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General and special case expressions for determining the real and reactive powers in
a multiphase system have been derived. This has been simplified by the use of the
stationary complex reference frame of transformation which transforms a set of m real
variables into a set of (m-1) complex vectors (when m is odd). The m™ vector is real and
is referred to as the zero sequence. For a system with an even number of phases (m is
even), the number of complex vectors is (m-2) and there are two zero sequence
quantities. The complex vectors are conjugates of each other such that during the analysis
only half of them (which are the positive sequence components) are sufficient to give the
desired result. In this work, the expressions for determining the real and reactive power of
the three, five and seven phase machines have been obtained.

A five phase induction machine has been modeled. The winding function method is
used to calculate the self and mutual inductances in the stator windings and the rotor
circuits, with constant air gap in which the space harmonics of the stator windings and
rotor circuits are accounted for. A n X n complex variable reference frame transformation
is carried out to simplify computation of the currents, voltages and torque equations.
Computer simulation results of the no-load starting transient have been shown with the
response of the machine for a change in the load torque. This approach has made it
possible to calculate the rotor bar currents.

A five-phase carrier based PWM (Pulse Width Modulation) induction motor drive
has been analyzed. The induction machine windings have been connected in alternate
ways to increase the torque produced by the machine. A third harmonic voltage
component has been injected to determine the ability of a five phase machine to
contribute a third harmonic torque component to the fundamental torque component. It
has been found out that with sinusoidally distributed stator winding, the effect of the third
harmonic torque component is negligible.



The dynamics of a five-phase induction motor under open phase faults has been
discussed. Using stationary reference frame and harmonic balance technique, circuit
based models have been used to analyze the open phase, two adjacent phases and two
non-adjacent phase faults. Simulation and steady state results have shown that the five
phase machine can start and develop torque with one or two of its phases missing. Mall
signal analysis has been carried out to determine the stability of the machine at different
open phase fault conditions, revealing that despite the missing phases, the machine is
stable at relatively high operating speed.

A voltage source inverter has been reconfigured for the purpose of obtaining high
speeds in the regions of field weakening operation. The motive being to investigate the
possibilities of operating a multiphase induction motor drive in field weakening region
under optimum torque production. With a multiphase systems, different winding
connections can be obtained apart from the conventional star and delta configurations.
Such connections would give higher voltages across the machine’s phase winding and
thus allowing the for relatively higher torque production in the regions of field weakening
operation.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In general, the induction machines having three-phase windings are normally used,
since the standard power supply is three phase. However, when fed by an inverter, there
is no need for a fixed number of phases, some other phases being possible and
advantageous.

A multiphase machine can operate normally after loss of one or more phases. This
improved reliability stems from the fact that only two independently controllable current
components are necessary to create a rotating field. In the three-phase machine, this is
only possible if the neutral of the motor is connected to the dc link midpoint to allow
zero-sequence current component to flow [1.1]. In an m-phase star-connected machine
with isolated neutral, there are (m-1) degrees of freedom. It is possible to achieve the
rotating magneto- motive force by controlling the remaining phase currents even after
losing up to m-3 phases. For example, a five-phase machine can continue to operate if
one or even two phases of the supply are lost. When only one phase is lost (open
circuited), it does not matter which phase because of the spatial symmetry of the stator
windings in the machine, the results are the same regardless of which phase is open.

Much published work has shown that drives with more than three phases have

various advantages over conventional three phase drives, such as reduction in amplitude



and increase in frequency of pulsating torque, reduction in harmonic currents, increase in
current per phase without the need to increase the phase voltage, and reduction in the
voltage-level in the dc (direct current) link [2.1, 2.2].

Another important aspect of machines with a higher number of phases is their
improved reliability, since they can operate even when one phase is missing [2.1]. An
increase in number of phase can result in an increase in torque/ampere relation for the
same volume of the machine, such that five-phase machines can develop torque using not
only the fundamental, but also using higher harmonics of the air gap field [2.1, 2.3].

The types of multi-phase machines for variable-speed applications are in principle
the same as their three-phase counterparts. These include induction and synchronous
multiphase machines. Synchronous multiphase machines may be with permanent magnet
excitation, with field winding excitation, or of reluctance type.

Three-phase induction and cylindrical synchronous machines are normally designed
with distributed stator winding that gives near-sinusoidal magnetomotive force (MMF)
distribution and is supplied with sinusoidal currents. The permanent magnet synchronous
machine has a trapezoidal flux distribution and rectangular stator current supply.
Nevertheless, spatial MMF distribution is never perfectly sinusoidal and some spatial
harmonics are inevitably present. For multiphase machines, a near-sinusoidal MMF
distribution requires use of more than one slot per pole per phase. As the number of
phases increases, it becomes progressively difficult to realize a near-sinusoidal MMF
distribution. The minimum number of slots required for this purpose for a three-phase
four-pole machine is 24, whereas for the five-phase four-pole machine the minimum

number of slots required for production of a near-sinusoidal MMF distribution is 40 [1.2].



Some of the advantages of multiphase machines when compared to their three-phase

counterparts are [1.2, 1.3]

Fundamental stator currents produce a field with a lower space-harmonic content.
The frequency of the lowest torque ripple component being proportional to 2m,
increases with the number of phases.

Since only two currents are required for the flux/torque control of an ac machine,
regardless of the number of phases, the remaining degrees of freedom can be
utilized for other purposes. One such purpose, available only if the machine is
with sinusoidal MMF distribution, is the independent control of multi-motor
multiphase drive systems with a single power electronic converter supply.

As a consequence of the improvement in the harmonic content of the MMF, the
noise emanated from a machine reduces and the efficiency can be higher than in a

three-phase machine.

All multiphase variable-speed drives share a couple of common features.

For a given machine’s output power, utilization of more than three-phases enables
splitting of the power across a larger number of inverter legs, thus enabling use of
semiconductor switches lower rating.

Due to a larger number of phases, multiphase machines are characterized with
much better fault tolerance than the three-phase machines. Independent flux and
torque control requires means for independent control of two currents. This
becomes impossible in a three-phase machine if one phase becomes open-
circuited, but is not a problem in a multiphase machine as long as no more than

(m —3) phases are faulted.



1.2 Control of Variable-speed Multiphase Induction Motor Drives

Methods of speed control of multiphase induction machines are in principle the

same as or three-phase induction machines. These methods are namely as constant

voltage per hertz (\%) control, vector control, and direct torque control (DTC).

Constant \% for the multiphase variable-speed induction motor drive development in

conjunction with voltage source inverters operated in the 180° conduction mode was
presented in [1.4] and [1.5]. In the recent times, the emphasis has shifted to vector control

and direct torque control (DTC).

1.2.1 Vector Control of Multiphase Induction Machines

For a symmetrical multiphase induction machine with sinusoidally distributed stator
winding, the same vector control schemes for a three-phase induction machine are
directly applicable regardless of the number of phases. The only difference is that the co-
ordinate transformation has to produce an m-phase set of stator current or stator voltage
references, depending on whether current control is stationary or in synchronous rotating
reference frame. Indirect rotor flux oriented control (FOC) schemes for multiphase

induction machine using these two types of current control.



Assuming the stator winding has a singe neutral point, the scheme of Figure 1.1
utilizes (m —1) stationary current controllers. Either phase currents or phase current

components in the stationary reference frame can be controlled an the standard ramp
comparison current control method offers the same quality of performance as with three-
phase induction motor drives.

The scheme of Figure 1.2 has only two current controllers. However, since an m-

phase machine essentially has (m—1) independent currents, utilization of this scheme

will suffice only if there are not any winding and /or supply asymmetries within the m-
phase stator winding and / or supply. This scheme also requires an adequate method of
inverter PWM control to avoid creation of an unwanted low-order stator voltage

harmonics that represent voltage X —Yy components in Equation (2.3) and therefore lead
to the flow of large stator X —Yy current components, as discussed in Chapter 2. In the

case of a six-phase induction machine with two isolated neutral points, the scheme of
Figure 3 would require four current controllers which would apply to both the control

based on the double q—d winding representation and to the control based on the model
which in addition to the q—d stator current controllers, one needs to add a pair of X -y

current controllers [1.6 - 1.8].

Most literature on control related analysis has considered five-phase or
asymmetrical six-phase induction machines. Indirect rotor filed oriented control can be
applied to other phase numbers as presented in [1.9 - 1.14] where a 15-phase induction
machine is considered. In [1.11 - 1.14], a 15-phase induction machine for electric ship
propulsion, configured as a three five-phase stator windings (vector and DTC have been

considered in [1.11 - 1.13], while [1.12 - 1.14] used V/f control. Control of a 15-phase



induction motor drive is also discussed in [1.7]. Whereas an analysis of possible supply
options for a 36.5 MW, 16 Hz, nine-phase variable speed drive aimed at electric ship
propulsion is reported in [1.6].

It is concluded in [1.6] that if a good quality of current control is achieved and an
appropriate method of PWM for multiphase voltage source inverter (VSI) is applied, the
performance of a vector controlled multiphase induction machine will be very much the

same as its three-phase counterpart.
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Figure 1.1 Indirect rotor flux oriented controller for m-phase induction motor with

sinusoidal distribution of the magneto-motive force and phase current control.



The parameter and symbols shown in Figure 1.1 are defined as follows
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Figure 1.2 Indirect rotor field oriented control of a multiphase induction machine.

The current control of Figure 1.2 is in the rotating reference frame. The stator ¢ and

d axis reference currents and rotor flux position are obtained as in Figure 1.1. Some of

the defining equations for the system of Figure 1.2 are
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r
where

L, is the stator self inductance

L, is the rotor self inductance referred to stator side

L, is the magnetizing inductance
V;,V;,V;,-++,V, are the reference stator phase voltages
i,,1,,15,--+,1 . are the stator phase currents

v, and v; are the & and £ axis reference stationary voltages, respectively
I, and i, are the ¢ and B axis reference stationary currents, respectively

i and iy are the g and d axis currents, respectively, in the synchronous reference

frame

V;S and v, are the q and d axis reference voltages, respectively, in the synchronous

reference frame
-k -k . . .
I and iy are the q and d axis reference currents, respectively, in the synchronous
reference frame.

Ay is the rotor d-axis flux linkage



1.2.2 Direct Torque Control (DTC)

For a three-phase induction machine, two basic approaches of direct torque control
(DTC) can be identified [1.6]. The first approach utilizes hysteresis stator flux and torque
controllers in conjunction with an optimum stator voltage vector section table leading to a
variable switching frequency. In the second approach, an appropriate method of inverter
PWM control is applied while keeping the switching frequency constant. These two
approaches can be applied to multiphase induction machines achieving the same dynamic
performance as for the three-phase induction machines. The important differences are
predominantly caused by the existence of additional degrees of freedom in multiphase

machines due to the X and y components.

If the multiphase machine is with sinusoidal magneto-motive force distribution,
DTC scheme needs to apply sinusoidal voltages to the stator windings of the machine.

The unwanted low-order frequency components that would excite the X and Yy circuits

are to be avoided. This can be avoided if the constant switching frequency is used. Since
a multiphase induction machine is supplied from a multiphase voltage source inverter.
Constant switching frequency DTC of a multiphase induction machine can be realized by
using appropriate PWM method that ensures sinusoidal voltage output from the inverter.
In this thesis, indirect rotor flux oriented control (FOC) for a five phase induction
machine is presented. The rotor speed is controlled by using a ramp of the reference
speed. Using rotor flux oriented control, the five-phase inverter is—reconfigured for

improved extended speed drives is presented. It investigates the possibilities of operating
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a multi-phase induction motor drive in field weakening region under optimum torque

production.

1.3 Field Weakening Operation of Induction Motors

Maximum torque production in the field-weakening region is a desired property of
vector-controlled induction motors in applications such as traction and spindle drives.
Field weakening operation consists of two steps: the choice of the proper flux reference

to get maximum toque and producing the necessary currents to meet the flux and torque

. . ) 1. . .
references. The classical field weakening technique, —, in rotor field oriented drives
@

ahs been shown to provide flux reference that are too high, reducing the amount of
current available to produce the torque, and therefore, the torque capability of the drive
[7.3, 1.15]. In [7.3], the optimal current references for maximum torque were obtained by

taking into account both current and voltage limits for the inverter and motor. In [1.15] it

. . ) 1
was shown that almost optimal flux current references could be obtained by applying —
@

r
to the stator flux. In these references, only steady state operation has been considered.
Assuming that a proper flux reference is available, dynamic field weakening relies
on the dynamic response of both the flux and current regulators. At high speeds, the
available voltage will mostly be used to counteract the back emf. Small transient errors in
flux regulation could result in insufficient voltage margin to create the desired torque-

producing current, dramatically affecting the drive performance.
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1.4 Fault Analysis in Multiphase Machines

A good number of research work has been presented on faults in electric machines
[5.3]. Various categories of faults have been discussed for multi-phase machines inter-
turn short circuits [5.4, 5.5] based on winding function approach. In [2.2] a dq model
based on transformation theory for five-phase induction machines has been presented and
the analysis of the machine under asymmetrical connections is discussed.

A control strategy of multiphase machines under asymmetric fault conditions due to
open phase is presented in [4.7]. The authors used a five-phase synchronous motor with
one open phase as a practical example.

So far there is no work that has developed a circuit based model which can be used
to predict not only the steady-state and stability of the open-phase five phase induction
machine but also the dynamics of the pulsating torque. Although it is known that faulted
multi-phase machines can produce significant average torques, not much work has been
done to quantify this.

In this work, to determine the steady-state and dynamic stability performance, first a
five-phase induction machine with one phase (phase ‘a’) open is modeled in stationary
reference frame. Then the same analysis is carried out for two phase open, ‘@’ and ‘b’ (for
adjacent phases) and ‘@’ and ‘c’ (for non-adjacent phases). For the first time, using
harmonic balance technique it has been possible to develop a circuit based model that has
been used to perform the steady-state and dynamic analysis of a faulted machine. The

steady-state speed harmonics and torque pulsations have been calculated and the results
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compare fairly well with the simulation results based on the full-order dynamic model of
the faulted machine.

Furthermore, the small-signal stability study has been made through the small signal
analysis whereby the dynamic model obtained from the harmonic balance technique has
been used. At low speeds, the machine exhibits instability due to the rotor flux linkages.
This instability is eliminated when the machine speeds up close to synchronous speed.
This indicates that the machine can still be able to start under one or two open stator

phase faults and provide significant torque to meet most load requirements.

1.5  Connections of Multiphase Machines

One of the advantages of a multiphase machine apart from its tolerance is that it can
be used in high speed applications. In general, the maximum speed of the machine is
limited by the inverter voltage and current limits. High speed operation can be made
possible by either employing an inverter with higher voltage or by reducing the counter
emf value of the machine using field weakening techniques. Other techniques employed
to achieve significant wider speed ranges include reducing the per phase equivalent
impedance of the machine, pole amplitude and phase modulation by changing the number
of poles. These techniques require additional semiconductor devices in the converter as
well as special machine designs. An m-phase machine (where m > 3) can be connected

.o m+1
m

different ways. With these available alternatives, the speed range of an m-phase

machine can be significantly increased. As the connection pattern changes from one to
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the other, the impedance of the machine seen by the inverter varies making it possible to
achieve higher speeds before the converter rating voltage is reached. In such connection
transitions different torque-speed characteristics are realized. In this work, the approach
in reconfiguring the inverter in order to achieve wider speed range of operation for the

multiphase induction machines is presented.

1.6 Multiphase PWM Voltage Source Inverter

DC/AC voltage source inverters (VSI) are extensively used in motor drives to
generate controllable frequency and ac voltage magnitudes using various pulse width
modulation (PWM) strategies. The carrier-based PWM is very popular due to its
simplicity of implementation, known harmonic waveform characteristics, and low
harmonic distortion. Figure 1.3 shows a schematic diagram of five-phase voltage source
converter.

The turn on and turn off sequences of a switching device are represented by an
existence function which has a value of unity when it is turned on and becomes zero
when it is turned off [4.1]. The existence function of a two-level converter comprising of

two switching devices is represented by S;, i=a,b,c,d,e and j=p,n where i
represents the load phase to which the device is connected, and j signifies top (p) and

bottom (n) device of the converter leg. Hence, S, , S, which take values of zero or

ap°
unity are, respectively, the existence functions of the top device and the bottom device of

the inverter leg which is connected to phase ‘a’ of the load.
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Figure 1.3 Five-phase two-level voltage source inverter supplying a five-phase induction

machine

Energy conversion in converters is achieved by the Pulse Width Modulation (PWM)
technique [3.5]. The turn on and turn off time of each switching device is calculated from
a control scheme and when these PWM pluses are applied, the fundamental voltages
embedded in the output PWM voltages are the same as the desired ones. The PWM
technique can be generally divided into Carrier-based PWM (CPWM) and Space Vector
PWM (SVPWM). In the CPWM method, the modulation signals which contain certain
magnitude, frequency and angle information are compared with a high frequency carrier
signal to generate the switching pulses. The pulses are “one” when modulation signals are
larger than the carrier signal and “zero” when modulation signal are smaller than carrier
signal. However, the turn on and turn off times of each device are calculated and then

sent to the PWM generator directly in the SVPWM method.
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1.7  Scope of the Thesis

The main objective of this research is to explore the advantages of multiphase
induction machines. The analysis presented in this Thesis considers a five phase
induction machine as an example. An existing 2-pole, three-phase stator winding of a
three-phase squirrel cage induction machine was rewound to be a 4-pole, five-phase
stator winding of a five-phase squirrel cage induction machine. In some instances, a
seven-phase induction machine has been included in order to emphasize the generality.

Chapter 2 presents the theory of multiphase systems in which the reference frame of
transformation is presented. General expressions for calculating the real and reactive
powers for the three, five and seven phase systems are derived. In addition, vector space
modulation for the five phase voltage source inverters is discussed.

The full order model of a five-phase induction machine is discussed in Chapter 3.
Computer simulation results are presented. Using two three-phase inverters, open circuit
and blocked rotor tests are carried out to determine the machine parameters. The
approach of using winding function to determine the self and mutual inductances can be
used to analyze the machine performance when there inter-turn and intra-turn faults.
Thus, the model would give the actual values of the inductances that are taking part in the
machine operation.

Chapter 4 discusses the carrier based PWM scheme for the five-phase induction
motor drive. Efforts are made to simulate the machine with different stator winding
connections and analyze the capability of producing the third harmonic component

torque.
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A thorough analysis of the machine dynamics for open phase faults on the stator
windings is discussed in Chapter 5. The harmonic balance technique models give way to
analyzing the machine performance under open phase faults. It makes it possible to
determine the harmonic components of speed and torque.

Rotor flux vector control of five-phase induction machine is discussed in Chapter 6.
This precedes the discussion on speed range operation which is presented in Chapter 7.

Chapter 8 includes the conclusion and suggestions for future work on five-phase

induction machines and multi-phase systems.
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CHAPTER 2

THEORY OF MULTIPHASE SYSTEMS

2.1 Introduction

Multi-phase machines have attracted increased interest in recent years. This is due
several advantages that they offer as compared to the conventional three-phase ones. In
the presence of a power electronic converter which is needed for variables speed ac drive,
the number of phases is essentially not restricted and multiphase machines are nowadays
considered as potentially viable solutions for high power and high current applications.
Apart from their applications in traction and electric ship propulsion, some investigation
is going on for a more-electric aircraft concept, because of their fault tolerance which
enables disturbance-free mode of operation in case of loss of one or more phases [2.1].

With such a large number of phases, the analysis of the multiphase machines
becomes complicated. In order to include space harmonics, the proper reference frame is
required. This will eliminate the time variance of mutual inductance as well as
simplifying the model for performance calculation. In this Chapter, a generalized
reference frame is presented. Using the complex reference frame transformation, the
expressions for the real and reactive powers of the three, five and seven phase systems
are derived. It has been shown that depending on the reference frame used, the power is
not always invariant. Therefore, it is very important to consider the effect of the

multiplying factor if power computation will be part of the analysis.

18



2.1.1 Transformations

For the purpose of analysis of energy conversion characteristics, an n-phase-stator,
m-phase rotor balanced machine can be reduced to an equivalent two-phase machine.
The analysis of the n-m winding machine involves two essential steps [2.2].
(a) establishing the equations of motion in terms of a set of variables, and
(b) eliminating as many of the variables as possible without losing any essential
information.
The stationary reference frame "transformations, which prove useful in reducing the
variables in the n-m phase machine, are generalized versions of the complex symmetrical
component transformation and the real transformation.

A linear complex transformation of variables is defined by

x=T,y (2.1)
where

y=[y, ¥ = Yo Vol 22)
x=[te X X2 = Xmo Xea] (23)

Equation (2.2) is a vector of real variables, whereas Equation (2.3) is the complex vector.

T, is the symmetrical component transformation matrix given by [2.2]
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1 1 1 1 1 1 1
1 a! 2 as a(m—a) a‘(m—z) a(m—l)
1 a2 4 a’ az(m—s) az(m—z) az(m—l)

71 al al a’ aa(m—a) aa(m—z) a3(m—l)

T = ml: : : : . : : : (2.42)

1 a(m—3) az(m—s) a‘3(m—3) . a(m—3)(m—3) a(m—s)(m—z) a(m—3)(m—1)
1 a(m—z) 2(m-2) 3(m-2) a(m—2)(m—3) a(m—2)(m—2) a(m—2)(m—1)
1 a(m—l) 2(m-1) 3(m-1) a(m—1)(m—3) a(m—l)(m—z) a(m—l)(m—l)

11 1 1 1 1 1]
1 -1 -2 -3 a—(m—3) a—(m—z) a—(m—l)
1 -2 -4 -6 a—z(m—3) a—z(m—z) a—z(m—l)
1 a—3 a—6 a—9 . a—3(m—3) a—3(m—2) a—3(m—1)
T, =\g . : o . . . (2.4b)
mj: : : : . : : :
a—(m—3) a—z(m—3) a—3(m—3) a—(m—3)(m—3) ~(m=3)(m-2) a—(m—3)(m—1)
—(m-2) a—z(m—z) a—3(m—2) a—(m—z)(m—3) ~(m=2)(m-2) a—(m—z)(m—l)
_1 ~(m-1) a—2(m—1) a—3(m—1) a—(m—l)(m—3) ~(m-1)(m-2) a—(m—l)(m—l) ]

where

27
i . 2r . .
a=e ™ isthe m" root of unity and =— is the characteristic angle.
m

The first element in Equation (2.3) is called the zero sequence, and it has a real value. For

a multiphase system with even number of phases, there will be two real vectors, the first
m .
one and the other at 5 where m is the number of phases.

For m =5, the following identities will apply

2 j4r 6r sz
a=em al=eg'm a=e'm =g a‘=em=3a"
12z Jlox 2
a®=e ™ =4 a®=e m =g’ a’=e ™=a"'
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= (afz) =a’ and so on.
The stationary reference frame transformation matrices and their inverses for three, five

and seven phase systems are given by Equations (2.4c¢), (2.4d) and (2.4e), respectively.

1 1 1 1 1 1
2 2 -1 2 - -2
T,=,=1 a a T —|1 a a (2.4¢)
3 3
3 a’ a 3 1 a? a'
11 1 1 1 ] 11 1 1 1 ]
5 1 a 2 a? a 5 1 a' a? a* a'
T, = 3 1 a> a' a a’ T, = 3 1 a? a a' a’|(24d
1 a? a 1oa? 1 a> a' a a3
1 a' a? a a | 1 a a a’ a'|]
1 1 1 1 1 1] 11 1 1 1 1 1]
1 a a* a a’ a? a' 1 a' a? a’ a* a* a'
5 1 a> a® a' a P oaz 5 1 a? a* a' a'! a? a?
T, = 5 1 a° a' a* a”’ a’| T,'= ! a’ a' a? a* a' a’
1 a° a' a? a’ 1ol 1 a° a' a* a? a' a’
1 a? a a a' a’ a’ 1 a* a* a' a' a* a*?
1 a' a? a’ a > al | 1 a' a® a’ a’ a? a'|]
(2.4e)

For an arbitrary reference frame transformation, then the transformation matrices given

are multiplied by e'’, where 8 = wt +6,,  is the angular speed of the reference frame
and 6, is the reference frame initial angle.

The reference frame transformation produces m variables. If the number of phases is

m-—1

odd, then there backward

forward rotating complex variable component and
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rotating complex components which are the conjugates of the other set if the system is
balanced. The remaining component is the zero sequence component. This is in real form.

If the number of phases is even, then there are two zero sequence components, the second

. m L . .. (m-2)
one occurring at 5 The remaining components are complex conjugates, with

forward rotating and the other (mT—2) backward rotating.

2.2 Three-phase System

In order to arrive at the general transformation of the multi-phase systems, a brief
review of the three-phase system transformation is given first. The y vector of Equation

(2.1) can take variables of any form (for example, currents, voltages, flux linkages). As

an example of three-phase system, the voltage and current are considered

v=lve v, V. (2.5)
i=[i,, i, i.[ (2.6)
where

V., V,, and v, are the phase voltages and i, , I, and iy are the phase currents for the

three-phase system. In this particular case, m =3 and therefore,

27

J
a=e’
Transforming the phase voltages and currents into a complex form by using the stationary

reference frame complex transformation matrix, the following equations are obtained
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2 2
Vs = g[vas +avy, +a’Vvy

. 2[. . 2:
lygs = 3 I, +al, +a’l

The zero sequence components are give by

2
Vs = g[vas + Vs +Vcs]
. 2. . .
los = g[las s g

2.2.1 Three-phase Power Computation

The three-phase complex power, S, is given by

S=v_ i +V_i

qds " qds 0s ' 0S

where

-k 2 - —_1- _2-
qus :\/;[Ias +a I, +a ICS]

Therefore, the complex power, S, , due to the qd component is given by

S 2bsov, aov Jh cah vaci ]
qd_gvas+avbs+a Vo [[las @ g +Q Tl

r . —1 .
S = 2 Vaslas +a Vaslbs as'cs
gd 4

2 H 152 H 2,2 H
3| +atvgi, +aaty iy +aatvgl

cs'cs + a(vcslbs

S =

2| Voglag + Vi I + Vil
3

cs"as as ' cs

cs"bs cs'cs

+atVi +a v i, +a (Vi +Vy

23

i)

+ Vi, |

)

2 . . -1 . -2 .
+a Vi AV i, +aTav, iy +aavyi

|

:

2.7)

(2.8)

(2.9)

(2.10)

2.11)

(2.12)

(2.13)

(2.14)

(2.14)



2
Substituting for a = S , the following is obtained

2
==
. . . 3 . .
S _g Vaslas +Vbs Ibs +Vcs|cs +€ (Vcslbs +Vbs Ias) (2 15)
Y R 4 2= '
3 . 3 . 3 . .
+€ Vcslas +ée Vaslcs +ée (Vaslbs + Vbs Ics)

2.2.2 Real Power Computation for a Three-phase System

The active (real power), S_,, due to the qd voltage and current components is

qd >
obtained by evaluating the real part of Equation (2.15). This result will later be combined
with the power due to the zero sequence components to obtain the overall active power in
the three-phase system.

Considering the real part of Equation (2.15), the following can be deduced

. . . . 2r
b Vaslas T Vis Ips + Vesles + (Vcslbs F Vs las )COS ?
Py =Re(Sy )= 3 (2.16)

+ (VCSiaS + Vasics )COS(%j + (Vasibs + Vbs ics )COS[Z?EJ

. . 1 . .
Vaslas T Vis Tps + Vesles _E(Vcslbs * Vs Ias)+

qu:Re(Sqd):§ | | 2.17)
—E(V i +v_i )_E(V iy + Vy, i, )

cs'as as’'cs as'bs

Since the zero sequence component has a real value, it can contribute to the active power

Sos =§[Vas +Vbs +Vcs][ias + ibs + ics] (218)

P :E[V Lis T Viglps T Vesles T Vashps T Vasles T Vislas T Visles T Veslas + Vel (2.19)

0s as-as Cs'Cs as " bs as ' cs cs cs"as cs bS]
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Combining Equations (2.17) and (2.19) gives

VI

as-as

+ Vbs Ibs

20 1, .
P=P,+P,=—|—=(V.l,+V
qds 0s 3 2(csas

+ Vbslbs

VI

as-as

V..l

| L"as cs

+ Vbslas

V..l

as

+ Vbs Ibs

as

21 1 .
P= qus + Pos = 5 _E(Vcslbs

+ VCSICS

+ Vi, |

as ' cs

+V_i

Cs'Cs

+ Vi, !

cs

+v_i

Cs'Cs

1 .
- E(Vcslbs

. )_%

+ Vaslas

as)+_2

+ Vi

(Vas I bs

+v i+

as'bs

+Vv_i

cs'bs

+ Vcslas

+ Vbslbs

l(v i, +V, i

csas

+Vbs ics)+

as)+

+v_ i+

Cs'Cs

Cs

1 .
)_E(Vaslbs

+Vbs ics )+

+ Vaslcs + Vbslas + Vbslcs]

—l+1)
2

F Vol T Vislps

[Vcs I as'bs

as

Vi +

cs'bs

2(Vaslas +Vbs Ibs +Vcs|cs)+

2
P:qus+Pos :g

This results into

2(Vas I as

P=Py+P,==
e ' " ;[(VCS + Vas )ibs + (Vbs +Vcs )ias + (Vas +Vb5 )iCS]

+ Vbs Ibs + Vcslcs )+

(2.20)

Equation (2.20) gives a general expression for computing real (active) power by

using natural (abc) variables in a three-phase system.

Now, if

i, +i,, +i, =0 (2.21)
Vo +V Vi =0 (2.22)
Thus

Vag = ~Vps = Ve (2.23)
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Vps ==V, —V (2.24)

Ves = Vs — Vis (225)

Then by substituting these conditions into Equation (2.20) the following is obtained

Cs"Cs as-as Cs 'Cs

P:qus+Pos:g{z(vasias+vbS i, + Vi )_%(Vbsibs-’_v i Vi )}

P = qus + Pos = [Vasias +Vbs ibs +V I ] (226)

cshes

Therefore, Equation (2.26) is the power equation for a balanced three-phase system.
It is important to note that in Equation (2.26), the total three-phase active power is the
sum of the individual phase active powers, as expected. Therefore, with the
transformation chosen, the power is invariant. In order the power obtained by using the

transformed (do variable to using the reference frame of transformation as given in

Equation (2.4a), the general expression for real power will be as given by Equation (2.20)
and for a special condition of when Equation (2.21) is true, then the real power will be

calculated by using Equation (2.26).

2.2.3 Reactive Power Computation for a Three-phase System

The imaginary part of Equation (2.15) will give the reactive power Q. As it has

already been mentioned earlier, the zero sequence components do not contribute to
reactive power. Therefore, considering the imaginary part of Equation (2.15) the

following is deduced
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b (Vcsibs + Vis ias )Sln(z?ﬂ.] - (Vas ibs + Vi, ics )Sln(%)
Q= Im(S,s)= 3 2.27)

+ (Vcsias - Vasics )Sln(%j

Q = Im(SQd ) = §|:(Vcsibs + Vs ias B Vasibs ~ Vs ics )Sln(%J + (Vcsias B Vasics )Sln(%)} (228)

Q = Irn(sqd ):§ ﬁ(vcsibs + Vis ias _Vasibs — Vs ics _Vcsias +Vasics) (229)
Q = Im(sqd )=§ ?(Vasics _Vcsias + Vs ias _Vasibs +Vcsibs — Vs ics) (230)
which simplifies into

NET. . . . . .
Q = T[Vaslcs ~Veslas 1 Vs las = Vaslps T Veslps = Vis Ics] (231)

Therefore knowing the per phase quantities, the three-phase reactive power can be

directly obtained by using Equation (2.31).

2.3 Five-phase System

As opposed to a three-phase system in which there are one complex vector and a
zero sequence component, in a five-phase system there are two complex vectors and one
zero sequence component.

The real (scalar) voltage and current vectors for the five phase are given as
For the voltage vector
v=[v, Vi Vi Ve Vil (2.32)

as S (o]
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Fro the currents vector
i = [ias ibs ics ids ies ]T (233)
Using Equation (2.1) and (2.4a), the first complex vector (qd ) after transformation

will be

For the voltages

_ 2[ 2 3 4 2.34
Vigs = gVaeraVstra Vi +aVy +avg (2.34)
For the currents
- 2 [. - 2. 3. 4.
lys = E I +al,+a’l,+a’l,+a’y (2.37)

Using the relations given in section 2.1, the following voltage and current equations
are obtained

For the voltages

_ 2[ 2 -2 -1 2 36
Vogs = gVaeraVstra Vi +a Vg +a Vg (2.36)
For the currents
- _ 2 [. - 2. 72. 71. 2 37
lys = glas+a|bs+alcs+a Iy +@7 g (2.37)

Similarly, using Equations (2.1) and (2.4a), the second complex vector ( Xy ) is given by

For the voltages
_ 2 [ 2 4 6 8 2 38
Viys = gVaera Vo +a'V +atVy +atVvy (2.38)

For the currents
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) 27. ) ) ] )
Iy = \/;[Ias +a’i,, +a'i, +aiy, +ai, (2.39)

Applying the definitions of section 2.1, gives the flowing voltage and current equations

For the voltages

V., = \/g[v +a’v, +a’'v, +a'v, +a’v (2.40)
Xys 5 as bs cs ds es .

For the currents

. 2T . . ) .

Iy = \/;Las +a’i, +a'li, +a'i, +a 2|es] (2.41)

The zero sequence components, from Equations (2.1) and (2.4a), the transformed
voltage and current equations are given by

For the voltages

2
Vos = \/g[vas + Vbs + Vcs + Vds + Ves] (242)

For the currents

ios = \E[ias + ibs + ics + ids + ies] (243)

2.3.1 Five-phase Power Computation

The complex power in the five-phase system will be given by all the three

components. Whereas the qd and Xy components contribute to both the real and reactive

powers, the zero sequence components contribute only to the real power.

Using the transformed vectors, the five-phase complex power, S, is given by
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- %

S=V, i +V i +V i (2.44)

qds " qds XyS ' Xys 0s'0s

where

e —\/Z[i +aiy, +ai, +ali, +ali,] (2.45)
qds — 5 as bs cs ds es .

il —\E[i +a’i, +aliy +aiy +a’i,] (2.46)
Xys 5 as bs cs ds es .
los = los = g[las s e + g +|es] (247)

2.3.1.1 Complex Power Due to qd Components. The complex power due to the

gqd complex vector components is given by

Squ = qusiqu (248)

Substituting for the voltage and current complex vectors, results into

S - 2[ 2 -2 -1 ][ =P -2 2 i ] 2 49
w = Vo taV, +a Vg +a Vg +a V[l +a I +a lg+al,+alg (2.49)

Equation (2.49) results into

vV.i_+a’'v

as’as as I bs

+a'v i, +

as Ids as'es

H H -1 H 3 H 2 H
avbslas +Vbs|bs +a Vbslcs +a Vbslds +a Vbsles +

+a’v_i_+a’v

as ICS

(VRN

2y i Ly, i ; 4y, i 3y i
Squ =—| AVl +a Vil +V i +a Vil +avgly (2.50)

-2 - -3 - —4 - - -1 -
a Vdslas +a Vdslbs +a Vdslcs +Vds|ds +a Vdsles +

a Vi +aTV i FaT Vi AV + Vi

es as

Applying the identities of section 2.1, gives
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qds

W N

Vi +a'v i _+a’v.i_+a*v.i. +a'v.i

as’as as'bs as'cs as'ds as'es +
- - -1 - -2 - 2 -
avbslas +Vbs|bs +a Vbslcs +a Vbslds +a Vbsles +

2 - 1 - - -1 - -2 -
a Vcslas +a Vcslbs +Vcs|cs +a Vcslds +a Vcsles +

-2 H 2 H 1 H H -1 H
a Vdslas +a Vdslbs +a Vdslcs +Vds|ds +a Vdsles +

- -2 - 2 - 1 - -
eslas +a Veslbs +a Veslcs +a Veslds +Vesles

a’'v

Applying the definitions of section 2.1 to Equation (2.51), gives

qds —

2r Ny Ny 27
. *J? . *J? . J? . J? .
Vaslas +é€ Vaslbs +é€ Vaslcs +é€ Vaslds +€ Vasles
27 i _4n Ar
5 . . 5 . 5 . 5 .
€ Vbslas +Vbs|bs +€ Vbslcs +€ Vbslds +¢€ Vbsles +
JELs 2z 2 4
5 . 5 . . 5 . 5 .
—|& PVl +e PVl +V i+ Vi +e Vi + (2.52)
4 4z 27 2z
5 1 5 1 5 1 1 5 1
€ Vdslas +€ Vdslbs +e Vdslcs +Vds|ds +é€ Vdsles +
2z 'y Ny 4 27
—J? . —J? . J? . J? . .
€ Veslas +¢€ Veslbs +¢€ Veslcs +€ Veslds +Ves|es

(2.52) will give the active (real power) due to the qd components. Thus

qds

| N

[ . 2 . 4 . 4r . AN
Viaslas T Vaslps COS ? + VI, COS ? + V4 COS ? + VIl COS ? +

. 27 . . 27 . iy 4 . A
Vil €OS| — [+ Vil + Vil €OS| — [+ Vi cos| — |+ VI, cos| — |+
5 5 5 5
. 4 . 2z . . 2z . dr
VI, €OS| — |+ VI COS| — |+ VI + Vg COS| — |+ Vi, cOs| — |+
5 5 5 5
. dr . dr . 2z . . 27
vdslas COS ? + Vdslbs COS ? + Vdslcs COS ? + Vdslds + Vdsles COS ? +

. 2w . 4 . 4 . 2 .
veslas COS| ? +Ves|bs COS| ? +Ves|cs COS| ? +Veslds COS| ? +Ves|es

Combining the like terms, Equation (2.53) yields
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2.51)

2.3.1.2 Real power due to qd components. Evaluating the real part of Equation

(2.53)



Vieiag + Viglps + Veslog + Vygiys + Vil

as-as Cs ' Cs es-es

es es"ds es as

2 . . . . 27
qus =§ (Vaslbs +Va5|es +Vbs|as +Vbs|cs +Vcs|bs +Vcs|ds +Vds|cs +Vds| +V i, +V_i )COS ? +

. . . . 4
(Vaslcs +Vas|ds +Vbs|ds +Vbs|es +Vcs|as +Vcs|es +Vds|as +Vds|bs +Ves|bs +Ves|cs)cos(?

(2.54)
Equation (2.54) gives the real power due to the qd complex voltage and current

components.

2.3.1.3 Reactive power due to qd components. Evaluating the imaginary part of

(2.52) will give the reactive (imaginary power) due to the qd components. Thus

2z 4 A 2z ]
— VI, sin -V, sin + V14 SIN + V(I sin +
5 5 5
. . (2r . (27 4
Vil o SIN = — Vel SIN = — Vi, iy Sin + Vil SIN +
Qu = 2 Vel s1n(4ﬁj + Vil s1n(2ﬁJ eshds s1n( J esles sm( ﬂj + (2.55)
5 5 5
: .(4zj : .(4nj ( j (2nj
—Vielge SIN| — [+ Vi, sin + Vgl sin Vgl SIN
5 5 5 5
. . (2 . [ 4r A 2r
— Vi, sinf — [— Vi, sin + Vi, sin + Vg sin| —
5 5 5 5

Combining the like terms, Equation (2.55) yields

—+

{ Viglps + Vgl + Vigins = Vigles + Veglps = Vel jSin(z—ﬂ-
0 2| Wasles = Vasles = Veshs + Veslas
ads ~ g [ Vasdes + Vasios = Vishgs + Vosles T Veslas — Vesles +jsin(4_;zj
| —Viyelos + Vyelps = Veglps + Vesles 5 |
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. . . . . . . .. (27
(Vasles ~Veslas T Vislas = Vaslos T Veslos = Vipsles T Visles = Veslas T Veslas = Vasles )Sln(T +

2
qus = g

. . . . . .\ . (4r
(Vaslds ~Vaslas T Veslas = Vasles T Visles = Veslps T Vesles = Vesles T Vslos _Vbslds)sul(?

(2.56)

Equation (2.56) gives the reactive power due to the qd complex voltage and current

components.

2.3.1.4 Complex power due to xy components. The complex power due to the xy

complex vector components is given by

*

Syys = Vyysheys (2.57)

Substituting for the voltage and current complex vectors, results into

2 B B . Y. ] . ]
S :g[véls +a’v, +a'v, +a'vy +a 2ves] [Ias +a”%i +aiy +aiy + azles] (2.58)

Equation (2.58) results into

v i +a?v.i_+a'v.i_+a'v. i _+a’v.i

as’as as'bs as'cs as'ds as'es
2y i ; 3y i Ly, & 4y,
a Vbslas +Vbs|bs +a Vbslcs +a Vbslds +a Vbsles +

_ _l - _3 - - _2 - 1 -
Sxys = A"Vl +a TVl +V i +a Vil +a Vvl + (2.59)

W N

1 H -1 H 2 H H 3 H
a Vdslas +a Vdslbs +a Vdslcs +Vds|ds +a Vdsles +

i o+atv i +al'v.i_+a v, +V_i

es as es'bs es'cs es ds es'es

a’v

Applying the identities of section 2.1, Equation (2.59) gives

v.i_+a?v.._+a'v.i_+alv

as'as as Ibs as’'cs

2 -
aslds +a Vasles +

2 ) . 1 - —1
A Vil + Vil @ "Vl +aVvpd, +a Vil

es
-1y, & 2y i ; -2y i Ly,
A Vgl +aVly +V i +a Vil +aVvglg (2.60)

1 - -1 - 2 - . -2 -
a Vgl +a Vgl Ha Vgl + Vg +a "Vl

Xys

| N

es

av.i_+a'v.i_ +a'v.i_+a’v.i, +V_i

es'as es'bs es'cs es'ds es'es
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Applying the definitions of section 2.1 to Equation (2.60), gives

.y 277 2z 4/1'
s 5 5 s 5 5
Vaslas +€ Vaslbs + e Vaslcs +€ Vaslds + e Vasles
Ny Y4 2 27
J? . . *J? . J? . *J? .
€ Vbslas +Vbs|bs +€ Vbslcs +€ Vbslds +€ Vbsles
2z 471' 471' 27z

5 5 5 5
€ Vcs as + e Vcslbs +Vcs|cs + e Vcslds + e Vcsles (261)
jzl 27 Ar Ar

_jtr
5 . 5 . 5 . . 5 .
€ Vil +€ Vigslps T€ 7 Vgoleg +Vylgs +€ Vil

Xys

| N

es
A 27! 27 47!

e 5veslas+e Sy i te Sv i, +e v,

es'bs es’'cs es'ds +Ves|es

2.3.1.5 Real power due to xy components. Evaluating the real part of Equation

(2.61) will give the active (real power) due to the Xy components. Thus

i 47r 2 27r 4r
Vaslas + Vaslbs CcoS 5 + Vaslcs CcoS ? + Vaslds CcoS 5 Vales © ? +
”]

. 4 . . 4 . 27 2
Vil COS| — |+ Viglps + Vil COS| — |+ Vi cOS| — |+ V(i COS
5 5 5
cos

l\)

( :

2 . 47z 47 2z
nys = Vi, cos| — [+ Vi, cos + Vil + Vg COS| — |+ Vi, cO

5 5 5
. 2 . 27 . A

Vdslas COS ? + Vdslbs CcOS ? + Vdslcs CcOS ? + Vdslds + Vds es
4 . 2 . 27[ 4

Vil €OS| — [+ Vi cos| — [+ Vi cos + Vg cOS + Vil
i 5 5 5 5

[ NRN)

(2.62)

Combining the like terms, Equation (2.62) yields

VaSIaS+VbSIbS+V i + Vlgs TV i+

Cs'Cs es-es

2 . . . . . 4
nys :g (Vaslbs F Vasles T Vigslas + Vigsles +Vcs|bs +Vcs|ds + Visles T Visles +Ves|as +Ves|ds)cos ?

. . . . 2
+(Vas|cs +Vas|ds +Vbs|ds +Vbs|es +Vcs|as +Vcs|es +Vds|as +Vds|bs +Ves|bs +Ves|cs)cos(?

(2.63)
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Equation (2.6) gives the real power due to the Xy complex voltage and current

components.

2.3.1.6 Reactive power due to xy components. Evaluating the imaginary part of

Equation (2.61) will give the reactive (imaginary power) due to the Xy components. Thus

[\

i . . (4r . . (4r . (27 o (2x) ]
— Vg sin| — |+ V(i sin| — |+ V(i sin| — | =V, sin| — [+
5 5 5 5
. . (4rx . . (4r . . ( 2z . . (27
Vil sin| — [ =V, i sin| — |+ Vi, sinf — (= Vi ¢ sin| — |+
5 5 5 5

QXys =—| =V, sin(z?”] + Vil sin(%{] — Vg sin(%) + Vil sin(z?ﬂj + (2.64)

W

Combining the like terms, Equation (2.64) yields

“Vasles T Vasles T Viglag = Visles T Veslps —Veslas T . (4r
S| — |+
2

Visles = Vigles — Vislas + Vil

Q _ cs es es'as es'ds
Xys & . . . . . .
5 (Vaslcs ~Vaslags T Vislgs = Visles = Veslas + Vesles +]Si (2_”')
Vislas = Vaslbs T Veslps = Vesles

(Ve = Viglipg + Viglgg = Viele + Vi

—Vigies + Vghes = Veglgs + Vgl

Vis ias Sln(z_ﬂ.j - Vdsibs Sll’l(z—ﬂ) + Vdsics Sln[4—ﬂ.j — Vdsies 511'1[4—7[) +
5 5 5 5
- Vesias Sll’l[4—ﬂ.j + Vesibs Sln(z_ﬂ.j - Vesics Sln(z_ﬂ-j + Vesids Sll’l(4—ﬂ-j
L 5 5 5 5

) . (4r
— Vi, )sin 5 +

2 as as'bs es'as cs'bs cs cs'ds es'ds
Qxys B g 27
(Vaslcs “Veslas T Vaslas = Vaslas T Vislas = Vaslos T Veslos = Visles T Vesles = Vesles )Sll’l(?j
(2.65)
Equation (2.65) gives the reactive power due to the Xy complex voltage and current
components.
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2.3.1.7 Real power due to zero sequence components. The zero sequence
components are scalar vectors. Therefore, they do not contribute to the reactive power.

The power due to the zero sequence is given by
Sos = Vosios (2.66)

Substituting for the zero sequence voltage and current vectors, gives
2 o
Sos = g[vas +Vbs +Vcs +Vds +Ves [Ias + Ibs + Ics + Ids + Ies] (267)

Equation (2.67) results into

Vool + Vil + Vil

as-as Cs'Cs

F Vgelyge F Vigligg + Viglpg + Vgl + Vielpg +

es'es as'bs as’'cs es'bs

Pos :g Vaslds +Vas|es +Vbs|as +Vbs|cs +Vbs|ds +Vbs|es +Vds|es +Ves|as + (268)

Vilas T Veslhs T Veslas T Vesles T Vaslas T Vaslhs T Vasles T Vesles T Vs

cs es'cs es'ds

Equation (2.68) gives the value of the real power contributed by the zero sequence

components.

2.3.2 Total Power in a Five-phase System

The overall powers in the five-phase systems can be obtained by combining
Equations (2.54), (2.63) and (2.68) for the total real power, whereas for the total reactive

power, the Equations to be combined are (2.56) and (2.65).
2.3.2.1 Total real power in a five-phase system. This is obtained by adding

together the powers given by Equations (2.54), (2.63) and (2.68). Thus

P =P, + Py + Py (2.69)
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Vaslas +Vbs|bs +Vcs|cs +Vds|ds +Ves|es +

+V i, +V i

(Vaslbs+V| +Vbs|as+vbs| +V| +V| +Vds|cs+vds|es es'ds es as)

as'es cs cs'bs cs'ds

as'cs as'ds cs'as cs'es es'bs es’'cs

2
Pogs == Vaslas +Vislps +Vesles TVl gs + Vel

qds 5 as-as Cs"Cs es ES

(Voglipg +Vielog +Vigiog +Vogcs Vgl +Vogige +Vielos +Vaghoe +Volag +Veclys ) €O

as'bs as'es cs 'bs cs'ds es’as es’'ds

4
(Voiog HVagiige +Vigige +Vigiog +Veelag +Viogheg +Veghne +Vagipe +Veglps +Veleg )C {5 +

as'cs as'ds cs'as cs'es es ' bs es’'cs

T
(Vg Vg Vg Vil Vgl + Vo Vi Vi, +Voiy, +Vi e {5)+

Vaslas +Vbs|bs +Vcs|cs +Vds|ds +Ves|es +Vas|bs +Vas|cs +Ves|bs +

Vi, +Vv i +Vbs|as +Vbs|cs+Vbs|ds+vbs|es+vds| +V_i

as'ds as-es es es as

| Veshas +Vesing +Veslas +Vishes +Vasas +Voslos +Vosles +Vesics + Vil

cs'as cs'bs cs'ds cs'es es’cs es'ds

(2.70)

Combining like terms, Equation (2.70) results into

B[V iy + Vigle + Veglos + Vielge + Veglog | Vg (g g + s +icg )+ Vi (g g +igg + g )+

as-as Cs'Cs es’es

Vcs(las + Ibs + Ids + Ies)+vds(|as + Ibs + Ics + Ies)+ves(|as + Ibs + Ics + Ids)+

g + g +|ds+| )+ V,, |a g g Higg ) F Ve (ipg +ipg Fig g )+ Cos[z_;;j+

X (
(ias gy )+ Ve (i
as('bs o g ‘Hes) bs(
(Wi (s + g Figg Figg)+ Ve i

V.,
51\ Vg +|bs+| as Tlps T1

Ias + Ids + Ies

)
o)
;+v iy iy g +ig )+ 008(4?;;]

+|bs+| + 1y

s \"as es es as

(2.71)
Therefore, Equation (2.71) will give the general expression for the real power in a five-
phase system.

Now consider a balanced system, such that

Vo +Vp +V +Vy +V, =0 (2.72)
I+l Hig +ig +i,s =0 (2.73)
Thus
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—ly =l +ig +ig g (2.74)

—lpg =g+ F g+ (2.75)
=g =y g +Hig g (2.76)
—lg =g g+ +igg (2.77)

—lg =y i i +ig (2.78)

es

Substituting Equations (2.74) trough (7.78) into Equation (2.71), gives

P = %[(Vasias +Vbsibs +Vcsics +Vdsids +Vesies )] (279)

where

K:2—cos2—ﬂ —cos4—ﬂ :E (2.80)
5 5 2

Therefore, substituting for the result of Equation (2.80) into Equation (2.79) results into

P= %%[(Vasias +Vbsibs +Vcsics +Vdsids +Vesies )] (281)
P= [Vasias +Vbsibs +Vcsics +Vdsids +Vesies] (282)

Equation (2.82) gives the expression for the real power in a balanced five-phase
system when the condition given in Equation (2.73) is satisfied. For the general case, the

real (active) power will be given by Equation (2.71).

2.3.2.2 Total reactive power in a five-phase system. This is obtained by adding

together the powers given by Equations (2.56) and (2.65). Thus

Q =Qqas + Quys (2.83)
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V..l

as-es

Vi

Cs

Viaslas

as

Vi

es ' Cs

Vi

[V NR N

as

Vil

Cs

VI

as’'cs

Vi

es ' bs

— Vol + Vil
— Vg + Veelge
— Vgl + Vil
=Vl + Vel
=Vl + Vi
— Vol + Veslye
— Vi + Vel
— Vil + Vi

Combining like terms of Equation (2.84) gives

[Vasles
Vdslcs

(Vasl
Vi

[T

Cs

as

~Veslas 1 Vsl

+v i

es'ds

—Vv_i

cs'ds

= Vilys +Vielys

cs"as

—V_.I

as'ds

+Vv i

es'bs

~Vashys TVeslos = Visles ) . (27
. s — [+
—Visles 5
~Vashes TVisles =Veslys +| . (4r
. S| — |+
~ Vislas 5 (2 84)
~Veslas T Veslps = Visles T . 4r
. Sin| — |+
~ Visles 5
~Vaslas T Vislas = Vaslos +J . (272']
. sin| —
~Vesles 5 )
~Vaslos T Veslps = Visles + . (27 . (4r
. smm| — |(+Smm| — ||+
~ Visles 5 5 (2 85)
~Vishps T Vesles = Vesles +j|: . (27fj . (47Z'ji|
. simm| — |—Sin| —
~ Vs les 5 5

Equation (2.85) gives the expression for determining the reactive power of a five-phase

system.

Thus if the phase voltages and phase currents are known for five-phase system, then

the real and reactive powers can be readily obtained by using Equations (2.71) and (2.85),

respectively. For a special case when the system voltages and currents are balanced, the

real power can be obtained from Equation (2.82).

24

Seven-phase System

When the analysis presented in the previous sections is extended to a seven-phase

system, the respective power expressions can be obtained. The voltage and current
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matrices are given as V= [véls Vs Ve Vi Ve Vi ng]T and

1= [Ias Ibs Ics Ids Ies Ifs Igs]T .

The complex transformed voltage vectors and currents used for seven phase are

Vs = \/g[vas +aVy +a°V, + 8V Fa TV Fa TV AV (2.86)
Vigts = \/%[vas +a%Vy +a7V +a TV Fav, +a'V +avg (2.87)
Vigas = \/g[vas +a'Vy +a IV +8%V +a TV, +av +ay, (2.88)
Vigss = \/g[vas +a7V FaV a7V +aV, +aT v +ayg, (2.88)
Vigas = \/%[Vas +aVy +a'V +a'vy +aTV, +aTv +alyg (2.89)
Viss = \/g[vas +a WV 87V +a TV + 8V +a%V AV (2.90)
Vo, = \/g[vas + Vs Vs + Vg +Ves + Vi + Vg (2.91)

The currents are given by

iy = \E[u +aiy, +a’i, +a'i, +a’i, +alig+aliy ] (2.92)
i = \E[l +aliy, +a iy +aliy +ai, +ati vai] (2.93)
iy = \E[ias +aliy, +aiy +aliy +aiy, +ai +ai (2.94)
i s = \E[u +aiy, +aliy +a’i, +ati, +aliy +aliy| (2.95)
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—_— 2[. . 34 - 1. iy 5. ]
Ixy4s_ 7|as+a I, tal+al,+a I +a 1 +a Igs
L 2[— =P -2 3 3 2 1; ]
IxySs_ 7|as+a I, +a "I +a |ds-|—a|es-|—a|fs-|—a|gs

Ios = 7[Ias +|bs +|cs +|ds +|es +|fs +|gs]

The conjugates of the currents are given by
. 2[. - oy _3- 34 5. - ]
los = 7Ias+a Ips @ g +@ 7y F A+ F A

=k

2 - _2- 3- 1: -1 _3- 2-
|Xy15:\/;[|as+a I, +a 1 +al, +a I, +a I +a Igs]
-k 2 - —3- 1: —2- 2- —1: 3-
Ixst :\/;[Ias+a I, +al,+a "I, +a’l,+a I +a Igs]

Ios = 7[‘&15+|bs+|cs+|ds+|es+|fs+lgs]

The complex power is given by

.k * * -k
S = quslqu +nyls|xyls +ny23|xy25 +Vos|os

The general expression for the real power in the seven-phase system is given by

F Vgelgs T Vesles T Vil TVl ]+

es'es gs' gs

4[v Iog + Viglps + Vil

as’as Cs"Cs

1 . . . . . . 1 . . . . . .
Evas(lbs Fl Hlgg g+l + Igs)+EVbs(las Tl Hlgg +lgg +1g +|gs)
P== -|-EVCs g Hlp Hlg Hlg +15 -|-|gs +5Vds Lo 1 Hl + 1 g -i-lgS +

1 . . . . . . 1 . . . . . .
Eves(las tlps Tl tlg H1g + Igs)+Est(las Flp F g g g +Igs)+

1 . . . . . .
Evgs(las Flpg Flg T g Tl + Ifs)

Now, if the system is balanced and the machine is star-connected, then
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(2.96)

(2.97)

(2.98)

(2.100)

(2.101)

(2.102)

(2.103)

(2.104)

(2.105)



log s g Higg +igg +igg +i =0 (2.100)
Substituting Equation (2.106) into Equation (2.105), results into

P =V, Vil +Vilee +Vylgs +Vesles + Vit +Vgslgs (2.107)

The general expression for the reactive power in the seven-phase system is given by

(Vaslgs - gs as (Vbs as as bs)+( cs bs Vbs cs) (vds cs cs ds)+

i )+
(Veslds Vds es)+<vfs|es es fs )+( gs fs fs gs )+ (Vas ds Vds as)+
Sin(zﬂj (Vbsles es bs)+(vcs fs fs cs )+ (Vdslgs - gs ds )+(Ves|as as es)+ "
7 (st bs Vbs fs )+(Vgs|cs cs gs )+(Vas|cs - cs as)+(vbs ds Vds bs)+
(Vcsles es cs)+( ds fs stlds )+ (Veslgs - gs es )+ (stlas as fs )+
(Vgslbs _Vbslgs)
(vasi,s Vi, )+ (Vbslgs vgsibs)+(vcsias Voo )+ (Vi = Vi )+
(Vi Vcsies)-‘r(vfslds Vg )+ (vgsies Veolge )+ (Vaslgs vgsias)+
ng Sln(;;,;] (Vg =V )+ (Vegpg = Visoe )+ (Vieos =Vegiae )+ (Vogiyg —Vegiog )+ .
7 7 (vfsles Vi )Jr(vgsifs vfsigs)+(vasieS vesias)Jr(vbsifS vfsibs)+
(Vcslgs vgsics)+ (Visig = Vi )+ (Vi vbsies)+(vfsiCS vcslfs)+

(Vasles es as (Vbs fs stlbs (vcslgs - gs cs (Vds as as ds +

)+ i)+ is,)
(vesibs —Vbsles (vfslCS Vi ,S) (vgs iy — Vi gs)+(vaslCS Vi )+
(Voiy =V CS)+(vdS i vfslds)+(veslgs Vgsles)+
(Vgs bs Vbs gs )+ (Vaslgs gs as )+ (Vbs as as bs)+
iy )+

( ds cs cs ds ( es ds Vds es + vfsles es fs)

cs

(2.108)

2.5 Modulation Technique for Multi-phase Converters

The highest number of power that can be obtained from the conventional electrical
power system is three-phase. Due to the advancement in power electronic devices,
converters of many phases can be readily available and thus convert the available three-

phase to any number of output phases that are require to supply the multi-phase
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machinery. Figure 2.1 shows a schematic diagram of a five-phase voltage source

converter. The switching of the devices are described by switching functions which take

the values of one and zero when the devices are turned on or off, respectively.

The switching functions of the top devices are S (i :a,b,c,d,e). These are

complimentary with the switching functions of the bottom devices. The voltages applied

to the load are given by

v
7"(23ip —1)=V,, +V,, (2.109)
The switching function can be averaged and given by
_1 (t+m,) 2.110
Sip —5 + ip ( . )
where m,; is the modulation signal of the i" inverter leg.
v, is the i" phase voltage and v, is the neutral voltage.
Sap pr cp Sdp Sep
R B S e B
N =N N N =
b e
ICS
0 c i
; T —
% A A
Va S

_a L= an

R

B

£ =

1

Figure 2.1 Schematic diagram of a five-phase voltage source converter.

43



To synthesize the desired phase voltages, the modulation signals are compared with
a high frequency triangle waveform using the sine-triangle carrier-based pulse width

modulation (PWM). The modulation signals are given by

m, :i(vin +v,,) (2.111)
Va

For better performance of the converter, the neutral voltage v,, can be selected to
take any best form, as it is indeterminate and can take any realistic values [2.2-2.4].
A five-phase voltage source inverter with an input dc voltage given as v, has 32

switching modes, 30 of which are active and the other two are null modes. The converter
is to generate five phase voltages.
The load voltage Equations of the five-phase converter expressed in terms of the

existence functions and input DC voltage v, are given as

Vi, =V7d(2sip —1):vm +v,, i=a, Db, c d,e (2.112)
Voo =2 (S, =Sy )= 2 (s,, —(1-8,, ) =20 (25, —1) =V, +V,, 2.113)
2 2 2

Similarly,

vy, =V7d(25bp “1)=v,, +v,, 2.114)
v, = "7"(25cp “1)=v,, +v,, 2.115)
v, =V7d(2sdp “1)=v,, +v,, 2.116)
v, = V?d(zsep “1)=v,, +v,, 2.117)
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Voo + Vo + Voo + Vo +Veo =V + Vi + Ve + Vg, + Ve, +5V,, (2.118)

and

Vv v Vv
> (2s,, —1)+3d (2s,, —1)+?d (2s,, 1)
Voo Vo Voo TVgo TVeo = y y (2.119)
d d
= (25, —1)+? (2s,, 1)
For balanced five-phase system,
V, +V, +V,, +Vy, +V,, =0 (2.120)
Therefore,

Vo + Vo + Vg + Vg + Ve =5V (2.121)

v, =0, 1)1 s, 1)+ Yelos, )Y s, 1) Yebs, ) o

From the transformation given in (2.4d), for the five phase balanced variables

transformed f,, f,, f., f,, f,, the generalized qdxyl20s arbitrary reference frame

c?

transformed variables expressed in complex-variable form are given by

1 1 1 1 1 1 1 1 1 1
5 1 a a* a?* a' 5 1 a' a? a* a'
T,=,=/1 a> a' a a” T'=/=/1 a* a a' a’|(4d
5 -2 -1 2 5 2 -1 -2
1 a a a' a 1 a a a
1 a' a? a’ a | 1 a a a?’ a'|]
2
fos = g[fas + fbs + fcs + fds + fes] (2123)
2 2 -2 -1
fe = \/;[f +af, +a’f, +af, +a'f, (2.124)
2 2 -1 -1
fyet = \/;[fas +a f,+a f +af,+a f, (2.125)
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fon = \E[fas +a?f, +af +a'f, +a’f, (2.126)

foos = \E[f +a'f, +a’f_+a’f, +af, (2.127)

Substituting Equation (2.122) into Equations (2.113) through (2.117), the phase

voltages can be obtained as

v, =V?d(4sap S, ~ Sy~ Se — Sy ) (2.128)
vy, =V?d(— S, +48, — S, — Sy — S, ) (2.129)
v, =V?d(— S,y —Sup +4S,, — S — ., ) (2.130)
v, = V?d(— S, — oy — Sep + 484, — S,y 2.131)
v, =V?d(— S, —Sup — Sep — Sqp +4S., ) 2.132)

Substituting the states into Equations (2.128) through (2.132) gives the respective

inverter output phase voltage for each mode as presented in the Table 2.1 below.

46



Table 2.1 Phase voltages for the five-phase inverter

MODE | Su» | Sep | Se | Sap | Sep Van Von Ven Van Ven
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 I | -02vd | -02vd | -02Vd | -02vd | 0.8Vd
3 0 0 0 1 0 | -02vd | -02vd | -02vd | 08vd | -0.2Vd
4 0 0 0 1 I | -04vd | -04vd | -04vd | 0.6Vd | 0.6Vd
5 0 0 1 0 0 | -02vd | -02vd | 0.8vd | -02Vd | -0.2Vvd
6 0 0 1 0 I | -04vd | -04vd | 06vd | -04Vd | 0.6Vd
7 0 0 1 1 0 | -04vd | -04vd | 0.6vd | 0.6vVd | -0.4Vd
8 0 0 1 1 I | -0.6vd | -06Vd | 04vd | 04vd | 0.4vd
9 0 1 0 0 0 | -02vd | 0.8vd | -02vd | -02vd | -02Vd
10 0 1 0 0 I | -04vd | 0.6vd | -04Vd | -04Vd | 0.6Vd
11 0 1 0 1 0 | -04vVd | 0.6vd | -04vd | 0.6vd | -0.4Vd
12 0 1 0 1 I | -06vd | 04vd | -0.6vd | 04vd | 04vd
13 0 1 1 0 0 | -04vd | 0.6vVd | 0.6vVd | -04Vd | -0.4Vd

47




Table 2.1 continued

MODE | Su» | Sep | Se | Sap | Sep Van Von Ven Van Ven
14 0 1 1 0 1 | -06vd | 04vd | 04vd | -0.6Vd | 04Vd
15 0 1 1 1 0 | -0.6Vd | 04vVd | 04vd | 04vd | -0.6Vd
16 0 1 1 1 1 | -08vd | 02vd | 02vd | 02vd | 02vd
17 1 0 0 0 0 | 08vd | -02vd | -02vd | -02Vd | -0.2Vd
18 1 0 0 0 1 0.6Vd | -0.4Vd | -04vVd | -04vd | 0.6Vd
19 1 0 0 1 0 | 06Vd | -04vd | -04vd | 0.6vVd | -0.4Vd
20 1 0 0 1 1 04vd | -0.6Vd | -0.6Vd | 04vd | 0.4vd
21 1 0 1 0 0 | 06Vd | -04vd | 0.6vVd | -04Vd | -0.4Vd
22 1 0 1 0 1 04vd | -0.6vd | 04vd | -0.6vd | 0.4vd
23 1 0 1 1 0 | 04vd | -0.6vd | 04Vd | 04vd | -0.6Vd
24 1 0 1 1 1 02vd | -0.8vd | 02vd | 02vd | 02vd
25 1 1 0 0 0 | 06Vd | 0.6Vd | -04vd | -04Vd | -0.4Vd
26 1 1 0 0 1 04vd | 04vd | -0.6Vd | -0.6Vvd | 0.4Vvd
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Table 2.1 continued

MODE | Su» | Sep | Se | Sap | Sep Van Von Ven Van Ven
27 1 1 0 1 0 | 04vd | 04vd | -0.6Vd | 04vd | -0.6Vd
28 1 1 0 1 1 02vd | 02vd | -0.8vd | 02vd | 0.2vd
29 1 1 1 0 0 | 04Vd | 04vd | 04vd | -0.6Vd | -0.6Vd
30 1 1 1 0 1 02vd | 02vd | 02vd | -0.8vd | 0.2Vvd
31 1 1 1 1 0 | 02vd | 02vd | 02vd | 02vd | -0.8Vd
32 1 1 1 1 1 0 0 0 0 0
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Substituting Equations (2.128) through (2.132) into Equations (2.114) through
(2.117), the stationary reference frame voltages for each of the four components are
calculated. The resulting space vector voltage components for the five-phase voltage

source inverter, normalized with respect to the inverter dc link voltage v, , are shown in
Table 2.2. These will generate the space vectors V., for the fundamental frequency

voltages and Vv, . for the third harmonic voltages. It can be easily shown that space

xyls

vectors V, . are the complex conjugates of space vectors Vv, .. Similarly, space vectors

Xy2s

Vv, are the complex conjugates of space vectors V. Therefore in synthesizing the

Xys q

desired voltage vector, only vectors Vv, and v, , are used.
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Table 2.2 Space vector voltage components for the five-phase inverter

MODE | Sap | Stp | Sep | Sap | Sep | Va (pu) | Va(pu) | vxi (pu) | vy1 (pu) | Vo (pu) | vy2 (pu) | Vi3 (pu) | Vy3 (PU) | Vno
1 olofo]o]o 0 0 0 0 0 0 0 0 -0.5
2 ol oo o] 1] 00618 |-0.1902 | -0.1618 | -0.1176 | -0.1618 | 0.1176 | 0.0618 | 0.1902 | -0.3
3 ojlo]o]1]o0]-01618]-01176 | 0.0618 | 0.1902 | 0.0618 | -0.1902 | -0.1618 | 0.1176 |-0.3
4 olo]of 1] 1]-01000]-03078 | -0.1000 | 0.0727 -0.1 0.0727 | -0.1 0.3078 | -0.1
5 oo 1]o]o]-01618] 01176 | 0.0618 | -0.1902 | 0.0618 | 0.1902 | -0.1618 | -0.1176 | -0.3
6 olo|1]o0o]1]-01000]-00727 | -0.1000 | -0.3078 | -0.1 0.3078 -0.1 0.0727 | -0.1
7 oo 1] 1]o0]-03236 0 0.1236 0 0.1236 0 -0.3236 0 -0.1
8 ol o] 1] 1] 1]-02618]-0.1902 | -0.0382 | -0.1176 | -0.0382 | 0.1176 | -0.2618 | 0.1902 | 0.1
9 o]l 1]o] o] o] 00618 | 01902 | -0.1618 | 0.1176 | -0.1618 | -0.1176 | 0.0618 | -0.1902 | -0.3
100 [o|l1]lo]o] 1] 0123 0 -0.3236 0 -0.3236 0 0.1236 0 -0.1
11 o]l 1]of1]o0]-01000] 00727 | -0.1000 | 0.3078 -0.1 03078 | -0.1 | -0.0727 | -0.1
12 (o1 ]o]1]17]-0038]-01176 | -0.2618 | 0.1902 | -0.2618 | -0.1902 | -0.0382 | 0.1176 | 0.1
13 [o|1|1]0]o0]-01000] 03078 | -0.1000 | -0.0727 | -0.1 0.0727 0.1 | -0.3078 | -0.1
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Table 2.2 continued

MODE | Sap | Stp | Sep | Sap | Sep | Va (pu) | Va(pu) | vxi (pu) | vyi (pu) | vxa (pu) | vy2 (pu) | Vi3 (pu) | Vy3 (PU) | Vo
14 [o |1 |1]o0o]1]-0038] 01176 | -02618 | -0.1902 | -0.2618 | 0.1902 | -0.0382 | -0.1176 | 0.1
15 [o| 1| 1] 1]o0]-02618] 01902 | -0.0382 | 0.1176 | -0.0382 | -0.1176 | -0.2618 | -0.1902 | 0.1
16 [o| 1|1 ]1]1]-02000 0 -0.2000 0 -0.2 0 0.2 0 0.3
17 1lolo] o] o] 02000 0 0.2000 0 0.2 0 0.2 0 -0.3
18 1lo]lo] o] 1] 02618 -0192] 00382 | -0.1176 | 0.0382 | 0.1176 | 0.2618 | 0.1902 | -0.1
19 1lo]lo] 1]o0] 0038 |-01176 | 02618 | 0.1902 | 0.2618 | -0.1902 | 0.0382 | 0.1176 | -0.1
20 1lolo] 1] 1] 0100 [-03078 | 0.1000 | 0.0727 0.1 -0.0727 0.1 0.3078 | 0.1
21 1ol 1]0o]o0] 0038 | 01176 | 02618 | -0.1902 | 0.2618 | 0.1902 | 0.0382 | -0.1176 | -0.1
22 1ol 1]o] 1] 01000 |-00727 | 0.1000 | -0.3078 0.1 0.3078 0.1 0.0727 | 0.1
23 1tlol1]1]o0]-0123 0 0.3236 0 0.3236 0 -0.1236 0 0.1
24 1ol 1] 1] 1]-00618]-0192 ] 01618 | -0.1176 | 0.1618 | 0.1176 | -0.0618 | 0.1902 | 0.3
25 1l 1]o]o] o] 02618 | 0192 | 00382 | 0.1176 | 0.0382 | -0.1176 | 0.2618 | -0.1902 | -0.1
26 1l1]lo]o] 1] 03236 0 -0.1236 0 -0.1236 0 0.3236 0 0.1
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Table 2.2 continued

MODE | Sap | Stp | Sep | Sap | Sep | Vg (pu) | va(pu) | vxi (pu) | vy (pu) | vea (pu) | vy2 (pu) | vz (pu) | vy3 (pu) | Vno
27 1170} 1] 0] 01000 | 0.0727 | 0.1000 | 0.3078 0.1 -0.3078 0.1 -0.0727 | 0.1
28 1170} 1]1] 01618 | -0.1176 | -0.0618 | 0.1902 | -0.0618 | -0.1902 | 0.1618 | 0.1176 | 0.3
29 11| 1}]0] 0] 01000 | 03078 | 0.1000 | -0.0727 0.1 0.0727 0.1 -0.3078 | 0.1
30 11} 1}]0] 1] 01618 | 0.1176 | -0.0618 | -0.1902 | -0.0618 | 0.1902 | 0.1618 | -0.1176 | 0.3
31 1|1} 1}]1]0]-00618 | 01902 | 0.1618 | 0.1176 | 0.1618 | -0.1176 | -0.0618 | -0.1902 | 0.3
32 1|1 ] 1] 1]1 0 0 0 0 0 0 0 0 0.5
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Figures 2.2 through 2.6 show the voltage space vector diagrams of the five-phase PWM
inverter. Whereas Figures 2.2 through 2.5 are obtained directly from Equations (2.114)
through (2.117), Figure 2.6 is obtained by using Equation (2.122). The voltage

components are normalized with respect to the inverter dc link voltage v, .
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Figure 2.2 Voltage space vector diagram of a five-phase PWM inverter for Vg
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Figure 2.5 Voltage space vector diagram of a five-phase PWM inverter for v, ;.
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Figure 2.6 Voltage space vector diagram of a five-phase PWM inverter for Vg

In Figure (2.6), the letters stand for the modes as follows
A=1, B=2,3,59,17, C=4,6,7,10,11,13,18,19,21,25,
D =8,12,14,15,20,22,23,26,27,29, E =16,24,28,30,31, F =32.

Reference voltages in any sector of the space vector are synthesized by time-

averaging some four active and two null space vectors as presented in [2.4].
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Figure 2.7 Synthesis of the fundamental voltage in sector 1

In sector 1 of the v 4 space vector, the active modes are [17(V, ), 25(Vygeq )5 26( Vs,
)> 30(Vy4s; )] and the two null vectors are [1(Vyy, ) and 32(V,q;, )]. The corresponding

voltage vectors in v, are also selected. Since the qd voltages of the null vectors are

xyls
zero, the linear equations for determining the averaging times for the vectors are

qus =qusltl +qu52t2 +qu53t3 +qus4t4 +qu501t01 +qus32t32 (2133)

nyls :nylsltl +ny1s2tz +ny153t3 +nyls4t4 +ny1501t01 +nyls32t32 (2.134)

The time ratio between two null states (1 and 32) are defined as t, =a.t,,
t, :(1—05C )tC with the variable o, ranging between zero and unity. With
t,=1-(t, +t, +t, +t,), the average neutral voltage corresponding to the selected

c

voltage vectors for sector 1 is

V=Y et 2 e S0-20)- -2 v en)) @
25 5 5 5
4

Vo :g(_tl +t3) (2.136)
2

Voo :g(tz _t4) (2.137)
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Vo = (t, +1, +t, +1,) (2.138)
The expressions for times t,, t,, t;, and t, obtained from Equations (2.133) and (2.134)

are substituted into Equations (2.135) through (2.138) yielding the neutral sequence

voltage in terms of V 4 and V

s w15 - Calculations similar to Equations (2.133-135) are done

for all the ten sectors of V , for which ten expressions are obtained for the average

neutral voltages. Using the inverse stationary reference frame transformations (2.4d) the
qd voltages in the equations for the ten average neutral voltages are expressed in terms of
the phase voltages which can further be expressed in terms of the instantaneous

maximum and minimum phase voltages, (V_, and V

o in» Tespectively). When the g- and
d-axis reference voltages are expressed in terms of phase voltages, the times spent on the

voltage vectors can be calculated.

2.6 Conclusion

A theory of multiphase systems has been introduced. The reference frame of
transformation has been presented and discussed. The expressions for the real and
reactive powers in multiphase systems have been described. The analysis started with the
three-phase systems, followed by the five phase system and concluded with the seven
phase system. General expressions for real and reactive powers have been derived. A
special case when the sum of the phase currents is zero has shown that the total real
power of any system is the sum of the individual phase powers, as expected. It has been

deduced that using the reference frame of transformation discussed in this Chapter, the
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power is invariant. Thus, there is no need of multiplying the final result by any factor as it
is done when other forms of transformations are considered. This depends on the

multiplying factor on the transformation matrix. In this case the multiplying factor is

[2 . . . .
— . Thus with the transformed variables, one can easily obtain the actual values of the
m

real and reactive powers. The expressions for powers by using natural variables will ease
the power computation if the phase variables are readily available.
A space vector modulation scheme for the five-phase voltage source inverter has

f f

been presented. For a five-phase system, there are five vectors (f,, f,;,

Xy2s »

fs-and f). Only two of the them ( f, and f, ) are sufficient to determine the

Xy3s qds xyls
switching strategy of a five phase voltage source inverter. The other two are the complex
conjugates. The fifth one is the zero sequence component, which is essentially a real
quantity. In realizing the voltage vector in the space vector diagram, the use of the neutral

voltage gives freedom of utilizing the null states in obtaining the switching times for each

device.
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CHAPTER 3

FULL ORDER MODELING OF A FIVE PHASE INDUCTION MACHINE

3.1 Introduction

The induction machine has been widely used over the last three decades in
practically all applications requiring variable speed. This is due to its robustness,
versatility and reliability.

In general, the induction machines having three-phase windings are normally used,
since the standard power supply is three phase. However, when fed by an inverter, there
is no need for a fixed number of phases, some other phases being possible and
advantageous.

Much published work has shown that drives with more than three phases have
various advantages over conventional three phase drives, such as reduction in amplitude
and increase in frequency of pulsating torque, reduction in harmonic currents, increase in
current per phase without the need to increase the phase voltage, and reduction in the
voltage-level in the dc (direct current) link 3.1, 3.2]

Another important aspect of machines with a higher number of phases is their
improved reliability, since they can operate even when one phase is missing [3.1]. An
increase in number of phase can result in an increase in torque/Ampere relation for the
same volume of the machine, such that five-phase machines can develop torque using not

only the fundamental, but also using higher harmonics of the air gap field [3.1, [3.2].
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Control strategies and electrical drives for machines with more than three phases have
also been presented in several publications [3.2, [3.4]. Hence the analysis, design, and
application of such machines as the five phase induction machine requires adequate
mathematical models to be established through which their performance and advantages
can be evaluated.

Calculation of machine parameters must be done differently from the three phase
machines since the distribution of windings is not the same. In this work, therefore a full
order model has been used to determine these parameters whereby the higher order
harmonics are taken into account. Also, by using the derived expressions, the

fundamental and third harmonic components of the machine parameters are determined.

3.2 Coupled Model of a Five-Phase Induction Machine

3.2.1 General Winding Function

The derivation of the general winding function from the fundamental relationships is
the subject of this section. With all the assumptions or simplifications removed, a general
Equation for the winding function of a winding distribution can be obtained [3.5, [3.6].

A general diagram of an electric machine is given in Figure 3.1 [3.5], in which the air gap
length may not be constant. A closed area which includes the stator core, the air gap and
the rotor core can be found and its boundary is shown as a dash line in the figure, where
AB is in the stator core; O is the central point of stator; OA and OB go through the rotor,
the air gap and the stator core and can be considered to be orthogonal to the inner surface

of the stator. Based on the Ampere's Law, the magnetic field (H) of the boundary AOB
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can be expressed in terms of the current density J, the differential length 0l and the area

Os as

$H-dl =[J-ds 3.1)

If the turn function of an arbitrary winding ‘a’ is na(e), where @ is the angle around the

inner surface of the stator, then Equation (3.1) can be written as

§§H -dl =n,(6)-i, (3.2)

There are two assumptions that need to be clarified before the next step. The first
one is The air gap is so small compared to the stator or the rotor core that the magnetic
field in the air gap can be considered to be orthogonal to the inner surface of the stator.
This is a very fundamental assumption in electric machine analysis. The second one is
The permeability of iron is much greater than that of air, hence the magneto-motive force

drops on the stator and the rotor cores can be ignored.

Figure 3.1 General diagram for an electric machine showing non-constant air gap length
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A general definition for the air gap is expressed as
g(ei‘ erm ) = go(l —4a COS(@ + 7/)_ a, COS(Q o Hrm + 7)) (33)
where @, and a, are constants, which represent the degree of static and dynamic

eccentricity, respectively; 6. is the rotor mechanical angle; g, is the average air gap

length and angle y defines the changes of the distribution of the air gap length around
the inner stator surface.

It is clear from (3.3) that the air gap length not only depends on the angle around the
stator, but also on the rotor angle, which will be true under almost all possible conditions.
The constant air gap length condition can be achieved by setting a, and a, to be zero.
Applying the above two assumptions to Equation (3.2), the integration part of the

Equation (3.2) can be restated as

§H -dl =H,(0)-9(6.0,,)-H,(0)-9(0.6,,) (3.4)

where g(O, Hrm) is the air gap length at the starting point and the value of € at the
starting point is assumed to be zero. Ha(O) is the magnetic field at the starting point

while 9(9 0 ) and H, (@) are the air gap length and magnetic field at € angle point,

>¥rm
respectively.

Substituting (3.4) into (3.2),
H.(0)-9(6.6,)-H,(0)-9(0,6,,) =, (0)-1, (3.5
An expression for the magnetic field around the stator can be found from (3.5) as

H,(6)= n,(6)-i, ;(:,ag(:q)) 9(0,6) (3.6)
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The H, (@) and H,(0) are unknown and must be solved. Hence Gauss's Law is applied

to determine the unknown quantity. If a cylinder passing through the air gap is

considered, Gauss's Law can be expressed as

is's

fﬂoHa(H)r 1,d6=0 (3.7)

where I is the radius of the inner stator surface; |y is the length of the machine.

Substituting (3.6) into (3.7),

2z H
Iﬂorisls na(e)'la+Ha(0)'g(050rm)d0:0 (38)
0 9(6.6.n)

Rearranging Equation (3.8) gives

(O 4
_190.6,) .
H.(0)-9(0,6,,) = —2——""—-i, (3.9)
J.¥d‘9
29(0.6,,)
Substituting (9) into (6),
T n(0)
| [-1el0) g5
Ha(e): na(e)'la _ 1 2o g(@,@rm) 'ia (3.10)
9(6.6,,) QQ%Qm)f L 40
2 9(6.6,,)

Simplification of (10) yields (11),
Na(e)'iazHa(e)'g(eaerm) (311)

N, (8) is called the winding function. Then the winding function N, () is expressed as
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; )de
N,(0)=n,(0)-——""— (3.12)
d6

T n(0)
J o

[S]

1

9(6.6,,)

>¥rm

If the air gap length is constant,
9(0.0,)=9,

The winding function in Equation (12) can be simplified as

o)y,
N(0)=n,(0)-
[—do
0 gO
2fna(e)ola
=n,(0)-L—— (3.13)
2

where <na (6?)> is the average of the turn function. Equation (3.13) is similar to the

definition of the winding function traditionally used for constant air gap length.

3.2.2 Calculation of Stator Inductances

The expression for winding inductances is calculated using the winding function and
the turn function of the windings. If the winding function of i" winding is expressed as

N, (9), where @ is the angle around the stator, then from (3.9) the magnetic field around

the stator can be expressed as

Hi(e)zg(l\;‘,—(gri)-ii (3.14)
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where g(@, Grm) is the air gap function and i, is the current flowing through the i"
winding.

Then the flux density in the air gap can be written as

Bi(‘g):ﬂog(l\g,—(g))'ii (3.15)

Assume the mutual inductance between i" winding and j™ winding is the objective and

the turn function of j" winding is n j (49) The flux linkage induced in j" winding due to

the i" winding current i, can be expressed as

2

ﬂ’ji = 4yt -, j

Om-nj(emi(a)-de (3.16)

where r is the mean value of radius of the air gap middle line and | is the effective

length of the stator core. Since the definition of the mutual inductance is
L. =1 (3.17)
The general expression for the mutual inductance calculation is

L, z,uorl_!m-nj(@)-Ni(@)-dH (3.18)

>¥rm
The stator inductances considered include the stator winding self-inductances and the
mutual inductances between the stator windings. Since only the uniform air gap condition

is considered in this Chapter, the air gap function is a constant
9(6,6,)= 9, (3.19)

The general expression to calculate the self-inductance of i" winding is
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L, = a1l fgi-ni(e)- N,(6)-do (3.20)

0
where n,(#) is the turn function of i" winding; N,(@) is the winding function of i"

winding; g is the constant air gap.

3.3 Five Phase Stator Winding Design

3.3.1 Winding Design

An existing 2-pole, three-phase induction machine was rewound to be a 4-pole, five-
phase stator winding. The following are the ratings of the original three-phase induction

squirrel cage machine

Series No. SK184AG1720 Power 5 hp
Voltage 208-220/440 V Current 13.4/6.7 A
Frequency 60 Hz Speed 3460 rpm.
Stator slots 30 Rotor slots 28.

Since it is possible to have a four-pole five—phase fractional slot-stator winding[3.7]-
[3.9], the rewound stator winding is a double-layer five-phase stator fractional slot
winding. The stator has thirty (30) slots. The ratings of the five-phase machine are

calculated and presented in section 3.4.3.
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3.3.2 Winding Configuration

S
The average number of slots per pole per phase, q, is given by (=—— = 30 = % n
m

which 3 and 2 are the lowest pair of whole numbers, where S, is the number of stator

slots, P is the number of poles and m is the number of stator phases. As each pole phase
. : 3 .1 : :
groups must have an integral number of coils, = 5= 15, can only be obtained if the 2

(the denominator of () phase groups under 2 poles have different number of coils
totaling up to 3 coils (numerator of q). Now 3 coils for each phase lying under 2 poles

can be obtained if we have one (1) pole phase group of one (1) coil and one (1) pole

phase group of two (2) coils. This gives an average value of ¢ = % = 1%. Two

poles make one basic unit of this winding. As this winding has four poles, there are two

units of two poles, each covering three slots of each phase. The (1+1): 2 pole phase
groups of each phase in a unit must be connected in series and as there are g: 2 such

units, the maximum number of parallel paths is equal to two (2), which is the same as the

number of units.

. . 3 .
Consider ¢ in the form of —, where the numerator and denominator have no common

factor, we have

(1) number of poles in a unit = 2 (denominator of Q)

(i1) number of slots per phase in each unit = 3 (numerator of q)
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_ total number of poles P

(ii1))  number of units = - = -
poles/unit denomin ator of q

Considering the form ¢ = 1%, we observe that there are

(1) 2-1=1 group of 1 coil each and
(i1) 1 group of 1+1=2 coils each.

This connection algorithm can be expressed in a general form as

:_:_:I —_—
P Ta T Ty

where M and d have no common divisor. Thus for a fractional slot winding
(a) number of poles in a unitis d =2

(b) number of slots per phase in each unitis M =qd =3

(c) number of total slots in each unitis MM =5x3 =15

(d) number of units =

o|T

= % = 2, which is the maximum number of parallel paths.

(e) Each phase, in a unit, contains d —n groups of | coils each and n groups of

| +1 coils each

Now, dividing the table in five vertical parts, each having 1?5 =3 columns and 2 rows,

and the mark the cross (X) in the upper left square and move from left to right

continuously in every second square, the result is as shown in Table 3.1. The sequence of

coil groups is shown in Table 3.2, whereas Table 3.3 shows the distribution of slots in a

unit. Figure 3.2 shows a winding layout and Figure 3.3 shows a clock diagram of the

stator winding.
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Table 3.1 Development of the winding diagram

A D B
X X X X X
X X X X
Table 3.2 Sequence of coil groups
Phase A|D| B B
No. of coils in phase group 2 11| 2 1
Table 3.3 Distribution of slots in a unit
Phase
A 1,2 9
D 3 10, 11
B 4,5 12
E 6 13, 14
C 7,8 15
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J)1O

A-

E- C+ D+ E+

D- B+

A+

Figure 3.2 Winding diagram for the design of a five-phase induction machine

phase induction machine

Figure 3.3 Clock diagram for the design of a five
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3.3.3 Conductor Size and Ratings of the Five-Phase Induction Machine

The original three-phase machine had the following specifications on its nameplate

Series No. SK184AG1720 Power 5 hp
Voltage 208-220/440 V Current 13.4/6.7 A
Frequency 60 Hz Speed 3460 rpm.

The measured dimensions are as follows

Stator core length L =71.76mm, Stator inner diameter; D, =101.48mm, stator outer
diameter D, =184.51mm.

Rotor core length L =70.40 mm , Rotor outer diameter D =100.62mm.

outrot
From the above data, the calculations for the five phase stator winding were conducted as
follows

The following assumptions were made
(a)  The average flux density in the air gap is B,, = 0.45Wb/m’
(b)  Line-to line voltage is V| =220V .
(¢)  Winding factor, K, =0.955.
(d) Power factor, pf =0.85and efficiency, 7 =0.85 pu.
Now, the length of the core is given as L = 704.mm.

D, 7w x101.48

= =79.7mm.
poles 4

Pole pitch 7 =

. \Y
Stator phase voltage (star connection) E, = —= =

@
5B

Flux per pole ¢, =B, Lz =2.525x10" Wb

=127.02V.
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E
Stator turn per phase T, = —————=197.73 ~ 198.

44414, K,
Total conductors T,,,, =2mT, =1980.
T
Conductors per slot Z =22 = 12% =66.

S

The output power P =5 hp =5x746W =3730W .

P 5x 746

= :8.13A.
mxE,x pf xn 5x127.02x0.85%0.85

Stator current |, =

Area of a stator conductor, a, = ;—S = % =2.323 mm°’.

S

Total copper area in each slot Z_a, = 66 x 2.323 =153.32 mm”.

3.3.4 Turn and Winding Functions

The turn and winding functions of the stator winding are shown in Figure 3.4 and

Figure 3.5, respectively, where N, =33 is the number of conductors per layer per slot

T, 198

for the stator winding and N, = ZS =33. T, is the number of turns per phase.

For phase ‘a’, the self-inductance is

0

2r
L., =y0r|jgi-na(9)-Na(9)-d9 (3.21)
0

Since the turn function of phase ‘a’ is a piecewise linear Equation, the integration
can only be done in each linear region and the results of each linear region are added to

obtain the final result.
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Figure 3.4 The turn functions of the stator winding.
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©°N

©°N

©)°N

Figure 3.5 The winding functions of the stator winding.
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The expression for the self-inductance of phase ‘a’ can be simplified as

’“‘0” j n )-(n,(6))]-d@ (3.22)
where <na (9)> is the averages of the phase ‘a’ winding functions
Similar expressions can be found for phases ‘b’, ‘c’, ‘d’ and ‘e’ as
”0” j n )-(n,(0))]-de (3.23)
’“‘0” j n )-(n.(0))]-d6 (3.24)
0
“0” j n ~(n,(6))]-d@ (3.25)
”0” j n )—(n,(0))]-do (3.26)
, Gd,

where <nb(9)>, <nc(9)>, <nd(9)> and,<n9(9)> are the averages of the phases ‘b’,

and ‘e’ turn functions, respectively.

The self-inductances of three phases have the same value and the value of the self-

inductances is

Na(e) =N, (‘9)_<na (‘9)>
jls(zN d9+j15 (3N,) d¢9+j15 (2N, )y do+ 116Sﬂ(zN ydo+ (3.27)

15

<na(9)>zg 27 2%z
[ BN, do+[,is (2N, )*do

15

L 15
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P 7z 87 167 7
[N do+ [ 15BN, do+ [ (2N, ) do+ 13 (2N, ) do+
L _2/,10” 0 G T s
aa go 2r ) 237 , oy 2
[ BN, do+ [ (2N,) d9—27r(Est (3.28)
L 15 15
892711l N2
- 2259, °

where N, is the number of conductors per layer per slot for the stator winding. This

expression of self-inductance calculation is only good for this particular machine design.

3.3.5 Stator Mutual Inductances

The general expression for the mutual inductance is

(9)-de (3.29)

0

2z 1
Lij = 4yl .(').g_'ni(g)' Nj

where n,(0) is the turn function of i" winding; N,(6) is the winding function of "
winding, i, j =a,b,c,d,e and i # |.

The calculation method and process are similar to the one for self-inductance, but
the number of linear region is much more than that. Unlike the three-phase machine, the
mutual inductances are not the same for the five-phase machine. The mutual inductances
between adjacent phases are the same, whereas for the phases which are not adjacent,
their mutual inductances are have a different value. The expression for the mutual

inductance between phase ‘a’ and phase ‘b’ of the stator winding is
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Lo =22 T, (0)- N (6)- 00 = 2" [, (6)-n, (0)-do - 2221 1 (6}, 6)

go 0 go gO
_ Horl 8 2r 22
o j156d¢9++j159d9+ 156d0 + 1g;6d9+ 191; 940+ [,13 6460 — 27{ N j
0 15 15 15 15 15 15
_&”ﬂorl N 2
225 g, °

Similarly for the remaining adjacent phases, the mutual inductances are

I
Lab = Lbc = Lcd = Lde = Lea =%MN§ (330)
9

The expression for the mutual inductance between phase ‘a’ and phase ‘c’ of the stator

winding is

L =40 o (0)-N,0)-d0. - 2L [ na<e>~nc<e>-de—2%;”<nc<e>><na<e»

rl 237 rI
= £ I”6d9++ edo+ 2%26d9+ 43 600 -2 (22“'”: TN
oL 15 s s 15 225 g,

Similarly for the remaining non-adjacent phases, the mutual inductances are

608

3.31
5 g (331)

where i, j=a,b,c,d,e and i # j. It has to be noted here that L; = L;.

3.3.6 Calculation of Rotor Inductances

The squirrel cage rotor with n (even or odd) bars and two end rings to short circuit
all the bars together is considered as n identical magnetically coupled circuits. Each

circuit is composed of two adjunct rotor bars and segments of the end rings connect two
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adjacent bars together at both ends of the bars. Each bar and end ring segment of the rotor
loop is equivalently represented by a serial connection of a resistor and an inductor as
shown in Figure 3.6.

The resistance and the inductance of the rotor bar are represented by I, and |,

respectively; the resistance and inductance of the partial end winding in the rotor loop are

represented by I, and g respectively. Three rotor loops are shown in Figure 3.7 and the
current flowing through the rotor loops are represented by iy _j, I and Iy g

respectively. Since every rotor loop is treated as an independent phase, a healthy cage
rotor having N rotor bars becomes a N phases balanced system.
The turn function of i" rotor loop is shown in Figure 3.7 (a). Since a constant air

gap length is considered in this Chapter, the winding function of the i" rotor loop can be

easily found with Figure 3.7 (b).
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Figure 3.7 Rotor i” rotor loop turn and winding function, (a) turn function, (b) winding
function.
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The turn function of the i™ rotor loop is

0 0<6<6,
n(@)=41 6, <0<6 +a, (3.32)
0 0 +a, <0<2r
The winding function can be expressed as
% 0<0<0 ¢
2r
N,(0)={1-Z~ 0 <0<0 +a, (3.33)
2r
4 0 +a, <0<2r
2r

where a, is the i" rotor loop pitch. Since a symmetrical equally spaced rotor bar

structure is considered in the analysis, all the rotor loops have the same pitch «, .
None of the turn and winding functions shown in Figure 3.7 take the skew of the

rotor into the consideration. If the rotor is skewed, the turn function and winding function

are shown in Figure 3.8.

A
B
=N
| ; .
0 L
9i ’\9i+0!r 2r (a)
0 +a, -p
o i}
e — ==
w AR — (b)
27 9i Ii+ar 2w
,\6’i+ar—ﬂ

Figure 3.8 Rotor i" rotor loop turn and winding function for skewed rotor, (a) turn

function, (b) winding function.
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When the skewing factor of the rotor is considered, the expressions for the turn and
winding functions become (3.34) and (3.35), respectively
0 0506, -p

%(9—9i+ﬂ) 0 -p<0<6,

n(0)=11 0.<0<0 +a, - (3.34)
%(9i+ar—9) 0 +a,-f<0<0 +a,
0 0 +a, <0<2r
-2 0<0<6,-p
2
1 a
—(6-6+p)-—" 6,-B<6<6
S0-04p)-T0 0-psosg
N, (0)= 1_;4_, 0,<0<6 +a, —f (3.35)
T
1 a,
b +a,-0)-—" 0 +a,-f<OZ0 +a,
o) 2
(04
0-— 0 +a, <0<2rx
2

where S = skew factor -, .

Substituting the turn function and winding function of the i" rotor loop into the

general expression for the self-inductance given in (3.20), the self-inductance for the i"
rotor loop can be determined. Since all the rotor loops have the same self-inductance

under the uniform air gap condition, its expression is
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L — ,uorl

r

J‘zﬂNi(g)' Ni(e)de

g,
2
luorl 27 ar
o n.(@)- de
9y 'L ( I( ) 2”)
_ M o - B al
d 3 2z

(3.36)

The winding functions of the adjacent rotor loops will overlap each other when the

rotor is skewed, such that the mutual inductances between i"

from i" and i+k" (k =2,n—1), where n is the number of rotor bar.

The mutual inductance between i™

2
r)iﬁ(—&j do+
0 2r

L _M 2
" +j9i”" Lo-0+p-2 110 +a -0)-% |do
Gra=p| f3 : 27 p I ' 2
2
Ortar (94 a,
+v[9i+l+ar—ﬂ( 27z.j|:ﬂ(0 ta, - ) 272.:|d0 .[Hlﬂz,( 272'} do

_H (B o
g, \6 27
All the mutual inductance between i"

and it can be calculated by

L _ /uorl

rm2

0

E

9

_ Tl
9
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- o joz”(ni(e)_%j.[ni+k (9)—?—;]%
_arl J'M{ni(e)n”k (0)-2=(n,(60) + . (0))-

and i+k"

and i+1" rotor loop is

j:ﬂ( ;‘ﬂj{ﬁ(e 9+ﬂ)—2—}d¢9

L T e C

1= %

Jao

and i+1 ™ will be different

(3.37)

rotor loop have the same value

(3.38)



3.3.7 Calculation of Stator-Rotor Mutual Inductances

Both the stator and the rotor loop winding functions are represented by piecewise

linear Equations while the position of the i rotor loop depends on the rotor angle. Using
the expression for the mutual inductance, the mutual inductances between i" rotor loop

and the stator winding set are shown in Figure 3.9.
27 1
Ly = ot [—-1,(6)-N(0)-d@ (3.39)

i
090

where i =a,b,c,d,e and j=1,2,---,n, where N is the rotor bar number.

L, (H]

Time [sec]

Figure 3.9 Stator rotor mutual inductance.
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Figure 3.10 Stator-to- rotor bar mutual inductances (a) stator phase ‘a’ to rotor bar
number 1 (b) stator phase ‘b’ to rotor bar number 1 (c) stator phase ‘c’ to rotor bar

number 1 (d) stator phase ‘d’ to rotor bar number 1 (e) stator phase ‘e’ to rotor bar

number 1.

3.4 Model of the Five Phase Stator Winding Machine

Based on the magnetic circuit theory, a full model of the induction machine can be
developed. The reason it is called a full model is that this model is not based on any

assumptions of stator windings or rotor bars distribution. Hence all the harmonics are

included into the model.
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The general coupled circuit model can be expressed as

v=R.i+ 3 (3.40)
dt

whereV, I and A are the terminal voltage, current and flux linkage in each circuit; R is
the matrix of resistance. Applying this general Equation to the five phase stator winding

induction machine leads to the full model.

3.4.1 Stator Voltage Equation

For the stator winding, the stator voltage Equation is expressed as

= R [ + pﬂ’abcde (341)

abcde | abcde

\Y

abcde

where R is a diagonal 5x5 matrix, in which the diagonal value depends on the

abcde

. I d
resistances per phase of the stator’ winding; P represents the operator a and

A I, A
Vo Iy Ay
Vabcde = Vc > iabcde = ic > ﬂ’abcde = ﬂ“c (342)
Vg ¥ Ay
A I, Ao
The flux linkage can be written as the contribution of two components as
ﬂabcde = ﬂ’ss + ﬂ'r (343)

The first term in Equation (3.43) represents the stator flux linkage due to the stator

currents; the second term is the stator flux linkage due to the rotor current.
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3.4.2 Stator Flux Linkage Due to the Stator Currents

The stator flux linkage of the stator due to the stator currents can be expressed as

A Lis + Laa Lo L L. L.
Aps | Aas Lo Lis + Lo Lo L g Lpe
d=| A | A |=| La Ly Lo+l Ly L. i (.44)
Ags [\ Acsr L L L L + Lag L e
A L., L., L. L. L, + L,
Ay = Lisapee

3.4.3 Stator Flux Linkage Due to the Rotor Currents

The cage rotor having n rotor bars can be modeled as a n phase system. The total

stator flux linkage due to the rotor currents can be written as

sr

L
L
Lol o i (3.45)
L
L

where L, is the mutual inductance between the phase ‘a” and i" rotor loop, L, is the
mutual inductance between the phase ‘b’ and i" rotor loop, L, is the mutual inductance
between the phase ‘¢’ and i" rotor loop, L, is the mutual inductance between the phase

‘d> and i"™ rotor loop, L, is the mutual inductance between the phase ‘e’ and i™ rotor

ei

loop.
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3.4.4 Rotor Voltage Equation

The voltage Equation for the k™ rotor loop can be represented as
0= Z(rb + re)' ik - 'ik+1 - 'ik—l + PAy (3.46)
where Iy, is the bar resistance; Iy is the resistance of the segment of end ring; i, I _;

and i, are the currents of the k", k—1" and k +1" loop, respectively; 4, is the flux

linkage of the k™ rotor loop. This Equation is valid for all the rotor loops, therefore the

total rotor voltage Equation can be written in the matrix form as

0y (2(r,+r) -r, - -1, i, A
o e U N L R (3.47)
o L v o ) lin) la
The compact form of the above Equation is
0=R, i, + p4, (3.48)

where R, is the resistance matrix, i is the rotor loop current vector and A, is the rotor

loop flux linkage vector. The expression for rotor flux linkage can be expressed as

Ay = A + A, (3.49)
The expression for each term of (3.49) can be written as

L

Lbrl L I‘drl L

j’rls arl crl erl ias
/Irls ar2 Lbr2 Lcr2 Ldr2 Ler2 ibs
Ay =| - |=| - e g
. (3.50)
ﬂ“r(n—l)s Lar(n—l) Lbr(n—l) Lcr(n—l) I-dr(n—l) Ler(n—l) I
ﬁ“rns Larn I-brn I-crn I-drn I-ern Ies
A =L, I

rsl —
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er +2(Ib + Ie) erl _Ib erl _Ib irl

- L, +2(,+1) - L i
1 = rml b rr (b e) rm2 T2 =L i (35])

rr : : . : : o

er +2(Ib +Ie) irn

rm2

where L;; is the mutual inductance between the stator i" winding and j" rotor loop,
i=a,b,c,d,e and j=12,---n, n is the number of rotor loop; L, is the self-inductance
of the rotor loops; L, is the mutual inductance between the adjunct rotor loops; L, is

the mutual inductance between the rotor loops that are not adjunct; |, and |, are the

leakage inductance of the rotor bar and the segment of end ring, respectively.

3.5 Torque Equation

The electro-magnetic force developed by the machine is the only one that couples
the electrical Equation with the mechanical Equation. From the energy point of view, the
torque is determined by the instantaneous power transferred in the electromechanical

system. The co-energy in a magnetic field is defined as

J J
W, =i 4 -W, and W, =[>i; -d4, (3.52)
=1 j=1

where i; and A; are the current and flux linkage of j™ circuit, respectively. W, is the

total field energy in the system. In the five-phase induction machine (with 5 stator
windings and n rotor bars), there are five stator currents and n rotor current. Hence for

this particular five-phase induction machine, the total field energy can be expressed as
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1. 1 . 1. 1 A . 1.+ .
Wf :Elabcde 'Lss “Labede +E|abcde 'Lsr il +E|r 'Lrs “Nabede +5|r .er I (353)
The electromagnetic torque can be obtained from the magnetic co-energy as
W oW
= We (3.54)
00 06

rm rm

where 6, is the mechanical angle of the rotor.

Only terms in Equation (3.53) which are the functions of the rotor angle can
contribute the electromagnetic torque. So applying (3.54) to (3.53), the electromagnetic

torque can be expressed as

1. oL, . 1.1 oL, .
= i S o B 3.55
e 2 abcde 69 r 2 r 60 abcde ( )

rm m

For a linear magnetic circuit,

L =L (3.56)

Hence the torque Equation is simplified as

. oL. .
n:—%ngth (3.57)

rm

3.6 Development of the Equivalent Circuit

In this section, we are introducing a letter 'h' which will stand for the harmonic
number. Therefore, the general Equations can be evaluated for any significant harmonic

component.
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3.6.1 QD Transformation

In order to develop the equivalent circuit for the five phase induction machine, the
above voltage, flux and torque Equations are transformed into qd reference frame to
eliminate the tome varying quantities. We are adopting an arbitrary reference frame

rotating at a speed . In the simulation part, the rotor reference frame (@, ) will be used.

qush = Tsh (e)vabcdes (358)
iquh = Tsh (H)I abcdes (359)
ﬂ”quh = Tsh (e)iabcdes (360)
qurh = Trh (9)\/1234--~n (361)
iqdrh = Trh (9)i1234»--n (362)
Aqarn = Trn (‘9)/11234-~-n (3.63)
Vas ias ﬂ“as 1
Vbs ibs ﬂ“bs 2
Vabcdes = Vcs ° iabcdes = ics ° ﬁabcdes = ﬂ“cs ° V1234-~~n = (364)
Vds Ids ﬂ’ds Vn—l
Ves Ies ﬂ“es Vn
Il 2’1
i A .
. 2 -2 Vqsh - Iqsh
losan = ° |5 Apsan = ¢ |5 Vaash = v > lyash = i (3.65)
in_1 /1”_1 dsh dsh
in in

A v [ A
y) . = qshj’ Vv i :( qrhj’ i ) :(.qrhj’ y) i :[ qrhj (366)
o [ﬂ‘dsh o Vdrh A Idrh o ﬂ’drh
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For h=1,3

) cos(6) cos(@—z—j cos(6—4—7zj cos(6—6—7zj cos(&—g—ﬂj
Ta0)=7 3 3 3 30 367

sin(0) sin[@ - 2—”) sin[@ - 4—”) sin[@ - 6—”) sin(@ - 8—”)
3 3 3 3

) cos(36?) cos 3(6’ — 2—”) cos 3(9 — 4—”} cos 3(6’ - 6—”) cos 3(6’ — 8—”}
T.(0)=1 N B ; RRREE
> sin(36) sin 3(9 - —”) sin 3(9 - —ﬂj sin 3(0 - —ﬁ) sin 3(9 - —”J

3 3 3 3
cos(6—-8,) co{&—@r —27[j co{@—@r —Mj co{&—&, - Z(n_l)ﬂj
T,(0)=2 n n n (3.70)
" sin(0-6,) sin(é’— 0 —2”} sin(&—&r —4”J sin(é’— 0 - 2n _1)”j
n n n
where n is the number of rotor bars.
) cos3(0-0,) cos3[l9—6’r —27[} 0053(49—42 —4”) cos3[6’—6’r _Z(n—l)er
T,(0)== N . A n1) (3.71)
" sin3(0-0,) sin3(9— ) —”J sin3(¢9—9r —”j sin3(6— g - N=T
n n n
qush = Tsh (e)rsqdh-rsg1 (g)iquh + Tsh (9) stﬁl (g)ﬂ“quh
Vaash = Fsganbqasn + PAqash — JOAqqen (3.72)
qurh = Trh (e)rrqdh-rr;1 (H)iqdrh + Trh (0) pTral/qurh
qurh = r-rqdhiqdrh + pﬂqdrh - J(a)_ a)r )ﬂ’qdrh (373)

The transformed stator and rotor flux linkages are given by Equations (3.74) and

(3.75), respectively
ﬂquh = Lssqdhiquh + Lsrqdhiqdrh (374)

ﬂ“qdrh = erqdhiqdrh + Lrsqdhiquh (375)
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Substituting the flux Equations into the voltage Equations, we have

qush = rsqdhlquh + p(Lssqthquh + I-srqdhlqdrh )_ Ja)(Lssqdhlquh + I‘srqdhlqdrh) (376)

qurh = rrqdhlqdrh + p(erqdhiqdrh + Lrsqdhiquh)_ J(a)_ a)r )(erqdhiqdrh + Lrsqdhiquh) (377)

When the voltage Equations are referred to the stator side, then we have

_ - qd -! - - qd -!
qush - r-sqdhlquh + p(Lssqthquh + Lsrqdh N lh Iqdrh )_ Ja)(Lssqdhlquh + Lsrqdh N Ih qurh) (378)

qd qd : qd qd ;' qd H
Nun Frgan N Tgarn + p(NVh Lrraen N Tgarn + Nup Lrgganl )"‘

N qu _ rrqdh rsqdh " qdsh (3 79)
P (- @, NG Lyrean N Eicgn + N Leanioges ) '
J @ a)r Vh =rrqdh ' ¥ Ih "qdrh Vh =rsqdh "qdsh
Vaash = Fsqanlgash + Lssqah Plgash + Lsraan Pl — J@Lssqanlqash — JOLgrqanlgarn (3.80)
qush = (rsqdh - Jstsqdh )quh + Lssqdh plquh + I-srqdh plqdrh - Ja)Lsrqthqdrh (381)

) rrqdhlqdrh + p(erqthqdrh + Lrsqdhlquh )+
Vi = (3.82)

- J(a) -0, )(erqdh qurh + Lrsqdhlquh )
' — qd N ' _ N qd
Lsrqdh - Lsrqdh N lh » qurh - NVh qurh > r-rqdh - |\|Vh r-rqdh N lh (383)

I-'rrqdh = N\%j erqdh N I(:1d ’ L'rsqdh = N\?ﬁ I—rsqdh (384)

The fluxes referred to the stator side become

ﬂ“quh = Lssqdhlquh + Lsrqdhlqdrh ’ /1qdrh = erqdhlqdrh + Lrsqdhlquh (385)

Dynamic Equations for simulation

PAgsh = Vasn — Fegnlosn = @Agen (3.86)
PAgn = Vasn — Neanlasn + OAgen (3.87)
D Agn = Vi — Fnlarn — 1(@ — @, Vg, (3.88)
D Agm =Varn — Negnlam + 1(@ — 0, ) (3.89)
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In this work, only the fundamental and third harmonic components have been

considered. The torque is obtained as follows

mY P . .
Tel = (?)(Ej(ﬂ“dsllqsl - ﬂ“qslldsl)

my P . .
Te3 = 3[_j(5j(ﬂds3lqs3 - ﬂ“qs3|ds3)

2
To=Ty+Tg
The mechanical Equation is given by

P
P, = ﬁ(Te _TL)

(3.90)

(3.91)

(3.92)

(3.93)

where @, is the rotor speed (rad/sec), mis the number of stator phases, P is the

number of poles, J is the moment of inertia (kgm2> and T, is the load torque (Nm).

3.7 Fundamental Component Based Parameter Determination

The primary and secondary m.m.fs, expressed in ampere-turns per pair poles, are

[3.8,3.9]

242 ,
My, = jn kbphkpphmprlph =Nl
and

22 ,
Ivlsph :7kbshkpshmst|sh = Nslsh

where
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22 (3.96)

N, :7kbphkpphmpr
N; = &kbshkpshmst (397)
Vs

The vector sum of these two m.m.fs must then be just sufficient to maintain the flux

¢ through the magnetic circuit. Under no-load conditions, it is necessary that

NOL, +Nolg = NI, (3.98)

p
where |, is the per phase no-load current taken from the line by the primary winding

necessary to produce the m.m.f needed to maintain the flux ¢, .

Dividing through by N, we get

N’
Ly +—=1, =1 (3.99)
ph sh oh
Np

N
N? L =lon =1 =g (3.100)
p

Iv N' ksksmst
%:Nfzkbhkph . (3.101)

ph p bph pphmp p

Ky is the distribution (breadth) factor for the primary (stator) winding
Ko 18 the pitch factor for the primary (stator) winding

m, is the number of phases for the primary (stator) winding

N, is the number of series turns per phase for the primary (stator) winding

K., 1s the distribution (breadth) factor for the secondary (rotor) winding

K is the pitch factor for the secondary (rotor) winding
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m, is the number of phases for the secondary (rotor) winding

N, is the number of series turns per phase for the secondary (rotor) winding

At standstill conditions, the e.m.f developed in each phase of the primary (stator)
and the secondary (rotor) windings are, respectively, given by

E,, = 444k, Ko TN L, (3.102)
E,, = 444k ko, TN, (3.103)

Eon KionKoon fon N

ph — bph ™ pph “ph ™" p — kbphkahN

P since f,, =f (3.104)

ph
sh kbsh k psh fsh N S I(bsh psh' Vs
where

@, 1s the air gap flux

f o is the h™ frequency of the voltages and currents in the primary (stator) winding

fg, is the h™ frequency of the voltages and currents in the secondary (rotor) winding
Now, if the primary (stator) and secondary (rotor) turns per phase (N and N,
respectively) are replaced by the corresponding number of conductors per phase (Z,, and
Z, =1), the ratio of the current transformation is

Iv N' k S| k S| mszs ZZ
Jan N RS : (3.105)
ph Np kbphkpphmpzp Pkbphkpphmpzp

Which is the factor by which the actual rotor current per bar must be multiplied to
convert it to equivalent primary (stator) current. The corresponding factor for converting

actual rotor e.m.f per phase to equivalent primary (stator) value is

k. Kk
ph _ bph ™ pph " p :kbphk 7 (3.106)
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The parameters of the machine can be determined by using derived expressions as

follows
(a) qd Transformed parameters

When the actual time varying parameters have been transformed constant values by

using qd transformation, then the appropriate turn transformations for the machine

parameters will be

m.K,s N

N = —=-wh s for current transformation (3.107)
.(hPﬂ]

S, sin| ——

qd Kwsh N S :

vh = —P , for voltage transformation (3.108)
sin(”j

2
quhd N\(/]r? — msKwsth KWsth _ ms Kwsth

=—| ————|, for vresistive impedance
. (hPz) . (hPx S;| . (hPx
S,sin| —— | sin| —— sin| ——
S, S, S

r

transformation (3.109)

, m Ko, N2 . .
Ry = L‘q‘hs R% | this is the rotor resistance referred to the stator.
. Pr
S, sin” [J

r

where
S, is the number of rotor bars

P is the number of poles

h is the harmonic number

R% is the actual h™ gd-rotor resistance
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(b) Turn transformation of actual parameters
The following turn expressions will be used for transformation of the machine

variable when dealing with actual peak values of the variables and parameters [3.8, 3.9]

2m_ N K
= —————"" " for current transformation (3.110)
S r K wrh
2N K
N,, = —=—"" for voltage transformation (3.111)

wrh

2MNK,g 2NK, o 4mNZK;
NNy, === = wh — —~ o wh for resistive impedance transformation (3.112)
S,K

s K Kth r' Mwrh

r' *wrh

4m Ko N2 R . .
=—> W s IR +—* | this is the rotor resistance referred to the stator.

S
' 2sin2[hP”J
S

r

Rrh

R . . :
R,, = R, + —————— is the actual equivalent rotor resistance
. -, hPx
2sin”| ——
Sl’

The rotor leakage inductance is given by

. 4m_K2 N? L 2
TP L 7= P S YIS S L U S S E R P
S, . o[ hPxz k=0 KS
2sin?| —— " +h
S, P
For K=1, h=1
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. 4m K2 N? L
L AMKGNG ‘ PTE  SEI S (3.114)

Irl ml 2
S
' ZSinz(Pﬂ) (S’ +1j
S, P

The rotor self inductance is given by

S, sz(hgﬁj
d r '
=N (L + L) (3.115)
L'rh = Lghd = L'rlh + Lo, (3.116)

Self inductance of a stator phase due to the air gap flux is [3.8, 3.9]

2 2
L = 222 OrISi(gj Z(—K;f“j (3.117)

ge T h=1

where g, is the effective air gap, |, is the effective length, and N is the total number of
turns per phase. To obtain the total self inductance L, the leakage inductances should be

added to L

Mutual inductance between two stator phases is [3.8, 3.9]

L :#o_“ei(%) i[%j cos((i—l)zm—ﬂ} i=1,...(h odd) (3.118)
T s

ge h=1
The mutual slot leakage inductance should be added to the value given by the above

Equation to obtain the total mutual inductances L (i =2, 3,...) [3.8, 3.9]

(- 1)Ly, = 2oMe 25 L oo N7 (3.119)
ge T h=1 h Sr
Lioop —ﬂ— Lsm ( jcos(h@) (3.120)
ge 73 Sr
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where @ is the angle between the axes of two rotor loops. The h™ term of the above series
is the contribution of the h™ harmonic to the inductance.
To obtain the total self inductance of a loop, its leakage inductance of the end ring

segments and the slot leakage inductance should be added to its air gap self inductance

(N=1)Lyg,, [3.8,3.9]

Ly =2(L, + L)+ (n=1)Lg, (3.121)
L, =Ly = Liggp (3.122)
Li = —Liggs 1=3,4, .. (3.123)

where L, is the slot leakage inductance and L, is the leakage inductance of the ring
segments.

If the S, rotor bars are divided into P basic periods, the above should be

modified to

L =2(L, + L)+ (= P)Li (3.124)
L, =—L, — Pl (3.125)
Li =—Pligg. =34, .. (3.126)

3.7.1 Mutual Inductance Between a Rotor Loop and a Stator Phase

The mutual inductance between the i™ stator phase and the jth rotor loop can be

obtained by [3.8, 3.9]
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Ly = Ho'l iﬁz vah sin hPz cos(hP@) (V Odd) (3.127)
ge 7P h=1 h Sr
Or equivalently
Lrl, 4 N & K, hP'z .
Ly = oe ;chZ‘ S sin ( 5 cos(hP'@) (v odd) (3.128)

where € and @' are the mechanical and electrical angles between the axes of the stator

phase and rotor loop.

3.7.2 Two Axis Equivalent Inductances

The expression for the two-axis inductances can be derived. The stator two-axis

inductance is
2
qush =L, +2L,, cos(hm—J +--- (3.129)

Substituting for L,'s (i=1,2, )

2 2
mg worl, 4 (N K,
Lo =L +—stolle 20 e
qdsh |S+ 2 ge ﬂ'(P ; . (3130)

¢ =Km, +h, (K=0,%1, +2,--)

Defining the h™ harmonic (stator) magnetizing inductance L, as[3.8, 3.9]

2 2
Lmh:ﬂ—”“'ei(ﬂj Kuan (3.131)
2 g, 7\P h

The L4, can be written as

Logn = Lis + 2 Loys £=Km+h (K=0,£1, £2, ) (3.132)
l
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It is assumed that the mutual slot leakage is lumped with the leakage inductance L .

For squirrel cage rotor with S, rotor bars or S', bars per basic period, since

S S' .. )
e Pr the rotor two-axis inductance is

] 2

Logrn = Ly +2L,, cos(hPZS—ﬁJ oo (3.133)

r

Substituting for L,'s (i=1,2, )

L gar :2(Le +[1—cosh(st—ﬁj]LbJ+i'u0_”9isin2[hpsijZS; (3.134)

2 /4 2
r ge r/ K (K rh
(K=0,+1, 2, --)
Substituting L, obtained previously, we have
S, sin’| hP-=
. P s S, h?
Lo = 2| L, +2sin’| hP— L, |+ Ly (3.135)
Sr ms Kwsth K S
K—"+h
P
(K=0,%1, £2, )
Lo can also be expressed as
S, sin’| hP -
Lo = (L, + L) 3.136
qdrh — ms K\f,sthz Irh + mh ( . )
h2
The summation Z—z, (K =0, £1, %2, ) in the above Equations can be
“ (Ksr-kh)
P

evaluated from the following identity
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- r , (K=0,%1, £2, ) (3.137)

The actual parameters obtained from the full-order modeling whereby the mutual stator-

to-rotor bar inductances are calculated during the simulation are shown Table 3.4. Using

the turn transformations of section 3.7 (a), these parameters are referred to the stator side

as they appear in Table 3.5, and they are close to those determined by sung the

fundamental component approach.

Table 3.4 Machine parameters before being referred to the stator side

Parameters From the Full order model simulation
Fundamental component Third harmonic component
I 0.320 Q 0.320 Q
r, 4.87 1€ 24.55 uQd
L, 1.5 mH 52 mH
L, 2.7 yH 92.7 uH
L, 2.332 uH 2.129 uH
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Table 3.5 Machine parameters referred to the stator side

Parameters From the Full order model simulation
Fundamental component Third harmonic component
I 0.320 Q 0.320 Q
r 0.6888 Q 0.4421 Q
L, 0.3185 H 0.0295 H
L. 03185 H 0.0295 H
L, 0.3297 mH 0.0383 H

3.8 Simulation Results

The simulation results for starting transient and load performance of the five-phase
machine are presented in this section. The stator is supplied from a 60 Hz, 230 V line-to-
line rms voltages for the fundamental components. To obtain the third harmonic
components, the magnitude of the harmonic voltage is taken as 15% of the fundamental.
The load torque applied is 8.5 Nm.

Figures 3.11 and 3.12 show the fundamental component of the qd-transformed
stator-to-stator mutual inductance and rotor bar self inductance. The qd rotor-bar-to-
stator and stator-to-rotor bar mutual inductances are shown in Figures 3.13 and 3.14,
respectively; whereas Figure 3.15 shows the qd fundamental component of the rotor bar

resistance.
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The machine is run at no-load for five seconds at which a load torque of 8.5 Nm is
applied. The no-load and load characteristics for different variables are shown in Figures
3.16, 3.17, 3.18, 3.19, 3.20, 3.21, 3.22 and 3.23 for the fundamental components of the
no-load speed, load speed, no-load electromagnetic torque, load electromagnetic torque,
no-load stator current, load stator current, no-load rotor bar current and load rotor bar
current, respectively.

Figures 3.24 and 3.25 show the total electromagnetic torque at no-load and load,
respectively. This is obtained by adding the two values of electromagnetic torques, i.e.
the fundamental component value and the harmonic component value. The third
harmonic components for the stator currents at no-load, stator currents at load, rotor bar
currents at no-load, rotor bar currents at load, electromagnetic torque at load and
electromagnetic torque at no-load are represented by figures 3.26, 3.27, 3.28, 3.29, 3.30
and 3.31, respectively.

The third harmonic components of the qd rotor bar resistance, qd stator mutual
inductance, qd rotor bar self inductance, qd rotor bar-to-stator mutual inductance, and the
qd stator-to-rotor mutual inductance are shown in figures 3.32, 3.33, 3.34, 3.35 and 3.36,

respectively.

106



25
25
25
25

Time [sec]

0.5
0.5
0.5
05

=) == =}
— — [} —
S =} S

[g] b [H] 'ebq

03176
1
1
03176
03176
0.01
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Figure 3.16 Starting transients of the rotor speed at no-load
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Figure 3.17 Rotor speed at a load torque of 8.5 Nm
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Figure 3.18 Fundamental components of the electromagnetic torque at no-load
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Figure 3.19 Fundamental components of the electromagnetic torque at a load torque of

8.5 Nm
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Figure 3.20 Fundamental components of the stator phase currents at no-load (a) phase ‘a’
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Figure 3.21 Fundamental components of the stator phase currents at a load torque of 8.5
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Figure 3.22 Fundamental components of the actual rotor bar currents at no load (a) bar 1

(b) bar 7 and (c) bar 14
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Figure 3.23 Fundamental components of the actual rotor bar currents at a load torque of

8.5 Nm (a) bar 1 (b) bar 7 and (c) bar 14
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Figure 3.26 Third harmonic components of the stator phase currents at no-load (a) phase
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Figure 3.27 Third harmonic components of the stator phase currents at a load torque of

8.5 Nm (a) phase ‘a’ (b) phase ‘b’ (¢) phase ‘c’ (d) phase ‘d’ (e) phase ‘¢’
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Figure 3.28 Third harmonic components of the actual rotor bar currents at no load (a) bar

1 (b) bar 7 and (c) bar 14
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Figure 3.29 Third harmonic components of the actual rotor bar currents at a load torque

of 8.5 Nm (a) bar 1 (b) bar 7 and (c) bar 14
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Figure 3.30 Third harmonic component of the electromagnetic torque at no-load
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Figure 3.31 Third harmonic component of the electromagnetic torque at a load torque of

8.5 Nm
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Figure 3.32 Third harmonic component of the qd-rotor bar resistance R,
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Figure 3.33 Third harmonic component of the qd-stator inductance (a) Ly, (b) Lgy; (€)
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Figure 3.34 Third harmonic component of the qd-rotor bar self inductance (a) L, (b)
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Figure 3.35 Third harmonic component of the qd-rotor bar-to-stator mutual inductance

(a) Lrsq3 (b) Lrsd3 (C) Lrsq32 (d) Lrsd23
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Figure 3.36 Third harmonic component of the qd-stator-to-rotor bar mutual inductance

(a) Lsrq3 (b) Lsrd3 (C) Lsrq32 (d) Lsrd23
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3.9  Experimental Determination of Machine Parameters

The machine parameters were identified by performing no load and locked rotor
tests. The machine was energized by balanced abcde and acebd voltages into determine
the fundamental and third harmonic components of the machine parameters, respectively.

The no-load test was used to determine the magnetizing inductance as well as the
core loss resistance whereas the locked rotor test was used to determine the copper loss
resistance and the leakage inductance.

The five-phase induction motor was energized from the five-phases of the two

three-phase inverters, one inverter providing only two phases (d and e).

3.9.1 Experimental results

3.9.1.1 No-load test. The five phase induction machine is supplied from two three
phase voltage source inverters at no load. The no-load speed is 1800 rpm. The results for

the no-load test are shown in Table 3.6

3.9.1.2 Determination of the Magnetizing inductance from the line-to-line
voltages. For the determination of the magnetizing inductance, two kinds of
measurements were taken. First the line-to-line voltages between adjacent phases were
taken as shown in Table 3.7. Secondly, the phase ‘a’ voltage and phase ‘a’ current were
measured as shown in Table 3.8. The result based on either of the two is plotted in Figure

3.37.
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Table 3.6 No-load Tests Power, voltage and current measurements

Vae | Vbe Vee | Vae | las Is | Les Lis | les Pae Poe | Pee Pge
95 148 148 | 97 2.1 1.9 1.8 1.3 1.95 | 195 110 |60 52
84 130 129 | 86 1.95 | 1.7 1.55 | 1.15 | 1.75 | 155 95 44 40
75 115 115 |76 1.75 | 1.6 1.40 | 1.0 1.55 | 120 80 30 30
65 101 100 | 67 1.55 | 1.35 | 1.25 [{0.89 | 14 100 | 65 20 24
55 86 86 56 1.35 | 1.25 | 1.1 0.84 | 1.25 |70 56 10 16
47 73 72.5 | 45 1.15 | 1.1 1.0 |0.75 | 1.1 60 50 4 10
39 58 57 39 1.0 1.0 1.0 [0.65 |1.0 45 45 3 6

30 48 48 31 0.5 0.5 0.5 0.5 0.925 | 30 35 2 4

Pjj is the power measured by the wattmeter connected between phase i and j.

Table 3.7 No-load Tests Line-to-line Voltage and current measurements

Vab | Ve | Ved | Ve | las Los Ls | Las Les
150 | 150 | 145 152 [ 4.15 [ 3.65 |32 |2.65 |3.355
146 | 146 | 140 | 148 | 3.85 | 3.4 3 245 |3.15
140 | 140 | 134 | 143 |3.55 |3.15 |2.75]2.3 3

134 | 134 | 128 | 138 | 3.3 295 |26 |[2.15 |28
128 | 128 | 122 | 130 | 3.055|2.75 |245]2.05 |2.155
120 | 120 | 116 | 124 |2.875|2.575|2.3 |1.925|2.475
114 | 114 | 110 | 120 | 2.7 2.425 | 2.15 | 1.825 | 2.325
108 | 108 | 104 | 116 |2.575|2.275|2 1.7 2.2
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Table 3.7 Continued

Vab | Vbe | Ve | Ve | las Tos Ls | Las Les
100 | 100 98 110 | 2.675 212519 | 1.6 2.05
94 94 92 104 | 2.225 |2 1.75 | 1.5 1.925
88 88 86 98 1205 [1.85 |165|1.4 1.8
82 82 80 92 1195 |1.75 |1.55]1.3 1.65
78 78 74 88 | 1.85 | 1.6 14512 1.55
72 72 68 84 | 1.7 1.5 1.35 1.1 1.45
64 64 62 76 [ 1.55 135 |12 |1 1.325
57 57 55 72 |14 1.25 0.5 [0.7 1.225
50 50 48 64 127512 0.4510.625 | 1.125
44 44 | 42.5 58 [ 1.15 | 1.1 0.2510.6 1.025
38 38 37 50 [ 1.05 |1.05 |0.25]0.525]|0.975
32 32 31.5 42 |1 1 0.2510.55 095
28 28 26 36 |1 1 0.2510.575 | 0.975

Table 3.8 No-load Tests Phase ‘a’ voltage and phase ‘a’ current measurements

Vani 127 | 4.075 | 117.5 | 3.5 107 | 3.05 | 96.5 | 2.675 | 855 | 235 | 75
Las1 122 | 3.775 | 112.5 | 3.25 | 102 | 2.85 91 2525 | 80.2 | 22 | 70
Vani | 2.075 65 | 1.8 | 545 | 1.55 | 44 1.275 | 33 1.1 | 23 | 1.05
Las1 1.95 595 1.7 | 49 1.45 | 385 1.2 285 | 1.05 | 18 | 1.3
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Also from the results of Table 3.8, the core loss resistance, R, could be determined

by using the following relations

cl

POCI
|

Rocl =

2
ml

2
ocl

ICl

_ Volc
Xml

Im1

=2A4L,,

Xml

where P, |, and V_, are the average values for power, current and voltage,

respectively obtained from the no-load tests.

Voltage [V]

Figure 3.37 Fundamental component of the magnetizing inductance
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3.9.1.3 Third harmonic magnetizing inductance calculation. To determine the
third harmonic component of the magnetizing inductance, the machine was energized by
balanced acebd voltages. The phase ‘a’ voltage and current were measured and the results
recorded as shown in Table 3.9.

The inductance is then obtained as

X — Van3 L — m3

m3
|

as3
o, =2, f, is the supply voltage
Figure 3.38 shows the variation of the third harmonic inductance with the phase ‘a’

voltage.

3.9.1.4 Locked rotor test. The locked rotor stator line-to-line voltages, current and
power were recorded for each measurement and then the average value was calculated for
each phase. One stator phase, in this case phase ‘e’, was made the references such that at
every instant, four readings for line-to-line voltages, five readings for the phase currents

and four readings for the power were taken as shown in Table 3.10.

Table 3.9 No-load Tests Phase ‘a’ third harmonic voltage and current measurements

Vanz |36 (33531 |29 |27 |26 |25 |24 |23 |215]205|19.5 |18

15

Lz |73 ]16.65]6.1 565|535 |51 [495]4.75 |46 |425|4.05]3.85|3.6

3.2
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Figure 3.38 Third harmonic component of the magnetizing inductance

Table 3.10 Locked rotor t test Line-to-line voltages, current and power measurements

Pdesc

17

14

10

I)CGSC

132

96

58

20

Pbesc

450

395

210

120

70

25

I)aesc

365

310

190

110

25

IGSC

4.85

33

270 |75

1.55

Idsc

4.25

2.85

23

1.2

ICSC

4.55

34

24

1.4

Ibsc

4.5

3.5

2.5

1.5

Iasc

4.7

3.35

2.75

1.6

Vde

59

57

44

34

27

20

\/CC

85

84

64

50

1

4

28

Vbe

90

86

65

50

40

28

\/ae

56

55

40

30

25

15

Relationship between line-to-line voltage and phase voltage is given by
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/ 2
Adjacent phases V ; =V, .[2-2 cos[?ﬂj

4
Non-adjacent phases V| a5 =V 42 —2 cos(?ﬁj

where V  is the rms phase voltage.

The parameters are the calculated as follows

Xor =vZ5 — Ry

where V,, is the blocked rotor stator average phase voltage
I, is the blocked rotor stator average phase current

P, is the blocked rotor stator average phase power

R, 1s the blocked rotor resistance

Z,, 1s the blocked rotor impedance

X, 1s the blocked rotor reactance

The equivalent leakage inductance is given by

X .
L, =—2, o, =24f, f,_ is the supply frequency.
o

S
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4

L, [A]

Figure 3.40 Locked Rotor Winding resistance, r_ against stator current

4 Ibr

br

by [A]

10.5

Figure 3.41 Locked Rotor Impedance, 7z, against stator current, |

br
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Table 3.11 Summary of the Test parameters

Fundamental component Third harmonic component
1. R,, 1.8Q2 R.; 1.8Q2
2. R, 2.9086Q R, 1.8669Q
3 Loy 86.7mH Lo 13.4mH
4. Ly, 8.95mH Ly 1.8669mH
5 L, 8.95mH L, 49mH
6 R, 65.4052Q

Figures 3.39, 3.40 and 3.41 show the equivalent leakage inductance, equivalent
winding resistance and equivalent impedance, respectively, as they vary with the current
in a locked rotor test.

The stator winding resistance was obtained by directly measuring the resistance

between two phases and then taking the average value. It was found to be 1.8Q. Table

3.11 shows the summary of the machine parameters as they were obtained from no-load

and locked rotor tests for both the fundamental and harmonic components.

The analysis and model of a five phase induction machine have been presented.
First the stator winding has been redesigned to five phases instead of the previous three

phases. Then the turn and winding functions have been calculated. These are used in

3.10 Conclusion
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directly determining the machine parameters. The full-order model in which all higher
order harmonics are accounted for has been described and used to determine these
parameters. The fundamental and third harmonic parameters of the machine windings
have been determined.

The full order model of the five phase induction machine has been presented and
simulation results are included in the Chapter. The model takes into account the
contribution of the harmonic contents. The fundamental and third harmonic components
of machine parameters and variables have been computed and presented for the
simulation of the developed model. The derivation for the voltage and current turns ratios
have been derived and presented in this Chapter. These ratios are used to transform the
machine parameters from one side (rotor) to the other side (stator).

The experimental results for determination of the machine parameters are also
included. No-load and blocked rotor tests have been carried out to determine the
fundamental and third harmonic components of the five phase machine. The machine is
supplied from a balanced five phase supply via two three-phase inverters controlled by

the digital signal processor (DSP).
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CHAPTER 4

CARRIER BASED PWM SCHEME FOR FIVE PHASE INDUCTION MOTOR

DRIVE

4.1 Introduction

DC/AC voltage source inverters (VSI) are extensively used in motor drives to
generate controllable frequency and ac voltage magnitudes using various pulse width
modulation (PWM) strategies. The carrier-based PWM 1is very popular due to its
simplicity of implementation, known harmonic waveform characteristics, and low

harmonic distortion. Figure (4.1) shows a schematic diagram of five-phase voltage source

converter.
Sep Sep o S Sep
Wl RO F D
2 | ar— I | L — %
b
0 c = IM
d i
V_diff San Spn San Sn Sene =
2O Ly s s D

Figure 4.1 Five-phase two-level voltage source inverter supplying a five-phase induction

machine
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The turn on and turn off sequences of a switching device are represented by an
existence function which has a value of unity when it is turned on and becomes zero
when it is turned off [4.1]. The existence function of a two-level converter comprising of

two switching devices is represented by S., i=a,b,c,d,e and j=p,n where i

ij?
represents the load phase to which the device is connected, and | signifies top (p) and

bottom (n) device of the converter leg. Hence, S, , S, which take values of zero or

ap >
unity, are, respectively the existence functions of the top device and the bottom device of
the inverter leg which is connected to phase ‘a’ of the load.

The load voltage Equations of the five-phase converter expressed in terms of the

existence functions and input DC voltage v, are given as

_ Yy

Vi, 5 (ZSip—l):vin+vno, i=a, b, c d,e 4.1)
v, = "Ed(sap -s,)= "?‘*(Sap —(1-s,))= V?d(zsap “1)=v,, +v,, 4.2)
Similarly,

v, = ‘%d(zsbp “1)=v,, +v,, 4.3)
v, = "Td(zscp “1)=v,, +v,, (4.4)
Vdo = VTd(zSdp - 1): Vdn +Vno (45)
v, = "7"(25ep “1)=v,, +v,, (4.6)
Vo + Vi, +V +Vyo Ve =V, +Vy, + Vg, +Vy, +V,, +5V,, 4.7)
and
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V_d (2Sap _l)+V?d (Zpr _1)+V7d (2Scp _1)

Vo Vo TV +Vyo +Ve = 2v y (4.8)
+7d (ZSdp —1)+7d (ZSep —1)
For balanced five-phase system,
Vg, +Vp, Vg, + Vg, +V,, =0 (4.9)
Therefore,
(4.10)

Voo TV, + Vg + Vg + Vo =5V

no

v, =5, 1) s, )i s, ) s, s, )

VansVin > Ven» Van» Ven are the desired (reference ) phase voltages of the load. The voltage

an? en

between a reference ‘o’ of the inverter and the neutral of the load is denoted by v, .

In order to prevent short-circuiting the DC source and satisfy the Kirchhoff’s voltage law,

S, and §;, cannot be turned on at the same time. Hence Kirchhoff’s voltage law

constraints the existence function such that S;; +S;, =1. The existing function is a series
of modulation pulses whose magnitude is either unity or zero. A Fourier approximation
of this function is given as [4.1]

S, =05.(1+M,,) (4.12)
The expressions for the modulation signals are therefore expressed as

2V .
Mip:M,lza, b, c, d, e (4.13)
Vd

The PWM modulation signals for the five top devices of the converter are M.

Equation (4.13) gives the most general expression for the modulation signals in which

reasonable expressions for the zero sequence signal v, can be included. The appropriate
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zero sequence signal may give rise to minimum switching loss, improved current and/or
phase voltage waveforms. These signals are compared with a high frequency triangle
carrier waveform to produce the PWM switching pulses which are given to the base

drives to turn on and turn off the switching devices. The average neutral voltage, v, is

determined below. Equations (4.2-4.6) can be expressed as

v
s, -1)=v, (4.14)
\Y
V,, = 7(’(28ip ~1)-v, (4.15)
2v 2v,
© =28, —1-—" (4.16)
Va Va
2v,, 2V
25, —1=—F+—" (4.17)
Vd Vd
25, —1=m,, +m, (4.18)
2v, 2 .
wherem,, = Vin , m, = Voo ,andi=a, b, c, d, e.
v v
d d
When the switching function of the top device is unity (when it is turned on), then
m, =1-mg, (4.19)
When the switching function of the top device is zero (when it is turned off), then
m, =—1-m;, (4.20)

There are six feasible solutions for m, from (4.19) and (4.20) since the Equation is
over-determined yielding an infinite number of possibilities. However, m, must lie

within 1 and -1 since the normalized high-frequency triangular signal also lies within this
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range. A reasonable solution can be obtained by considering the extrema of (4.19) and
(4.20). With the following definitions,

M. =Max(m,,) M .., = Min(m,,) (4.21)
where Max and Min respectively denotes the maximum and minimum value of m,,, .
The extrema of the m, are (I-M_ ), (<1-M_. ), I-M_, ) and (~1-M__ ) of

which only the first have magnitudes between the range (1,-1). The two solutions are now

linearly weighed to determine the average value of m, <mo> where 0<a <1 and is

given as

(my)=al-1-M,)+(1-a)1-M,,) (4.22)

(my)=(1-2a)+(@-1)M,,, )-aM (4.23)

The values of o gives rise to an infinite number of carrier-base PWM modulation
signals [4.1, 4.2]. The generalized discontinuous modulation signals (GDPWM) are
obtained when « is given by
o= 0.5.[1 +sgn(cos(5(e,t + 5)))] (4.24)
Sgn(x) is 1, 0 and -1 when X is positive, zero and negative, respectively. By varying the
modulation angle &, various discontinuous modulation signals are generated. When o =
0.5, this carrier-based modulation schemes corresponds to the known space vector
modulation scheme where the null states are time- weighed equally. Figures 4.2 through
4.5 show the modulation signals and corresponding phase ‘a’ load voltage at different
values of o and modulation angle ¢ . In this result, the peak value of the fundamental
voltage is 150 V, and that of the third harmonic voltage is 15 V. The dc voltage is 300 V.

Figures 4.2 through 4.7 show the result when only the fundamental component is
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considered, whereas Figure 4.8 through 4.25 show the results in which both the

fundamental voltage and third harmonic voltage have been considered.
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4.2 Simulation Results

The five phase machine is simulated by using three different sets of connections
(a) it is assumed to be star-connected the phase voltages across the machine windings

are V,, Vi, Vg, Vg and V., Figure 35 (a)

(b) It is assumed to be conventionally delta connected the phase voltages across the
Figure

machine windings are V,, — V., Vp, =V, Vo —Vgs» Vgs — Ve, and Vo —V

cs? as?’

35 (b)
(c) It is assumed to be alternately delta connected the phase voltages across the

machine windings are V,, —V, Vps —Vy, Ve —V

cs es

Vg —V

S as ’

and v, —V,,, Figure

cs?

35 (c).

In all simulations, the no-load transients for the electromagnetic torque, stator phase
a current, rotor phase current and rotor speed are presented. Then a rated load torque of
8.5 Nm is applied at a time instant of 0.5 seconds, and the results are also presented. The
phase a voltage of the machine winding is also shown.

In each different winding connection the machine is supplied directly from the
mains (direct online), and then via an inverter. The derived voltage and current relations

for the three different stator winding connections as given below.
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b (c) ¢

Figure 4.26 Different stator winding connections (a) star (b) normal (conventional) delta

and (c) alternate delta.
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4.2.1 Conventional Star Connection, Figure 4.26 (a)

Phase voltages are given by

Vas = Vm cos(@e )’ Vs = Vm COS(@e o 2?7[} > Ves =Vm COS(&G - 4?7[) >

Vg =V, cos(@e —6—”], Ve, =V, cos(@e - 8—”]
5 5
Line-to-line voltages are given by

V,, =1.1756V, cos| 0, +3_7r , Ve =1.1756V cos| 6, - ,
10 10
Vy =1.1756V, cos| 6, _z , Vg =1.1756V cos 499—9—7Z ,
10 10

V., =1.1756V cos(é?e +7—ﬂj
10
Line and phase currents are the same.
i

a

=1,_cos(d, +5), i, = Imcos(é?e +5—2?ﬂ), I, = Imcos(é? +5—4?7T

i=|COS€+5—6—7r, i=|c059+§_8_7[
d m e 5 e m 5
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4.2.2 Conventional Delta Connection, Figure 4.26 (b)

Phase and line-to-line voltages are the same are given by

Vab =Vas = 11756\/m COS(@e +%j, VbC :Vbs = 11756\/m Costee _%j ,

Vg =V, = 11756V, cos(@e —?—Zj, Vge = Vg5 =1.1756V, COS(ee —?—ZJ’

V., =V, =1.1756V cos(é’e +Z—g]

Phase currents are given by

i, :1.1756Imcos(t9e +5+%j’ i, =1.17561 cos(é?e +5—%},

i —1.17561_cos| 6, +5-F |, i, =1.17561_cos| 6, +5 - |,
10 10
. r
I, =1.17561 cos(é’e +5+—j
10
Line currents are given by
. . 4r
i, =1.38201, cos(d, +5), i, =1.38201 cos(ee +5_ﬁj’
. 8 . kY4
I, =1.38201, cos| 6, +5_E , I, =1.38201, cos| 6, +5+E ,

i, =1.38201 cos(é’e + 5+T—Zj
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4.2.3 Alternate Delta Connection, Figure 4.26 (c)

Phase and line-to-line voltages are the same and re given by

Vv, =V, =1.9021V cos(@e +%j, Vpy =V =1.9021V | 008(19e —T_Zj )

Vce = Vcs =1.902 IVm COS[He —Z_gj 5 Vda = Vds =1.902 1Vm COS[He + ?_gj ’

Vy =V, =1.9021V cos(&e +?_Z)[j

Phase currents are given by

I, =1.90211 cos(é?e +5+%), Iy =1.90211 cos(é’e +5—i—g],

i —1.90211 cod 6, +5—Z |, i, =1.90211_cos| 6, + 5+ |,
10 10
. Sm
Iy, =1.90211 cos(é?e +5+—j
10
Line currents are given by
. . 4r
i, =3.61801_cos(d, +5), i, =3.61801 cos{ee +5—ﬁj’
. 8 . &
I, =3.61801, cos| 6, +5_E , Iy, =3.61801, cos 6’8+5+E ,

i, =3.61801 cos(@e + 5—?—3]
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4.2.4 Without Third Harmonic Voltage Injection

The five phase induction machine is supplied with fundamental voltage at a
fundamental frequency of 60 Hz. Figures (4.27) through (4.38) show different results
depending on the machine winding connections.

Figures (4.27) through (4.32) show normal operation without an inverter, whereas
Figures (4.33) through (4.38) show the results when a five-phase machine is supplied via
an inverter. Figures (4.27), (4.28), (4.33) and (4.34) the machine winding is star
connected; Figures (4.29), (4.30), (4.35) and (4.36), the stator winding is delta connected
(conventionally) and figures (4.31), (4.32), (4.37) and (4.38) are delta connected
(alternately).

The peak value of the fundamental voltage used in this simulation is 187.79 V and the dc

voltage is 360 V.
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Figure 4.33 Starting transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (¢)

torque, (d) rotor phase ‘a’ current, (e) rotor speed

Figure 4.34 Load transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c)

torque, (d) rotor phase ‘a’ current, (e) rotor speed
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Figure 4.38 Load transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c)

torque, (d) rotor phase ‘a’ current, (e) rotor speed
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4.2.,5 With the Injection of the Third Harmonic Supply Voltage Component

The third harmonic voltage with the 10% magnitude of the fundamental was added to
the fundamental voltage. The simulation analyzes the effect of this amount if at all there
is any significant in the overall torque caused by third harmonic component. Figures
(4.39) through (4.50) show different results depending on the machine winding
connections. Figures (4.39) through (4.44) show normal operation without an inverter,
whereas Figures (4.45) through (4.50) show the results when a five-phase machine is
supplied via an inverter. Figures (4.39), (4.40), (4.45) and (4.46) the machine winding is
star connected; Figures (4.41), (4.42), (4.47) and (4.48), the stator winding is delta
connected (conventionally) and figures (4.43), (4.44), (4.49) and (4.50) are delta
connected (alternately). The peak value of the fundamental voltage used in this
simulation is 187.79 V and that of the third harmonic component is 18.779 V. The dc

voltage is 360 V.
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Figure 4.39 Starting transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c)
fundamental torque component, (d) third harmonic torque component, (e) total torque, ()

rotor phase ‘a’ current, (g) rotor speed

Figure 4.40 Load transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c)
fundamental torque component, (d) third harmonic torque component, (e) total torque, (f)

rotor phase ‘a’ current, (g) rotor speed
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Figure 4.41 Starting transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c)
fundamental torque component, (d) third harmonic torque component, (e) total torque, (f)

rotor phase ‘a’ current, (g) rotor speed

Figure 4.42 Load transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c)
fundamental torque component, (d) third harmonic torque component, (e) total torque, ()

rotor phase ‘a’ current, (g) rotor speed

175



. 500F = — T e e e L e —— —— e ——— — — =
s LT — ; ; ; ; ' (2)

Figure 4.43 Starting transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c)
fundamental torque component, (d) third harmonic torque component, (e) total torque, ()

rotor phase ‘a’ current, (g) rotor speed

Figure 4.44 Load transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c)
fundamental torque component, (d) third harmonic torque component, (e) total torque, (f)

rotor phase ‘a’ current, (g) rotor speed
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Figure 4.45 Starting transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (¢)
fundamental torque component, (d) third harmonic torque component, (e) total torque, (f)

rotor phase ‘a’ current, (g) rotor speed

Figure 4.46 Load transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c)
fundamental torque component, (d) third harmonic torque component, (e) total torque, (f)

rotor phase ‘a’ current, (g) rotor speed.
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Figure 4.47 Starting transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c)
fundamental torque component, (d) third harmonic torque component, (e) total torque, (f)
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Time

Figure 4.48 Load transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c)
fundamental torque component, (d) third harmonic torque component, (e) total torque, (f)

rotor phase ‘a’ current, (g) rotor speed
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Figure 4.49 Starting transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c)
fundamental torque component, (d) third harmonic torque component, () total torque, (f)

rotor phase ‘a’ current, (g) rotor speed

Figure 4.50 Load transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c)
fundamental torque component, (d) third harmonic torque component, (e) total torque, (f)

rotor phase ‘a’ current, (g) rotor speed
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4.3 Conclusion

The five-phase carrier based PWM inverter scheme has been analyzed. It is used in
supplying the five-phase induction machine. The simulation of a five phase induction
machine has been presented. Both fundamental and third harmonic components have
been considered. The harmonic voltage of 10% of the magnitude of the fundamental
voltage has been injected. The effect of this injected voltage is shown in the presented
results. The third harmonic torque component has a finite value, although not
contributing much to the required total torque.

Also three different stator winding connections have been considered, i.e. star
connection, conventional delta connection and alternate delta connection. For the delta
connections, two values of the peak phase voltage have been realized. The magnitude of
the phase voltage for the conventional delta connection is 1.1756 times that of the star
connection, whereas for the alternate delta connection, it is 1.9021 times that of the star
connection. This means that more voltage can be obtained in the machine windings

without a need of increasing the supply voltage.
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CHAPTER 5

FIVE PHASE INDUCTION MACHINE UNDER OPEN PHASE FAULTS

51 Introduction

The induction machine has been widely used over the last three decades in
practically all applications requiring variable speed. This is due to its robustness,
versatility and reliability.

In general, the induction machines having three-phase windings are normally used,
since the standard power supply is three phase. However, when fed by an inverter, there
is no need for a fixed number of phases, some other phases being possible and
advantageous.

Much published works have shown that motor drives with more than three phases
have various advantages over conventional three phase drives, such as reduction in
amplitude and increase in frequency of pulsating torque, reduction in harmonic currents,
increase in current per phase without the need to increase the phase voltage, and
reduction in the voltage-level in the dc (direct current) link [3.2, 5.1].

Another important aspect of machines with a higher number of phases is their
improved reliability, since they can operate even when one phase is missing [5.1]. An
increase in number of phases can result in an increase in torque/Ampere relation for the
same volume of the machine, such that five-phase machines can develop torque using not

only the fundamental, but also using higher harmonics of the air gap field [5.1, 5.2]. A
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comprehensive review of the advantages of multi-phase electric machines has been
presented in [5.3].

A good number of research work has been presented on faults in electric machines
[5.4]. Various categories of faults have been discussed for multi-phase machines inter-
turn short circuits [5.4, 5.5] based on winding function approach. In [3.2] a dq model
based on transformation theory for five-phase induction machines has been presented and
the analysis of the machine under asymmetrical connections is discussed.

A control strategy of multiphase machines under asymmetric fault conditions due to
open phase is presented in [5.6]. The authors used a five-phase synchronous motor with
one open phase as a practical example.

So far there is no work that has developed a circuit based model which can be used
to predict not only the steady-state and stability of the open-phase five phase induction
machine but also the dynamics of the pulsating torque. Although it is known that faulted
multi-phase machines can produce significant average torques, not much work has been
done to quantify this.

In this Chapter, to determine the steady-state and dynamic stability performance,
first a five-phase induction machine with one phase (phase ‘a’) open is modeled in
stationary reference frame. Then the same analysis is carried out for two phase open, ‘a’
and ‘b’ (for adjacent phases) and ‘a’ and ‘c’ (for non-adjacent phases). For the first time,
using harmonic balance technique it has been possible to develop a circuit based model
that has been used to perform the steady-state and dynamic analysis of a faulted machine.

The steady-state speed harmonics and torque pulsations have been calculated and the
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results compare fairly well with the simulation results based on the full-order dynamic
model of the faulted machine.

Furthermore, the small-signal stability study has been made through the small signal
analysis whereby the dynamic model obtained from the harmonic balance technique has
been used. At low speeds, the machine exhibits instability due to the rotor flux linkages.
This instability is eliminated when the machine speeds up close to synchronous speed.
This indicates that the machine can still be able to start under one stator phase fault and
provide significant torque to meet most load requirements.

Section 5.2 presents the machine modeling in stationary reference frame. The model
of a faulted machine with stator phase ‘a’ open-circuited is discussed in section 5.3. In
section 5.4, a thorough presentation of the harmonic balance technique is described. The
steady state and dynamics models are discussed in section 5.5 and finally the conclusions
are presented in section 5.6. The approach presented in this work can be extended with

ease to any number of open phases for a multi-phase machine.

5.2  Five-Phase Induction Machine Modeling in Stationary Reference Frame

The stator and rotor dynamic Equations in the natural reference frame, followed by

transformation of the machine variables to the qd variables in the arbitrary reference

frame, are given in Chapter 2 in which the balanced case for the stator voltages was

considered. In this case only two components (q and d ) of the voltage and current exist,

the rest are zero. For the open phase faults analysis, whereby the phase voltages across

the stator machine windings are no longer balanced, then the other voltage components
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do exist after transformation [3.2]. for the sake of clarity, the dynamic Equations for the
five phase induction machine will be rewritten as follows

For the stator winding, the stator voltage Equations are expressed as

Vo =l + PAy (5.1)
Vi = iy + PA (5.2)
Vi =i + PAg (5.3)
Vi =% + pA% (5.4)
Vo =i + PA (5.5)
where vV, V., Vi, and Vv, are the phase stator voltages, respectively; .o, iy, Ie» I

and i, are the phase stator currents, respectively; A, 4, 4, A5 and A, are the phase

as?’ (-

stator flux linkages, respectively; r, is the stator phase resistance. The superscript ‘@’ on
phase ‘d’ variables will be used throughout this Chapter in order to differentiate it from

the d-axis variables.

For the stator winding, the stator voltage Equations are expressed as

Vor = Ny + P4y (5.6)
Vbr = r-ribr + pﬂ“br (57)
Vg, =i, + pA, (5.8)
Vg = Flg + PAg (5.9)
Vo, =TI, + PA, (5.10)
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where V,.,V,, V., Vg and Vv, are the phase rotor voltages, respectively; i

. . .a
ar’lbrﬂ Icr’ Idr

and i, are the phase rotor currents, respectively; A,,4,,, 4., Ag and 4, are the phase

ar? cr2

rotor flux linkages, respectively; I, is the rotor phase resistance

The arbitrary reference frame transformation matrix is given by

[coyx) cos(x - a) cogx— 2a) cogx+ Za) cos(x + a) ]
sin(x) sin(x ~a) sin(x —2a) sin(x+2a) sin(x+ a)
T(x) _ 2 cos(x) cos(x - 2a) coix + a) cos(x - a) cos{x + Za) (5.11)
S sin(x) sin(x—2a) sin(x+a) sin(x—a) sin(x+2a)
1 1 1 1 1
2 2 2 2 2

2z ) ) .
where « :?, X=60-6,, 6 is the arbitrary reference frame transformation angle.

0, =0° is for the stator stationary reference variable transformation and 6 =6, is for

the corresponding rotor variable transformation, where 6, is the electrical rotor angle.
Therefore, the machine variables can be transformed to qdxyoz variables as

fquyoz ZT(X)fabcdez (5.12)
where

fingor = [fqZ f, fo T, foz]T is the variables (voltages, fluxes and currents) matrix

in qdxyo reference frame and f, ., = [faz f, f, fa f,| is the variable

(voltages, fluxes and currents) matrix in natural reference frame; z can replaced with s
and r for stator and rotor variables, respectively
For the open stator phase fault, the five-phase induction machine is modeled in

stationary reference frame. In this case the reference frame transformation angle is zero,
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1.e. 9=0°. For the general balanced case, the machine model Equations can then be given
as follows [5.1].

The stator voltage Equations are

Vg = Flgs + PAg (5.13)
Vgs = Filgs + PAg, (5.14)
Vis = Iy + PAy (5.15)
Vis =Ky + PAy (5.16)
Vs = Filog + PAgg (5.17)
where V,Vy, V.,V and v, are the g-, d-, X-, y- and O-axis stator voltages,
respectively; iqs, Tges Dygs iyS and i, are the g-, d-, X-, y- and O-axis stator currents,

respectively; A, Ay, 4

45> A, and A are the g-, d-, X-, y- and 0-axis stator flux linkages,

XS 2
respectively; I is the stator phase resistance

The rotor voltage Equations are

Voo =g + PAy — @ Ay, (5.18)
Vg =g + DAy + @ A, (5.19)
Ve =i, + pA, (5.20)
Vi =iy, + pA,, (5.21)
Vv, =ri, + pA, (5.22)
where V;]r,v(',r, Vo, v;,r and v,, are the g-, d-, X-, y- and o-axis stator voltages,

respectively; g, ig, iy, i, and i, are the g-, d-, x-, y- and o0-axis rotor currents,
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' '

respectively; A, Ay, Ay > A, and A, are the g-, d-, -, y- and 0-axis rotor flux linkages,

qr° Xr s

respectively; I is the rotor phase resistance; p is the differential operator

The stator flux linkages are given by

Ags = Lige + Ly, (5.23)
Ags = Liig + Lol (5.24)
Ay = Lighy (5.25)
Ays = Ligly (5.26)
Aos = Liglos (5.27)
where L, and L, are the stator self and leakage inductances, respectively; L, is the
magnetizing inductance.

The rotor flux linkages are given by
Agr = Lpigs + Liig, (5.28)
Ay = Lig + L,y (5.29)
A, =L, i, (5.30)
Ay = Ly, (5.31)
Ay = Ly, (5.32)
where L, and L, are the rotor self and leakage inductances, respectively.

The electromagnetic torque T, is given by
T, =mTPt—,m(z;,riqs — Aoyl ) (5.33)

r

The rotor speed is given by
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(5.34)

% po, =Te _TL

where m is the number of phases, P is the number of poles, J is the moment of inertia,

and T, is the load torque.

5.3  Model of an Open Phase Faulted Five-Phase Induction Machine

Consider the configuration of Figure 5.1 with a switch connected in series with

phase ‘a’ of the stator winding. Open phase fault occurs when the switch is open such

that the supply voltage is disconnected from the machine’s phase ‘a’.

Y
—
Y
—
Y
—
U
—
O
—

Figure 5.1 Open phase ‘a’ of the stator for the five phase induction machine
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From the transformation relationships of (5.12), where subscript z is replaced with s

for stator variables, it can be deduced that

QS=§{gs+fmamgﬁ+fmamca)+fgam@ay+g¢m4aﬂ (5.35)
- %[_ f,. sin(ar) f, sin(2a)+ f2 sin(2ax)+ f,, sin(a)] (5.36)
gs:%{gs+fmcoqza)+f%coqa)+fgc04a)+f%coqzaﬂ (5.37)
fﬁ=§L¢mgqm@+fmgdangmdapwﬁadmﬁ] (5.38)
%zéh%+m+hﬁ4£+% (5.39)

When the stator phase ‘a’ is open, the machine voltages become unbalanced. Since
phase ‘@’ voltage becomes unknown, then the g- x- and 0-axis voltages become unknown

as they are coupled to v, in Equations (5.35), (5.37) and (5.39), respectively.

The relationship between the g-axis and the x-axis stator variables can be given as

qu - fxs =C (540)
4 a
f$+%=ggﬁfim+nﬁwm+g (5.41)
where

C= gl(fbs - fcs - fdas‘ + fes)
& = %[cos(a)—cos@a)] (5.42)

&, = g[cos(a)Jr cos(2a)]
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When the variable f is replaced with the stator phase voltages and currents,

Equation (5.40) is used to eliminate the unknown phase ‘a’ voltage. Also Equation (5.41)
is used to get the relationship between the g-axis and x-axis stator currents. Thus, (5.40)

and (5.41) turn into

Vs =V =C (5.43)

iy i = &5 (i +ie +13 +ig ) (5.44)
Kirchhoff’s current law (KCL) still holds true such that

o g i +ig +i =0 (5.45)

Now since i,, =0, then from Equations (5.44) and (5.45)

Iy T, =0 (5.46)

When (5.46) is substituted into (5.15), the x-axis stator voltage Equation becomes

Ve = —Filgs — Lis Pigg (5.47)

Substituting (5.47) into (5.43) gives

Vg =C =1 — Ly pig (5.48)
Equations (5.13) and (5.48) can now be combined to give

C =2r, + L pi, + pA, (5.49)

Now, the stator flux linkages and the rotor currents can be eliminated as follows

Ao = Lo, +%(,1‘qr ~ L) (5.50)
ﬂ”ds = Lsids +I|:_m(ﬂ”'dr - Lmids) (551)
i, = Li,(/fq, ~ L) (5.52)

r
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i, = Li(z ~ L) (5.53)

r

Substituting (5.50) and (5.51) into (5.49) and (5.14), respectively, and then

rearranging, results into

. 1 .

I LC-2r.Li_ —L_ pA 5.54
pqs L|5Lr+|—|— L2 ( strigs mP qr) ( )
= (Lv, —rLiy, ~L,pA,) 5.55
Ply = I—s L'r _ L?n Vs — Tsbplgs PAG ( . )

Substituting (5.52) and (5.53) into (5.18) and (5.19), respectively leads to

r

pﬂ:qf = V;}r _L_r(ﬂ"qr - Lmlqs)+ 2 ﬂ”dr (556)
Py =V =1 ~ L )= 02 (5.57)

r

Then from (5.35) phase ‘a’ voltage is given by

= %Vqs — [V, + V. Jcos(a)- [VCS + Vi ]cos(Za) (5.58)

as

Equations (5.33), (5.34), (5.54), (5.55), (5.56), (5.57) and (5.58) are the defining
dynamic Equations for the faulted machine and are used to determine the circuit based
model of the open phase faulted five phase induction machine. They are used to simulate
the machine for this faulted condition.

In this analysis, the real and reactive powers have been calculated to show the effect
of oscillations in the speed and torque. The stator input real and reactive powers are given
in terms of the natural reference frame variable as (5.59) and (5.60), respectively, the

derivation of which has been presented in Chapter 2. Equation (5.59a) presents the
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general expression fro the real power, whereas Equation (5.59b) represents the expression
for the real power when the system voltages and currents are balanced. Equation (5.60)

represents the general expression for the reactive power in all cases.

9 . .
Z as as +Vbs|bs +Vcs|cs +Vds|ds +Ves|es)
2 bs+| +ids+i )+Vbs(ia +i +ids+ies)+vcs(ias+ibs+ids+ies)+ 27[
— . cos| — |+ |+
p_ 5 Vds +Ibs+| ) ( s+|bs+|cs)
[ Los +| +|ds +| )+Vbs(las +ids +ies)+vcs(ias +ibs +ids +ies)+JCOS[4_7TJ
Vds as +|bs +| ) es(las +|bs +ics +ids) 5 i
l|:v I +Ids+|es)+vbs(las+|cs+ids+ie5)+ :|
51V (I + Ibs + ids + ies)+vds (ias + ibs + ics + ies)+ves(ias + ibs + ics + ids)
(5.59a)
p = [Vaslas +Vbs|bs +Vcs|cs +Vds|ds +Ves|es] (559b)
Vasles Veslas + Vislas — Vaslbs +Vcs|bs Visles + . (2r . (4r
S| — |+Smm| — | [+
q _ g Vdslcs Vcslds +Veslds Vdsles 5 5 (560)
5 47[)}

Vaslcs Vcslas +Vbs|ds ~ Vs lbs +Vcs|es ~Vesles . (27 .
] sin| = |—sin| —
i Vielas = Valgs  Velps = Viglog 5 5

as as'ds

5.3.1 Harmonic Balance Technique for One Stator Open Phase Fault

By using the harmonic balance approach, the Equations for the calculation of the
steady state and harmonic quantities are derived in this section. The state variables are

assumed to have the form of the supply voltages. The supply voltages are represented by

Vbs = Re(vbsse 10 )

) (5.61)
Vbss :Vmeim
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Ves = Re(vcs.se " ) (5.62)
Vcss =Vme_12a

Vs = Re(V(_‘i‘sse ) (5.63)
Vsss :Vmejza

Ve = Re(v?“e ") (5.64)
Vess = Vme 1

where V,, is the peak of the phase voltage. In view of the form of the supply phase

voltages, the state variables and the input voltages are therefore defined as [5.7]

Vs = Relv e/ (5.65)
Vg, = Refvye'®) (5.67)
v, =Relv,.e*) (5.68)
i, = Relie'”) (5.69)
iy, = Reli.e') (5.70)
i =Relie/”) (5.71)
Ao = RelAc0 ) (5.72)
g = RelAg.8%) (5.73)
2, =Rel(2,.e/%) (5.74)
Ay =Rel4,,e') (5.75)
i =Refi,,e”) (5.76)
i, =Reli,, e ) (5.77)
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where 6, = o,t, o, =2af,, f, is the frequency of the supply voltage, v

e

Vdss ,and szs

qss *

are the complex peaks of the g-, d- and x-axis stator voltages, respectively; i, i,and

I, are the respective q-, d- and x-axis complex peaks of the stator phase currents, A

Xss qss

Adgs» and A are the complex peaks of the g-, d- and x-axis stator flux linkages,

dss »

respectively;. A, A

arr > Aare -and A, are the complex peaks of the g-, d- and x-axis rotor flux

linkages, respectively; iy, iy,,and iy, are the complex peaks of the g-, d- and x-axis

rotor phase currents, respectively.

It has to be noted here that Re(x) refers to the real part of quantity X. In obtaining the

model Equations based on the harmonic balance technique, the following relation has

been used [5.8, 5.9]
1 .
Re(x)Re(y) = E[Re(xy )+ Re(xy)] (5.78)

Only up to the second order harmonics are considered.

Substituting the stator fluxes and currents into the torque Equation (5.33), results

Te= mTP% [Re( drre 1" )RC( QSse 1 )_ Re(ﬂ’qrre 1% )Re( lss© i )] (5'79)

Applying (5.78) on (5.79) and then separating real and imaginary terms gives

mP L,

Te TL__[R ( drr qss)—l—Re(ﬂ”drr qssejw ) Re(ﬂ”qrr dss) Re(;tqrr dsselzg )] (580)

The torque has two components, the average component and the pulsating component
given by

Ty =T + 1T,

eavg epuls

(5.81)
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where

eavg mgP II__ [R ( drr qss) Re(ﬂ’qrrI(:ss )] (582)
Tepuls = n;P IL [R ( drr qss) Re(ﬂ“qrrldss )] (583)

T..., 1S the average torque component, and T

cavg is the pulsating torque component which

epuls
is oscillating at twice the supply frequency.
Using the speed Equation (5.34) and the result of (5.80) it is obvious that the speed

will have both the average value and the second order harmonic content. Therefore
W, =0, + Re(a)”ejwe ) (5.84)
where @, is the average rotor speed and @, is the complex peak of the speed harmonic

component.
When Equations (5.61) through (5.77) and (5.84) definitions are substituted into
Equations (5.54) through (5.58), the following harmonic balance technique model results

Similarly, from Equations (5.54)
pReli e/ )= EL Re(Ce!” )-2r.L, Reli e )- L, pRe(4,, e ) (5.85)

L. Ce’ —2r, L, Refi,.e'*)
Re (p qSSeJH )+RC(J(0e qssejg) 71( |_ Re(p/lqrrelg) qRe(Ja) m qrrelge) (586)
Dine + i @ices = 7L, C — 20, Lieee — Ly pAy, — jeo, Ly Ay ) (5.87)
where
i 1
L +LL -2

Is =r

C= & [Vbss ~Viess — Vs TV

€ss
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Similarly, from Equations (5.55)
oReli, 0 )=, U Refup, 0 ). Refioe™ )L, — L, pRelz e ) (5.58)
e AN L, Re(vdsse 10 )— r, Re(idsse 16 )L'r
Re(pldsse )+ Re(]weldsse ) 7, L L Re(p/fd,re"@ )_ L Re(ja)e/l'd”em) (5.89)
pidss + jweidss =1, (L'rvdss - rs Lyridss - I-m pﬂ“ydrr - ja)e I‘mﬂ“ydrr) (590)
where
1
T
from Equation (5.56),
o ' Re(/f "ejé)e) _ o
p Re(ﬂ’q”e " ): _%(_ L qRe(I el )] + [a)ro + Re(a)rle o )][Re(ﬂ,d”e we )] (5.91)
—[—{(Re(%”ewe )L, Rell e ))
Re(pﬂ"qrre 10 )+ Re(ja)eﬂ"qrre 10 ): @y, Re(ﬂ'd”e 16 )+ %Re(wn/ﬁrre 16 ) (592)
+
+ %Re(a)”/fd”e 136 )
Considering the fundamental component (e 16 ) and ignoring the third harmonic
component, we have
pﬂ“'qrr + ja)eﬂ“'qrr = V(']rr _[_f(ﬁ’yqrr - Lmiqss )+ a)roﬂ“'drr + a)rlﬂ“zrr (5.93)
Similarly, from Equation (5.57),
o r Re(/l',rejge) 0, -
F’Re(ﬁ'drrejge ): _L_'r£_ L dRe(idssejge )J - [wro + Re(a)”ejw ) Re(’lqrrejg )] (5.94)
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el e )L, Reflgee)

drr dss
r

Re(pidr,ejge)+Re(ja)e/1' ejg‘*): - o, Re(/f ejgﬁ*)—%Re(a)rl y ejge) (5.95)

drr qrr qrr

—%Re(wrlﬂ ejzge)

qrr

Considering the fundamental component (e 16 ) and ignoring the third harmonic
component, we have

'

' - ' ' r' ' 1k
pﬂ“drr + Ja)eﬂ“drr = Varr _L_f(ﬁ’drr roﬁ’qrr - a)rlﬂ“qrr (596)

- Lmidss )_ @,

r

From Equation (5.58),

Re(Vasse 0, ) _ %Re(vqsse 1 )— [Re(vbsse 1 )+ Re(vesse 1 )]cos((x) (5.97)
- [Re(vcsse 10 )+ Re(vdsse 10 )]cos(2a)

Vass = quss - [Vbss * Vess ]cos(a) - [ oss T Vass ]COS(20!) (598)

Performing the same analysis on Equations (5.15) and (5.16), gives

pRe(i e/ )= Ll [Re(v,..e/ )-r, Reli e | (5.99)
Is

Re(pixsse”e )+ Re(ja)eixssej‘ge )= %[Re(vxssejge )— r, Re(ixssewe )] (5.100)

Is

piXSS + ja)eixss =LL[VXSS _rSiXSS] (5'101)
Is

from Equation (5.16)

pRe(i, e )= LL [Re(vysse )1, Re(i e ) (5.102)
Is

Re(pi e )+ Reljem,i e )= Ll[Re(vyssei"e )-r, Refi, e ] (5.103)

Is
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i[vyss i ] (5.104)

p yss + Ja)e yss L s'yss

Is

Substituting Equations (5.80) and (5.84) into Equation (5.34)

2J i26, mP L 1 Re(ﬂ’drr qss)+Re(ﬂ“drr qssejzg )
? pl:a)ro ' Re(a)rlej )] 4 L 2 [ Re(ﬂ’qrr dSS) Re(ﬂ'er dSSe J29 ) ) ] (5'105)
pa)ro + Re(pa) ejzge) mP L 1 Re(ﬂ“drr qss)+ Re(ﬂ“drr qssejzg )

— =——"— -T, (5.106)
P +Re(j2a)ea)r1e129 ) 4 Lr 2 Re(ﬂ'qrr dss) Re(ﬂ“qrr dssejzg )

Separating the first and second order harmonic components gives

2 Po,, = Teo _TL (5107)
P

%(pa}rl + jzwewrl):Tepuls (5108)

where T, is the average electromagnetic torque and T,

is the magnitude of the

epuls
pulsating torque given in Equations (5.82) and (5.83), respectively.

Equations (5.87), (5.90), (5.93), (5.96), (5.98), (5.107), and (5.108) form the dynamic
model which is used for steady state performance and stability analysis of the open phase

faulted five-phase induction machine.

5.3.2 Steady State and Dynamic Model Analysis

5.3.2.1 Steady state model. The model obtained by harmonic balance technique can
be used in analyzing the steady state performance of the faulted machine. In this
particular case, the peaks of the state variables are constant and therefore the derivatives

of the state variables are zero. Thus at, steady-state, Equations become
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Ve = [LISrSLrlqss+ja) Lol A +0,C — iy |

Is =m“*qrr 0°5°Qss
Is r
04 = =T — Lo 4 0 Ay + 0, ]
Ja, qrr _L_- qrr mlqss + O A + 2(0 drr
L r | "
Ja)eﬁ“drr =- L' (/1drr Lmldss) roﬂ’qrr _Ea)rlﬁ“qrr
. 1
Ja)elqss = [L qss - qss r 12 m qrr]
. 1
Ja)e dss = [L Vdss — s Lr - J(l) L ﬂ’drr

Teavg = ?L_m[Re(ﬂ’drr qss) Re(ﬂ’qrr Liss )]

pul :m?PII___'T[Re(Idrr qss) 1{e(ﬂ“qrr dss )]
0 = Teavg TL
a)rl = 4jp Tpuls

Equation (5.110) can be written as

rL, . ro. . 1
OZTIqSS —[L—,r/iq” + Jo, ]/1 + @, gy + 20) Ao

r

Equation (5.111) can be written as

rL, . S ro. ,
0= L lgss — a)roﬂ’qrr _Ea)rlﬂ’qrr - (L_r + Jo, Jidrr

r

Substituting (5.109) into (5.112) for v, we have

qss

199

(5.109)

(5.110)

(5.111)

(5.112)

(5.113)

(5.114)

(5.115)

(5.116)

(5.117)

(5.118)

(5.119)

(5.120)



L2L.r, . jo L L L L.a,C

Is's Is =m =r r“o

- - Lls Lrao + aﬁ > I-Is I-r0[0 +(Z§ " Lls Lrao + 055
JOelgss = . , . 5.121
La,r, . r, Lri jo L, B
L.La +a® a ¥ o
I"rz I-Is rs I"rao rs
L a,C LoLya, +a; Lila, +a; | jo,L L,L, jolL, ),
_ raoc - — Is r' 0 0 Is =r**o (o] qss+ Ja)e Is =m ;_Jwe m ﬂ’qrr (5122)
LLa+a; r,L, . LLa+a, a,
-——Jo,
o Jo,
Equation (5.113) can be written as
Lo . ) jo L, . LV
[ sTr o4 Jwe}dss + Ja)e m ﬂ’drr — I "dss (5123)
aO aO aO
Equation (5.114) can be written as
r . - Vyss
—+jo, i, = 5.124
(Lls J eJ VSS Lls ( )

The resulting model can be computed normally as for any other steady-state system.
Since there is a coupling term due to the speed harmonic content ®,,, then the steady-
state model becomes nonlinear and thus requires a nonlinear technique to solve this
model iteratively. This approach requires the model Equations to be separated into their
real and imaginary parts, and thus introducing more state variables since each of the state
variable will be spit into its two components, i.e. the real and imaginary parts as

independent state variables. If f, and f, refer to the real and imaginary parts of the
quantity f ,respectively, then f = f_ + jf, .

Now, let the quantities of Equations be presented in coordinate form as
A = Agre + 14 (5.109)

qrim
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Zdrr = ﬂ’drre + jﬂ’drim (51 10)

lgss = Tgsre + Jigsim (5.111)

idss = idsre + jidsim (5112)

iyss = iysre + jiysim (5113)

. L a,C

Coe + JCo =—————— 5.114

sre J sim I—|5 I—rao +0!02 ( )
: L,V

Vdsre + Jvdsim == (5115)
(24

0

From Equation (5.108) it is obvious that the real part of w,, is zero (cume = 0),
hence w,, is an imaginary quantity. Therefore
a)rl = ja)rlim (5116)

Substituting these definitions into Equations (k) — (0) and (g) to (j), we have

rL. . rL, . r : T
: 'm Iqsre ngqsim __rﬂqrre - Ja)eﬂ’qrre - J_'v’ﬂ“qrim +
L L L
0= : r r (5.117)
. 1. 1
a)eﬂ’qrim + wroﬂ’drre + Ja)roﬂ”drim +5 Ja)rlimﬂ”drre +Ea)rlimﬂ’drim
rL, . r
rL' = Iqsre __f}“qrre + weﬂ“qrim + a)roﬁ“drre +%wrlim}“drim +
0={ ' 1 " ’ (5.118)
j(a)roﬂ“drim + Ewrlimﬂ“drre + %iqsim - a)eﬂ“qrre _L_rﬂqrimJ
Separating real and imaginary terms
rL, . r 1
0 = %Iqsre _L_l:ﬂ’qrre + a)eﬂ”qrim + a)roﬂ”drre +5a)rlim2’drim (51 19)
rL . r
0= er = Iqsim - a)eﬂ“qrre _L_fﬂ’qrim +%a)rlimﬂ“drre + a)roﬂ“drim (5120)

r

r
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r'L rL : ,
r-m ; slrbm s :
— lgsre ) lgsim — wroﬁ“qrre - Ja)roﬂ’qrim _r_f/’t _ Jr_"ﬂ
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s —ro
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Is=r**o o]

Separating real and imaginary terms
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Is =r**o

2 'gsre
0 Is =r**o 0

2r.L a,

2 “*qrim e’ gsim = Csre

L.La +a

@, I—m «,

- a)elqsre -

o,

LLa +a

Is=r*o o}

=C

2 “Fgrre sim
L.L, o, +a,

2 lgsim

rL. . ). . jo, L . :
[ — + Jwe J(Idsre + Jldsim)—l_.la;ﬁ(idrre + Jﬂ’drim)= Vdsre + Jvdsim
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2 (/Iqrre + jlqrim): Csre + stim

(5.121)

(5.122)

(5.123)

(5.124)

(5.125)

(5.126)

(5.127)

(5.128)

(5.129)



- ﬁ’drim = Visre T jvdsim (5130)
(04

rL. . . rL . . jo,L o,L
sr sr e =m
Idsre + Jweldsre + J Idsim _a)eldsim + ﬂ“drre
0 a, a, 0
r.L, . _ o,L [ . r.L, . w,L .
sr e =m str e =m _
lisre — @elysim — ﬂ’drim + ]| Oelyge + Lasim T drre | = Vasre T JVasim (5131)
0 a, a, a,

Separating real and imaginary terms

e — i — 2 Ay =V
dsre e dsim drim dsre
0 0
r.L w,L
H ST e —m _
a)eldsre + Idsim ﬁ“drre - Vdsim
0 a,

Therefore the steady-state real Equations are

rL. . r 1
_ 'rbm r
0= Lv Iqsre _L_vﬂ“qrre + weﬂqrim + a)roﬂdrre +Ewr1imﬂ“drim
r r
rL, . r 1
0= Lv Iqsim - a)eﬂ‘qrre _L_-ﬁ“qrim + Ewrlim/ldrre + wro/ldrim
r r
rL, . 1 r,
0= L—v lisre — a)roﬂ‘qrre - Ewrlﬁ“qrre _L_-/ldrre + a)eﬁ“drim
r r
rL, . 1 r
0= L Lisim — a)roﬁ’qrim +5a)rlﬂ“qrim - a)eﬂ“drre _L_'ﬁ’drim
r r
2r,L,a, P, @bl i c
_ . ol . =
L.Lea, +a2 ™ LLa, +a2 ™" CFm
a3|qsre + a4ﬂ’qrim + welqsim = Csre
where
S 2r.L,a,
y = ——
Lls I-r ao + ag
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(5.133)

(5.134)

(5.135)

(5.136)

(5.137)

(5.138)
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@, I-ma(o

" LLa, +a

Is™=r**o

a,

- welqsre + a3|qsim + a4/1qrre = Csim

r.L . w.L

str - e m _
lisre — @elgsim — o ﬂ“drim = Visre

0 0o

r.L w,L
H sro e —m _
a)eldsre + Idsim + ﬁ“drre - Vdsim
0 a,

These Equations can be written in matrix form as

bo = ono
where
- 0 _
0
0
0
b, =
Csre
Csim
Vdsre
Vdsim_
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(5.141)

(5.142)

(5.143)
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I |'—m 0 0 0 - r_': @, W, la)rlim
L, L, 2
rL r 1
0 rmoQ 0 - o, - = Ohin O
L, L, 2
rL r
0 0 - 'm 0 _la)rlim Dy 0 __l: W,
L, 2 L,
rL 1 r
=l 0 0 0 — 0 —— O — Oy — D -—
& L. 2 " L.
a, o, 0 0 0 a, 0
-, a, 0 0 a, 0 0 0
r.L L
0 0 =T g, 0 0 0 —Lem
aO aO
r.L. L
0 0 o = 0 0 Geem
L 0(0 0{0 i
(5.145)
i iqsre ]
iqsim
idsre
X = idsim (5 146)
° ﬂ“qrre '
2’qrim
ﬂ“drre
_ﬁ“drim_

An initial value of @,, is assumed (in this case 0.6 rad/sec). The rotor speed is
varied from 0 to @,. At every speed value, the value of ,, is iterated by using the

pulsating torque to calculate the new value of @,, until the threshold is obtained, then

calculation of different state variables continues. If however the speed pulsations are
neglected in the voltage Equations, the resulting steady-state Equations are linear and

admit closed form solutions.
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5.3.2.2 Small signal analysis. To study the dynamics of the faulted system, small

signal model is derived from the harmonic balance technique model by causing small

changes in the state and control variables.

Equations (5.82), (5.83), (5.87), (5.90), (5.93), (5.96), (5.107) and (5.108) are used

in developing a small signal model of the form

pPAX = AAX + BAu

(5.147)

where X is the state variable, A is the state matrix given by (5.164), Bis the control

matrix and U is the control variable. As it is for the case of the steady-state analysis, the

resulting equations are split into their real and imaginary parts. Thus, the state matrix

(5.164) so obtained consists of real parameters.

The small signal dynamic Equations are

N L [FlnlE L Wi, + (0Ll + oLt Wi +
PAle =] .. ‘ . ) . . .
! LFaO + L|S sz LrZCre +r I‘mAﬁ“qrre — Wy, I-r LmAﬂ’drre - I‘r Lmﬂ’drreAwro

. 1 - (a)e I‘Is I‘vrz + o, I‘Irao )Aiqsre - (2 s Llr2 + rr' Lfn )Aiqsim +
pAI sim — v 12| . ' | ' ' ) :

! LfaO + L|S LTZ I—rzcim +rI I—mAﬂ’qrim — Wy Lr I—mAﬂ’drim - I—r I—mﬂ’drimAa)ro

| r|: Lm (0!0 + I‘Is Lvr )Aiqsre - r|: (0!0 + I‘Is Lyr )Aﬂ’qrre
pAﬂ’qrre = m + @, L'r (0(0 + Lls I—'r )A/lqrim + @ I—Vr (ao + Lls I—Vr )Aﬂ”drre
ro Is =r

+ I‘vr (ao + I-Is L'r )ﬂ’drreAa)ro

rr' I-m (0!0 + I‘Is I‘vr )Aiqsim — W, I"r (0[0 + Lls I-'r )Aﬁ“qrre
PAA i = ﬁ - r (e, + L, L'ry WA + 0L (@ + Loy WA
+ I‘r (ao + I-Is Lr )ﬂ’drimAa)ro

Is =r

L) . rL
i 1| Vase =| s Lr +— ' AIdsre + a)eaoAldsim +r—,mAﬂ
pAIdsre = L L

0 '
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m7*qrre

' '

+o,,L,A4

drre qrre

r r
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: A S rL.
1 | Vasim _a)eaoAldsre _(rs I‘r + rL' . )Aldsim +%Ai
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’ + wro I‘mA}“'qrim + I-mj"qrimAa)ro
, rlL, .. : : roo. ,
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r r
, rl, .. : : .. :
pAﬂ“drim = TAldsim - a)roAﬂqrim - ﬂqrimAa)ro - L_'Aﬂ“drim - a)eAﬂ“drre
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ro o ' . ' - . ' . ' T A4 L
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pAa) _ P 5P Lm ﬂ’;;irreAiqsre - ﬂ"drimAiqsim + iqsreAﬂ"drre - iqsimAﬂ’;;irim
rire = U - ' . ' ' - ' -
2J 8 L" - IdsreAﬂ’qrre + IdsimAﬂ“qrim - ﬂ“qrreAldsre + ﬂ’qrimAldsim
pAa)rlim = _2a)eAa)r1
pAa)ro _ 5P2 L_m Zd'rreAiqsr'e + 2"d.rimAiqsi'm - zqirreAidsr'e - ﬂ’vq.rimAidsi'm —LATL
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rire ~— A1 o 1 . , . ' . ' . '
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(5.154)

(5.155)

(5.156)

(5.157)

(5.158)

(5.159)

(5.160)

(5.161)

(5.162)

Thus, the matrices of Equation (5.144) can be deduced form (5.148) through (5.162) as
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_ Aiqsre -
Al g
Al ggre
Al g,
Agee
PAX =| Adyin (5.163)
Alyire
Agrim
Aw,,
Aw,y,
| Aw, i |
B/ B 0 0 B0 B 0 B O 0]
Be B 0O 0 0 B 0 B fy 0 0
0 0 By b b 0 By 0 fs 0 0
0 0 fis Py 0 Py 0 fio P O 0
B 0 0 0 fn Py Pu 0 By O 0
A= 0 Py 0 0 By Py 0 Sy Py O 0 (5.164)
0 0 /5y 0 Sy 0 pBy By Bs O 0
0 0 0 B 0 By Py P P O 0
Bi Bu Bi Bu Bis P Py P 0 0 0
B PBsw Psi P Pss P Pss Pss 0 0 0
| 0 0 0 0 0 0 0 0 0 0 2o, |

The stability of the faulted five phase machine is studied through the calculation of
the eigen values of the resulting state matrix. The entries of (5.164) can be easily

obtained from Equations (5.148) through (5.162).

where
= —1 =—(2r.L? L2 = L.L2 L
a, = ] D a =—-\arL, +rL, ), a, =@, \L L, ta,L, ),
a L+ L, L
a3 =r Lm a, = —Wy, Lr I-m » a'5 = _Lr I-mﬂ’drre ’ aé = _Lr I-mﬂ’drim »
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5.3.3 Results and Discussion

The validity of the various models presented in Sections 5.2-5.3.3 has been
investigated through the computer simulation of the full-order model of the machine with
stator phase ‘a’ open-circuited. The steady-state model is used to calculate the state
variables and then the results are compared.

Figure 5.2 through Figure 5.4 present the simulation of the free acceleration starting
process of the machine. The phase voltage is applied to the remaining four phases (b, c, d,
and e) and Equation (5.58) is used to determine stator phase ‘a’ voltage. Figure 5.2(a) and
(b) show the rotor speed and electromagnetic torque, respectively, showing the
characteristics similar to those of the healthy induction machine. In Figure 5.3(a) the
stator phase ‘a’ current is zero as expected. The stator phase voltages are shown in Figure
5.4 with the starting transients of the open phase ‘a’ as it develops the voltage is clearly
displayed in Figure 5.4(a).

When the rotor speed is in steady state, the load torque is changed from 0 to 11 Nm
to show the effect of the speed harmonics. The dynamic responses of the machine to load
changes are shown in Figure 5.5(a) and (b) for the rotor speed and electromagnetic
torque, respectively. In Figure 5.6 through Figure 5.9, the waveforms of the variables are
shown after the speed has reached steady-state average value. It is evident from Figure
5.6(a) and (b) that the speed and torque consist of the harmonics at twice the frequency of
the supply voltages as predicted by the harmonic balance technique model. The
unbalance caused by the open phase fault is clearly indicated in the stator phase load

currents, Figure 5.7. Figure 5.8 (a) shows that when the machine is loaded, the open
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phase ‘a’ voltage is affect as it is reduced. This is due to the fact that the voltage
waveform is induced by the other phases and the rotor circuits. The real power and
reactive power also contain second order oscillations as shown in Figure 5.9 (a) and (b).

Figure 5.10(a) and Figure 5.10 (b) show the peak values of the rotor speed and
torque pulsations, respectively as a function of the rotor speed. In Figure 5.6 (a) the
average rotor speed is approximately 364.6 rad/sec, the peak value of the speed
oscillations is about 0.04 rad/sec. In Figure 5.6(b) the average torque is 11 Nm and the
peak of the torque oscillations is about 2.5 Nm. These speed and torque values are fairly
comparable to those in Figure 5.10(a) and Figure 5.10(b), respectively.

Figure 5.11 presents the torque-speed characteristics at both normal and open-phase
faulted conditions. First the normal operation of the machine is computer simulated and
the steady-state torque curve is superimposed on the simulated curve. Then the same
procedure is followed for the open phase faulted condition. Under this operation, the
torque envelope is obtained by adding the peak of the pulsation torque to, and subtracting
it from the average value obtained from the harmonic balance technique. Comparing the
results of the dynamic computer simulation and the steady state calculations for both
cases, the harmonic balance technique gives average and peak values of the torque that
compare fairly with simulation results.

Figure 5.12 and Figure 5.13 present the small-signal dynamics of the system when
the rotor speed is changing. The result of Figure 5.12 is obtained when the rotor speed is
varied from 0 to 377 rad/sec. The machine shows instability at low speeds. This is

contributed by both the speed harmonics and the g-axis rotor flux linkage 7 . In Figure

5.13, when the rotor speed is varied from 11. 78 rad/sec to 377 rad/sec, the instability due
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to the g-axis rotor flux linkage disappears. Thus the machine is stable at a relatively high
speed. This may be due to the fact that at low speed (below 11.78 rad/sec), the machine is
has not developed enough torque due to the loss of phase. But it quickly recovers beyond
1.78 rad/sec. This observation can be seen in Figure 5.2 in which it is clear that the
machine takes a longer time to reach the steady-state speed.

The speed and torque oscillations are also shown in Figure 5.14 (a) and Figure
5.14(b), respectively. The results of which compare well with those presented in Figure
5.6(a) and Figure 5.6(b), respectively, as well as Figure 5.10(a) and Figure 5.10(b),

respectively.
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Figure 5.2 Starting transients (a) rotor speed and (b) electromagnetic torque
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Figure 5.3 Starting transients Stator phase currents (a) phase ‘a’ (b) phase ‘b’ (¢) phase
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Figure 5.5 Simulation Dynamics of (a) rotor speed and (b) electromagnetic torque due to

a load torque change of 11 Nm applied at 4 seconds.
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Figure 5.10. Steady-state calculation results (a) Peak value of the speed harmonic

component and (b) Peak value of the torque pulsation
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: Simulation - normal operation
: Steady state - normal operation
: Steady state - fault operation
+T epul’ Steady state - fault operation
-T epul’ Steady state - fault operation
: Simulation - Fault operation
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Figure 5.11. Various torque components of the five-phase induction machine under

balanced and a stator phase open based on computer simulation and steady-state

calculations.
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Figure 5.12. Small signal stability analysis (a) all state variables included (b) speed
harmonics are not included (c) both speed harmonics and g-axis rotor flux linkage state
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variables are not included. (Rotor speed is varied from 0 to 377 rad/sec)
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Figure 5.13. Small signal stability analysis (a) all state variables included (b) speed

harmonics are not included (c) both speed harmonics and g-axis rotor flux linkage state

variables are not included. (Rotor speed is varied from 11.78 to 377 rad/sec)
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Figure 5.14 Simulation Steady



54  Two Adjacent Phases (‘a’ and ‘b”) Open Circuited

The operation with two adjacent phases (‘a’ and ‘b”) open on fault is depicted in
Figure 5.15. When the two phases are open, the phase voltages across the machine phase
windings ‘@’ and ‘b’ become unknown. Under this condition, all the qdxyos transformed
voltages become unknown.

The following Equations will apply when the two stator phases “a” and “b” are open

i, =0 (5.165)
i,, =0 (5.166)
)
—
Y
—
Y
—
~y
—
Y
—

Figure 5.15 Open phases ‘@’ and ‘b’ of the stator for the five phase induction machine.

KCL requires that
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ias + ibs + ics + ic?s + ies = 0 (5167)
Therefore
I +ig +ig =0 (5.168)

Using Equations (5.35) and (5.37), the g- and X- axis voltages are related by

[cos(z?ﬁj - cos(%[ﬂvbs + {cos( j - cos( ﬂ
Vqs —Vis =§ (5169)
[cos(ﬂj - cos( 27 Hvds + [cos( j - cos( H
i 5 5 5
[l o[l oof
cos| — [—cos| — | |V, —| cOS —cos '
v v, =2[L A2 . > (5.170)
®rs { (Zﬂj [47[)} A [ (Zﬂj (477]}
—| cos| — |—cos| — | [Vg +| COS| — | —cos| — | V¢
I 5 5 5 5
Vs = Vis = % cos(z?”J - cos(%rn(vbs — Vg — Vgs + Ve ) (5.171)

From Equations (5.39), (5.167) and (5.168) it can be shown by KCL that

ios =§(ias +ibs +ics +i§s +ies)=0 (5172)
I

los :g(lcs + 1 +|es):0 (5173)
Therefore,

los =0 (5.174)
This leads to

ﬂ’os Llsios =0 (5175)
Vos = Flos + PAgs = (5.176)

Using Equations (5.39) and (5.176) guives
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_ a
Vas + Vbs - _(Vcs + Vds + Ves)

Equation (5.35) is re-written as (5.178)

5 [mj [47[) [Mj a [mj
Vas = Vg —| €COS| — [V +€OS| — |V +€OS| — Vg +COS| — |V
2 5 5 5 5
Substituting for v,, from (5.178) into (5.177) gives
5 (472)
— Vg —| 1 —cos| — | Vg
| 2 5
Vs =7 T~
2 47 ) a 2z
l=cos| — | || —| 1—cos| — | Vg —| I —cos| — | |V
5 5 5

_ a
Vbs - qus + yvcs + Zvds + Wes

where
5 1
X=-=
21—c0s—
= ! cos4—ﬂ—1
y 27 5
1—-cos—
1 ( Az j
7= cos——1
2 5
1—cos—
5
V= 27 5
1—cos—
5

Substituting for v, from (5.180) into (5.171) gives

2 COS(%TJ 2( (27 4x \ Y (y = v, + (2= 15,
4 {25

as Xs
5 _008(4?7;} 5 )N+ +1,
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(5.178)

(5.179)

(5.180)

(5.181)



1-—ax Vqs — Vs zéa((y_l)\/cs +(Z_1)Vgs +(7/+1)Ves) (5182)

1- 2 ox Vs — Vi =ga(y — 1), +za(z — 1)V, +za(7 +1)V, (5.183)
5] 5 5 5

aVvy —V,, =bvy +cvg +dv (5.184)
where

27 4
a = COS— — COS——
5 5

azl—gax
5
b==a(y-1)
c:éa(z—l)
d=§a@+n

Substituting (5.180) into (5.177) results into

2 4 4 2
V, = %Vqs - [quS + YV + 2V + ;/s/es]cos?”—vCS cos?ﬂ—vj‘S cos?ﬂ—ves cos?ﬂ (5.185)

5 2 2 4r 2 47\ .
— = XC0S— Voo —| YCOS—+COS— V(g —| ZCOS— +COs— |V
2 5 5 5 5 5
Vy = (5.186)
2 2
—| ycos— +cos— |V,
5 5

Vo = 1Vge + 1,V + v+, (5.187)

where

5 2
t, =| = —Xcos—
2 5
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t, =- yc0s2—ﬂ+cos4—ﬂ

? 5 5
2 4

t, =— Zcos— +cos—
5 5

t,=— cosz—ﬂ+cosz—ﬁ
4 Ve 5 5

The d-axis voltage is given by

Vg

S

_2 — Vi singir — Vg siniﬂ + Vg siniir + Vg singﬂ (5.188)
5 5 5 5 5
Substituting (5.180) into (5.188) gives

S

2 a .2 . 4 a . 4 .2
Ve =3 |~ (xvqs + YV + 2V + WV )smgﬁ Vo5 SN 7+ Vg SIN 7 Vo sin

.2 a . 2 .2
—yVCSSlngﬂ'—ZVdssn’lgﬂ'—y\/eSSlngﬂ'

2 .
V., =——XV _ SIn—x +—
ds 5 gs 5 5

.4 a . 4 .2
=V SIN—=7m +Vy SIn—7 +V, sin—7x
5 5 5

.2 .4 .2 . 4 a
—|ysin=z +sin=7z |V, —| Zsin=7 —sin—7 |V
2 . 2 5 5 5 5
Vg =| ——Xsin= vy, += (5.189)
5 5 5 .2 .2
—| ysin=7z —sin=7 |V
5 5

Vy

S

=1,Vg, Ve +L,V 1V (5.190)
where

2 .2
t, =——Xsmm—rx
5 5

20 . 2 .4
to=——|ysin—z+sin—r
5 5 5
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2( .2 4 j
t,=——|Zsm—7z—-sm—rx
5 5 5

t——2 singﬂ—singﬂ
R U 5

The y-axis voltage is given by

Vi = g(— Vi sin4—ﬁ + Vg sinz—ﬂ — Vg sinz—ﬂ +V, sin 4—”) (5.191)
5 5 5 5 5

Substituting (5.180) into (5.191) results into

2 . 4r 2 4 . 2m
——X$in—V, ——| ysin— —sin— |V
5 5 5 5 5

s = (5.192)
2(_ . 4r . 2m\ . 2( . 4r . 4Arx
——| zsin—+sin— |Vg, ——| ysin— —sin— |V,
5 5 5 5 5 5
Vi =tV + Ve +1,Vg + 1,V (5.193)
where
t, = —Zxsin-Z
5 5
t __2 ysin4—”—sin2—7[
Y5 5 5
2 . 4r . 2x
t, =——| Zsin— +sin—
5 5 5
t __2 sin4—7[—sin4—7[
12 5 Y 5 5
Since i, = -, then
Vs = —Filgs = Lis Pig (5.194)
Substituting (5.194) into (5.184) gives
AV + g + Ly Pigg = by +cvg +dv (5.195)
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Substituting for the stator and the rotor current, the g-axis stator voltage Equation

becomes

. 1 .
Pios =7 (Lrvqs — gL, — L, pxlqr) (5.196)

Substituting for pi,, from (5.196) into (5.195) gives

L.L , L -
+ Is =r V + r‘ I —%(rslqs LI’ + Lm p/lqr): bvcs + CV[?S + dve

\"
®oLL - % oL -1 )

LL : L i
(a -|‘I_|_Is—_r|_2]Vqs = chs + CVS‘s + dves - rslqs + ﬁ(rslqs I-r + Lm pj’qr)

. L .
V= 1 {bvCS +evy +dv, —rii +#(I’5Iqer +L, p/lq,) (5.197)

* Lls I-r " Ls I-r - L?n
at+————
LL L2

Therefore, with v

Vies Vggs Vg

s> Vs and Vv, known, then the faulted condition can be

as ’ S

simulated by using the following dynamic Equations

The g-axis stator dynamic Equation is

. 1 .
plqs = ﬁ(l_rvqS - rslqs Lr — Lm p/’i’qr) (5198)

The d-axis stator dynamic Equation is

. 1 .
Plgs = m(LrVds —Flgs Lr - Lm pﬂdr) (5199)

The y-axis stator dynamic Equation is

piYs = LL(VVS - rsiYS) (5200)

Is

The phase currents are obtained as

as

i =i+ (5.201)
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(5.202)

i - - > <+ > , ids—%iys (5.203)
2 sin“% —sin 7% | 4sin " 4sin %
5 5 5 5
» 5 .
lgg = — [ (5.204)
. 2% . 4r
2| sin— —sin —
- Y)
=i, i) (5.205)

4sin4—7z

5.4.1 Harmonic Balance Technique for the Two Adjacent Open Phase Faults

The same approach that has been used in section 5.3.1 applies here as well.
Let

1

I‘Ier
a+-——
LL —L2

Then Equation (5.197) can be written as

o, =

L, /.
o + ﬁ(rslqs Lr + Lm pﬂ’qr ) (5206)

str 7 bm

a ]
Vg = al{bvcs +CVy +dv — i

Using Equations (5.61) through (5.84), the following harmonic balance technique
dynamic model is obtained

The g-axis stator voltage is given by
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. . L, .
Vqss =0, |:bvcss +CVys + dvess - r-slqss +—(rs Lrlqss + I-m pﬂ“qrr + jCO m qrr ):| (5 207)

LL —-L

sTr m

The g-axis stator voltage Equation is given by

pqss+1a) :;(Lv —r.Li L, Py — Ja)Lm/iq,r)

r Vgss s —rlgss

The d-axis stator voltage Equation is given by

. .. 1 .
Plyss + 1@y = mo‘rvdss rsldss Lr - I‘m pﬁ“drr - Jo, I‘mﬁ“drr)

The d-axis stator voltage Equation is given by

1 .
_(Vyss - rslyss)

p yss + Ja)e yss
Lls

The g-axis rotor voltage Equation is given by

. r 1
+ Ja)eﬂ’qrr = Vqrr _L_r(iqrr - Lmlqss)+ @, ﬂ’drr += 7 @, idrr

pA

qrr
r

The g-axis rotor voltage Equation is given by

= Varr _[_r(ﬂ“drr Lmldss) A _la) /1*

ro qrr 2 ri - qrr

pﬂ”drr + ja)eﬂ’

drr
r

(5.208)

(5.209)

(5.210)

(5.211)

(5.212)

5.4.2 Steady State and Dynamic Model Analysis for Two Adjacent Open Phases

5.4.2.1 Steady state model. At steady state, the derivatives of the peaks are zero.

Therefore, the above Equations (5.206) through (5.212) become

s |0 +

-0, (bv + Vg, + dvess) Vs + ( L

234

rs I-r Lls H ja)e I—m Lls 01

qrr

(5.213)



L, r.L, o) jo,L,
TLL-og el e e e e (214
L, r.L, ). jo,L,
R W) L WA (021
1 o)
0=—Vy—| —+ ], |l (5.216)
Lls Is
rl,. r. *
Var = (L— + @, gy + Oro g + %wrlidrr (5.217)
" r. . rL,.
Vi = _wroﬂ“qn _%wrlﬁ“q” - L_r+ J, j}“drr +%Idss (5.218)

The d-axis and y-axis stator voltages, respectively, given by (5.219) and (5.220)

t6vcss +t7V§ss + t8Vess = _tquss T Vass (5219)

Ve F1 Vi + 1,V = 1oV T Vs (5.220)

Css ess

Equations (5.213) through (5.220) can be represented in matrix form as
AX =Db (5.221)
X, =A'b, (5.222)

where the matrices b, and X, are, respectively, given by Equations (5.223) and (5.224),

with

b, =-0, (bvCSS +CVg, + dvess), Do =tVee Vi Ve > Digr =tVess 11 Vi + o Vess

b =lb,, 0 0 0 —v, -v,, by, by (5.223)
X, = [vqSS Vi Vyss g o ye  Agrr }Ldrr]T (5.224)

The matrix A, is given by Equation (5.225).
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-1 0
L
r - 0
Ler - Lm
L
0 L >
Ler - Lm
0 0
0 0
0 0
_tS
—t, 0

I’s I‘rLIs
LL —L2
r
0 _ sr .
LL, —L2
0
1 0
I‘Is
rL
O r—m
Lr
0 0
0
1

—

=

oS O
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e —m=ls
LSLr—Lfn 0
B jo,L, 0
LSLr—Lfn
. oL,
LL -2

(5.225)



When the speed harmonic component is taken into account, then the Equations have

to be separate into their real and imaginary parts. The resulting systems of steady-state

Equations will be solved by iteration to obtain the results.

Now let,

Vass = Vasre + Vgsim
Vass = Vasre T Vasim
Vies = Vigre + 1V osim
Vgss = Vgsre + jvc?sim
Voo =Vege T Vesim
Vess = Vegre T Vesim
a)rl = ja)rlim

(5.226)

(5.227)

(5.228)

(5.229)

(5.230)

(5.231)

Substituting these Equations (5.109) through (5.116) and (5.226) through (5.231)

into Equations (5.213) through (5.220), the steady state model comprising of the real

Equations is obtained as

From Equation (5.213),

P’(’)(J)} o+ ol )

B J a)e I-m Llso-l
LL -2

+ d(Vesre + jvesim) (ﬁ« + Jﬂ' i )
qrre qrim

r,L L

- Vqsre
] 4|l ST
- JVqsim Ls I-r - L?n

a)eLmL|SO'1 _ﬂ’qri