obtained as (7.8), where P 

denotes the number of poles. Since Rc supplies an additional current path to each axis 

equivalent circuit, the torque depends not on measured terminal currents,  and , but 

on the magnetizing currents,  and . Therefore, the terminal currents can no longer 

directly govern the torque; hence, the electromagnetic torque equation is given by 
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The equation for the motor dynamics are given by 

rep ωωδ −=        (7.9) 

Ler TTp
P

J −=





 ω2  .     (7.10) 

where δ  is the rotor position, eω  is the inverter frequency, J is the motor inertia, and TL 

is the load torque. 

The state variables of the nonlinear dynamic model for the IPMSM considering 

iron losses have been chosen as the magnetizing currents,  and , the rotor speed, ω'
dsI '

qsI r 

and rotor angle, δ .  

Note that the interaction among the d- and q-axes torque currents and the IPMSM angular 

speed are modeled, and the whole system is nonlinear and coupled. 

 

7.3 Steady State Conditions 

 

The development of voltage equations that express the transient behavior of the 

interior permanent magnet synchronous motors including the stator iron loss is the first 

object presented in this thesis, but the appropriate approximations for development are 

necessary. In order to understand the nature of equivalent circuit parameters and to get 

parameter approximations in the transient condition, voltage equations in the steady state 

are developed. 
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From the model Equations (7.1)-(7.7), each current is constant under steady state 

conditions. Accordingly, substituting zero into the differential operator p, the 

magnetizing currents can be written as 
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As shown in Equation (7.11), the value of Rc approaching infinity makes I’
ds and I’

qs 

identical to Ids and Iqs, regardless of the rotational speed ωr. The magnetizing currents, I’
ds 

and I’
qs, are calculated or estimated from the measurable terminal d- and q-axis 

components of the armature current. 

Similarly, the d- and q-axis components of the iron loss current can be express in steady 

state as follows: 
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7.4 Power Losses of the IPMSM 

 

The copper losses Pc and iron losses Pi of the IPMSM can be calculated as given 

by Equations (7.13) and (7.14), respectively: 

( )22

2
3

qsdssc IIRP +=       (7.13) 
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( )22

2
3

cqcdci IIRP +=  .      (7.14) 

Substituting Equation (7.12) in (7.4), the copper losses Pc can be written as 
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Substituting Equation (7.12) in (7.14), the iron losses Pi can be written as 
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Thus, the total power losses of the IPMSM, PL, can be expressed as 
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7.5 Input-Output Feedback Linearization Control and Speed Controller Design 

 

The design based on exact linearization consist of two steps: In the first step, a 

nonlinear compensation which cancels the nonlinearities included in the IPM (as shown 

in Equations (7.6) through (7.10)) is implemented as an inner feedback loop. In the 

second step, a controller which ensures stability and some predefined performance is 

designed based on conventional linear theory, and this linear controller is implemented as 

an outer feedback loop [88]. 
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Consider a nonlinear system: 

( ) uxgxfx )(+=
⋅

 

( )xhy =        (7.18) 

where , , and  are the state, input, and output (controllable 

variables) vectors, respectively. , and  are smooth maps, 

and  is a smooth vector field at 
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for the Lie derivative of the analytical function  along the vector field 
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for k-tuple application of the Lie derivative operator Lf. 

Taking the time derivatives of these outputs, respectively, until inputs ui, i = 1, 2, 

appear in the derivative expressions of each output variable are as follows: 
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where , i = 1,2, is the Lie derivative of yif yL i with respect to f. where, E(x) is the 

decoupling matrix and it is required to be found nonsingular over all operating regions; 

hence the input-output feedback linearization and the decoupling control law can be 

selected as follows: 

   u      (7.22) 
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
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= −
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E
f

f
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By the input-output feedback linearization control, the original nonlinear and coupled 

IPM system can be transformed to an exact linear and decoupled closed-loop system with 

each pole at the origin of the transformed state space as 

    1

.

1 υ=y

2

.

2 υ=y  .       (7.23) 

In the dynamic system given in Equations (7.6) through (7.17), the system 

possesses two independent inputs (Vqs and Vds); hence, two independent objectives can 

be achieved for the control of the machine. One objective is the rotor speed control, ωr, 

and the other is the reduction of the total losses, PL, subject to command torque, Te = TL, 

while maximizing along the way the conversion of the electrical energy (limited by the 

maximal values of the voltages and currents delivered by the inverter feeding the motor) 

to mechanical energy.  

Hence, the outputs are then 
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In order to optimized the total losses (copper losses and iron losses) for any given 

constant torque, another constraints which is the total differential of the total losses along 

a constant torque trajectory is therefore proposed [60, 19]; hence, defining 

     0
''

''

=

∂
∂

∂
∂

∂
∂

∂
∂

=

ds

e

qs

e

ds

L

qs

L

I
T

I
T

I
P

I
P

γ      (7.26)  

The new outputs for the system are now rpω  and γ . The objective of the nonlinear 

controller is to force the output (γ ) to zero, so that the reached operating point 

corresponds to an extremum of PL along a constant torque trajectory.  

Executing the minimization/optimization Equation (7.26), the following partial 

derivatives are obtained as follows. 

Differentiating Equation (7.25) with respect to I’
qs gives 
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Differentiating Equation (7.25) with respect to I’
ds gives 
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Differentiating Equation (7.24) with respect to I’
qs gives 
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Differentiating Equation (7.24) with respect to I’
ds gives 
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Substituting Equations (7.27)-( 7.30) in Equation (7.26) gives 

( )( )



































+−








++








+−

−







+−








++









+−








++−−

=

c

s

c
dsdsr

c

s

c
qsdsqsr

c

s

c
qsqsr

dsms
c

s

c
dsmdsr

c

s

c
dsqsdsr

c

s

c

m
dsr

c

s

c

m
dsqsdsrdsqsqsdss

R
R

R
IL

R
R

R
ILL

R
R

R
IL

IR
R
R

R
IL

R
R

R
ILL

R
R

R
L

R
R

R
ILLIILLR

P

111111

11211

11

4
9

2'322'222'32

''222'22

2
2'22'2'

ωωω

λλωω

λ
ω

λ
ω

γ .  (7.31) 

Applying the input-output linearization techniques to the system, by taking the 

time derivatives of these outputs ( rpω  and γ ), the original nonlinear and coupled 

IPMSM system can be transformed to an exact linear and decoupled closed-loop system. 

Differentiating Equation (7.24) with respect to time gives 
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Differentiating Equation (7.31) with respect to time gives 
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Solving Equations (7.32) and (7.33) for pI’
qs and pI’

ds, the following expression are 

obtained: 
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If Equations (7.35-7.36) are to be viable, the determinant ∆ must not be identically equal 

to zero. Non-singularity of ∆ is maintained for all motor operability region which is 

ensured especially when the stator and/or core loss resistances are included in the model. 

Hence, the voltage equations can be written as 

Vqs = Lqss(σqs + RsI’
qs/Lqss + wrLdsI’

ds/Lqs+ wrλm/Lqs)    

Vds = Ldss(σds + RsI’
ds/Ldss – wrLqsI’

qs/Lds) .    (7.39) 

As Rc becomes infinity, Equation (7.31) becomes minimization of copper loss, 

which can also be referred to as torque/ampere, since the core loss component of 

Equation (7.25) becomes negligible. Hence, Equations (7.35) and (7.36) can be expressed 

as 
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The q-d command voltages required to achieve the control can be expressed as 

dsrqsqsqssqs LIRV λωσ ++=  
 

qsrdsdsqssqs LIRV λωσ −+=  .    (7.45) 

 

7.6 Input-Output Feedback Linearization Control and Torque Controller Design 

 

Following the procedure for the input-output linearization techniques laid out above 

for speed control, in this case, the outputs are the electromagnetic torque and total loss 

minimization, then similar equations from Equations (7.24) through (7.45) can be 

obtained. 

Defining the torque equation as 

( )[ LqsdsqsdsqsmLe TIILLIPTT −−+=− '''

4
3 λ ]  .   (7.46) 

Rewritten the optimization Equation (7.31): 
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Applying the input-output linearization techniques to the system, by taking the 

time derivatives of these outputs (T  and e γ ), the original nonlinear and coupled IPMSM 

system can be transformed to an exact linear and decoupled closed-loop system. 

Differentiating Equation (7.46) with respect to time gives 
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Differentiating Equation (7.47) with respect to time gives 
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Solving Equations (7.48) and (7.50) for pI’
qs and pI’

ds, the following expression are 

obtained: 
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qsqs

aa
pI σ

σσ γω =
∆
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= 1222'       (7.52) 

( )
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aa
pI σ
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−

= 1222'       (7.53) 

where 

     .  12212211 aaaa −=∆

 

7.7 Controller Structure 

 

The overall block diagram of the proposed control algorithm is shown in Figure 

7.2. As the system is input-output linearizable, any dynamic can be imposed by means of 

a linear controller. An integrator-proportional (IP) controller is chosen in as the linear 

controller in order to cancel any static error. Thus, the imposed linear control signals, wσ  
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and γσ , is the output of the speed controller and total losses minimization controller.  

Therefore, the proposed linear control law is, of the following form: 
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( ) γγγγσ γ
γ

γ sk
s

k p =−−= ∗
1     (7.55) 

where ω*
r represents the reference rotor speed, γ* represents the total losses minimization 

reference; kω and kω1 are the speed controller gains; kpγ and kγ1 are the total losses 

minimization (γ*=0) gains. 
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Figure 7. 2: Controller Structure for the IPM Motor Drive 
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However, the same controller structure can be used to implement torque control by 

changing the control variable from speed to torque and modify the output variable 

equations, respectively. 

The transfer function of the closed-loop dynamics of each output of Figure 7.3 

can be expressed as follows:  

wwI
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r

r

kpkpPJ
k

w
w

++
= 22* )3/8(

     (7.56) 

γγ

γ

γ
γ
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p

kpkp
k

++
= 2*   .      (7.57) 

The parameters of transfer functions kω, kω1, kpγ, and kγ1 are chosen to optimize 

the closed-loop eigenvalue locations using the Butterworth polynomial. The Butterworth 

method locates the eigenvalues uniformly in the left-half S-plane on a circle of radius ω0 

(natural frequency), with its centre at the origin. The Butterworth polynomials for a 

transfer function with a second order denominator is given as 

02 2
00

2 =++ ωζω pp  .   (7.58) 
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Figure 7. 3:  The structure of the Controllers 
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When the natural frequency ω0 and damping ratio ζ in the feedback system in Figure 7.3 

are designed, the PI gains are automatically determined by 

3/0 JkwI ζω=      (7.59) 

6/2
0 Jkw ω=       (7.60) 

ζωγ 02=Ik       (7.61) 

2
0ωγ =pk  .      (7.62) 

 

7.8 Simulation Results 

 

The simulations for the minimization of total losses and minimization of copper 

losses (by making the core loss resistance infinite, Rc = 106) are done to compare the 

results of the two control schemes. 

The inductances vary due to magnetic saturation, the Lqs , Lds and λm, varies as a 

function of the armature current, Figure 7.5 shows the plot of these parameters against the 

peak stator current. The iron loss resistance Rc is dependent on the operating speed 

because the iron loss consists of hysteresis loss and eddy current loss, also at rated speed 

operating condition, the value of Rc changes with voltage as confirmed in chapter 6. 

However, a constant value of Rc (400 ohms) is used in these simulations. 

Figure 7.6(i) shows the simulation results for the speed control and total loss 

minimization while Figure 7.6(ii) shows the results for the speed control and copper loss 

minimization. As shown in both results, the speed tracks its reference with little error, as 
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shown in Figure 7.7 (i) and Figure 7.7(ii). The loss minimization reference is zero, γ* = 0, 

which is the second control variable, is found that the controller try to meet this constraint 

at all point when there is load (applied at 12.5sec) and without load. The error noticed in 

the simulation is found to be oscillating around the reference of zero, Figure 7.7 (i) and 

Figure 7.7(ii) shows this results; and when a step load is applied, the response of the 

controller was quite fast to go back to its reference. The total loss in the control scheme is 

reduced in Figure 7.6(i) compare to Figure 7.6(ii). The q- and d-axis current is also 

shown in Figure 7.6, and there is little difference in the stator current of the IPMSM. 

Figure 7.8 shows the online computation of the machine parameters, which is determined 

by the stator current at each time of the course of the simulation. 

Figure 7.8 shows the q and d-axis voltages. Figure 7.8(ii) shows that more voltage 

is demanded by the scheme with copper loss minimization compare to the total loss 

minimization scheme in Figure 7.8(i). 

Figure 7.9 is the simulation results for the total loss minimization using constant 

machine parameters. Figure 7.9 confirms that the chattering and oscillations produce in 

Figures (7.5) – (7.8) are due to the effort of the controllers to instantaneously account for 

the varying machine parameters. And as shown in Figure 7.9, the two control variables 

did track their reference with little or no error produce at all times. 

Using the same control structure, the speed reference is changed to torque; hence 

torque control scheme can be implemented along with the minimization of total losses, or 

copper losses minimization also refer to as torque per ampere operation by modifying the 
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output variable (Equations 7.52 and 7.53). Figure 7.10-7.12 shows the simulation results 

for the torque control with varying parameters. 

 

 

 
    (a)      (b) 

 

    (c) 

Figure 7. 4: Stator q and d axis inductances and magnet flux (a) L , (b) L ,  (c) λ  q d m
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  (i) Total loss minimization    (ii) copper loss minimization 

Figure 7. 5 Shows from top: (a) reference speed, and rotor speed, (b) γ ,γ minimization 

constraint (c) electromagnetic torque, (d) total loss, (e) q-axis current, (f) d-axis current 

*

 

  (i) Total loss minimization    (ii) copper loss minimization 

Figure 7. 6 Shows from top: (a)reference speed, and rotor speed, (b) speed error (c) γ ,γ 

minimization constraint (d) minimization error 

*
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  (i) Total loss minimization    (ii) copper loss minimization 

Figure 7. 7 shows from top: (a) q-axis inductance, (b) d-axis inductance (c) magnet flux 

 

  (i) Total loss minimization   (ii) copper loss minimization 

Figure 7. 8 shows from top: (a)q-axis voltage, (b) d-axis voltage 
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Figure 7. 9 shows total loss minimization control using constant parameters from top: (a) 

reference speed, and rotor speed, (b) γ*,γ minimization constraint (c) electromagnetic 

torque, (d) total loss, (e) q-axis current, (f) d-axis current 
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(i) minimum total loss   (ii)  maximum torque per ampere 

Figure 7. 10:  Torque control and minimum total loss tracking of IPM motor drive, from 

top: (a) reference torque, and electromagnetic torque, (b) speed, (c) total loss, (d) q-axis 

current, (e) d-axis current 

  

(i) minimum total loss   (ii)  maximum torque per ampere 

Figure 7. 11 shows from top: (a) reference torque, and electromagnetic torque, (b) torque 

error (c) γ*,γ minimization constraint (d) minization error 
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(i) minimum total loss   (ii)  maximum torque per ampere 

Figure 7. 12 shows from top: (a) q-axis inductance, (b) d-axis inductance (c) magnet flux 
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CHAPTER 8 

CONCLUSIONS 

 

An interior permanent magnet synchronous machine has been extensively analyze 

during the course of this thesis research. Various fault situation on the interior permanent 

magnet synchronous machine and induction machine with the stator winding connected 

in star and delta form has been analysed using stationary reference frame. During the 

course of the research, it was found by simulation that delta- connected machines are 

more fault tolerant compare to star-connected machines. To some degree the machine 

was able to operate at rated speed with some oscillations despite the occurrence of a fault 

in one or more phase of the machine. The fault considered here are mainly either at the 

terminal of the machine or in the stator of the machine. 

In the occurrence of critical fault, such as lost of one inverter phase leg, there 

might be need to keep operation going instead of rendering the machine redundant, the 

modulation schemes of VSI-PWM was re-configured for the remaining two inverter 

phase while the third leg was replaced with a split dc capacitor. A balanced three phase 

voltage was successfully generated without any lost of operation. 

The influence of magnetic saturation and armature reaction on the performance of 

an interior permanent magnet including iron loss in the model was model. The iron loss 

resistance was found to be a function of the phase voltage which is rather varying instead 

of being constant as assumed in some literature. The efficiency of the machine is found to 

be improved which might be due to the saturation effects included in the computation. 
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The result is also validated by experimental results which shows similar trends of result 

observed in the computer simulation. 

The parameter determination using finite element method shows similar results at 

high current with results earlier obtained from experimental method. The saturation 

nature of the parameters were observed using both methods, and it was shown that the 

parameters varies as a function of the stator current. 

The last part of this work is on loss minimization which uses the input-output 

linearization techniques in the derivation of the control scheme. The IPM synchronous 

machine model includes the iron loss and saturation effects of the parameters in its 

implementation. It was shown that some level of improvement was obtained by 

minimizing the total loss compared to the torque per ampere operation. The last part of 

this work is the experimental validation of the simulation which is in progress. 
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APPENDIX A 

PARAMETERS AND MATERIAL CHARACTERISTICS OF THE TWO 

HORSEPOWER, BURIED MAGNET TEST MOTOR 
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A.1 Motor Rating 

A two horsepower, line-start, buried magnet, permanent magnet synchronous 

motor was tested in order to compare measured data with calculated results. The 

nameplate data for the test motor is given in Table A.1 

 

Table A. 1: Nameplate data for the two horsepower buried magnet test machine. 

GENERAL DATA 
Rated Output Power (kW):   1.492 

Rated Voltage (V):    230 

Number of Poles:    4 

Frequency (Hz):    60 

Frictional Loss (W):    15 

Winding Connection:    Wye 

Operating Temperature (C):   40 

 

A.2 Motor Geometry 

 A cross section of one pole of the test motor showing the material types of various 

regions is given in Figure A.1. The motor has rectangular samarium cobalt permanent 

magnets. The rotor contains a cast aluminum starting cage which lies in slots above the 

magnets. Stator dimension and rotor damper dimension (and winding data, slot 

dimensions) are listed in Table A.2 and Table A.3, respectively. Figure A.2 and Figure 

A.3 shows the stator and rotor slot dimensions respectively. 
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Materials 
1. Stator iron 
2. Solid iron shaft 
3. Permanent magnet  
4. Rotor conductors 
5. “A” phase conductors 
6. “B” phase conductors 
7. “-C” phase conductors 
8. Rotor iron 
9. Air gap 

 

Figure A. 1 One pole cross section of a four pole, buried magnet, permanent magnet 

synchronous machine showing material boundaries. 
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Table A. 2: Stator Dimensions. 

STATOR DATA  
Outer Diameter of Stator (mm):    154.432 

Inner Diameter of Stator (mm):    93.4212 

Number of Stator Slots:   36 

Skew Width (Slots):    1 

Type of Stator Slot:    2 

Stator Slot Dimensions 

            Hs0 (mm):      0.508 

            Hs1 (mm):      0.762 

            Hs2 (mm):      11.43 

            Bs0 (mm):      1.9304 

            Bs1 (mm):      4.191 

            Bs2 (mm):      6.39572 

Top Tooth Width (mm):     4.18319 

Bottom Tooth Width (mm):     3.97339 

Length of Stator Core (mm):     95.25 

Stacking Factor of Stator Core:  0.93 

Type of Steel:     STATOR_DEF 

Slot Insulation Thickness (mm):    0.3 

End Length Adjustment (mm):    0 

Number of Parallel Branches:   1 

Number of Conductors per Slot:  24 
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Winding Type:    12 

Average Coil Pitch:    9 

Number of Wires per Conductor:  5 

Wire Diameter (mm):     0.6438 

Wire Wrap Thickness (mm):    0 

Stator Slot Fill Factor (%):   74.5748 

Coil Half-Turn Length (mm):    220.87 

 

 

 
Bs0

Bs1

Hs0
Hs1

Hs2

Bs2

 
Figure A. 2: Stator slot dimensions of the buried magnet test motor. 
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Table A. 3: Damper Data 
Damper Slots per Pole:   11 

Type of Damper Slot:    3 

Damper Slot Dimensions 

            Hr0 (mm):      0.508003 

            Hr1 (mm):      0.888997 

            Hr2 (mm):      8.50902 

            Br0 (mm):      0.045 

            Br1 (mm):      3.175 

            Br2 (mm):      2.03199 

            Rr (mm):      0 

End Length of Damper Bars (mm):    2.00001 

End Ring Width (mm):     3.99999 

End Ring Height (mm):     29.9999 

Resistivity of Dampers  

  at 75 Centigrade (ohm.mm^2/m):  0.017 

 



 

 167

Br0

Br1

Hr0
Hr1

Hr2

Br2
Rr  

Figure A. 3: Rotor slot dimensions of the buried magnet test motor. 

 
 
 

 

A.3 Material Characteristics 

The finite element method using RMxprt software requires input material characteristics 

for all magnetic materials in the motor cross section. All linear materials (air gap, rotor 

slots and stator windings) were assigned the permeability of free space. The rotor overall 

dimensions and the samarium cobalt magnet was modeled as shown in Table A.4 and 

Table A.5 respectively. Figure A.4 shows the buried magnet duct dimension as laid in the 

rotor of the machine. 

Figure A.5 (referred to as STATOR_DEF IN Table A.4) and Figure A.6 shows the plot of 

the stator and shaft lamination steel BH input data. The rotor and stator BH 

characteristics were assumed to be the same. 
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Table A. 4: Rotor Data 

Air Gap (mm):      0.635 

Inner Diameter of Rotor (mm):    31.496 

Length of Rotor (mm):     95.25 

Stacking Factor of Rotor Core:  0.93 

Type of Steel:     STATOR_DEF 

Type of Rotor:     4 

Magnet Duct Dimensions 

            D1 (mm):      69.073 

            O1 (mm):      23.5331 

            Rib (mm):      3.302 

Magnet Type:     Samarium Cobalt 

Magnet Thickness (mm):     6.35 

Total Magnet Width (mm):     32.3088 
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O1

Rib
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Figure A. 4: Magnet duct dimensions of the buried magnet test motor. 

 
 

 

Table A. 5 Permanent Magnet Data 
Residual Flux Density (Tesla):  0.85 

Coercive Force (kA/m):   629 

Maximum Energy Density (kJ/m^3):  133.67 

Relative Recoil Permeability:   1.07528 

Demagnetized Flux Density (Tesla):  0.531245 

Recoil Residual Flux Density (Tesla): 0.849979 

Recoil Coercive Force (kA/m):  629.055 
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Figure A. 5: Stator and rotor lamination steel BH  curve 

 
 

 
Figure A. 6: Solid rotor shaft BH curve (Stator_def) 
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