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General and special case expressions for determining the real and reactive powers in 
a multiphase system have been derived. This has been simplified by the use of the 
stationary complex reference frame of transformation which transforms a set of m real 
variables into a set of (m-1) complex vectors (when m is odd). The mth vector is real and 
is referred to as the zero sequence. For a system with an even number of phases (m is 
even), the number of complex vectors is (m-2) and there are two zero sequence 
quantities. The complex vectors are conjugates of each other such that during the analysis 
only half of them (which are the positive sequence components) are sufficient to give the 
desired result. In this work, the expressions for determining the real and reactive power of 
the three, five and seven phase machines have been obtained. 
 

A five phase induction machine has been modeled. The winding function method is 
used to calculate the self and mutual inductances in the stator windings and the rotor 
circuits, with constant air gap in which the space harmonics of the stator windings and 
rotor circuits are accounted for. A n x n complex variable reference frame transformation 
is carried out to simplify computation of the currents, voltages and torque equations. 
Computer simulation results of the no-load starting transient have been shown with the 
response of the machine for a change in the load torque. This approach has made it 
possible to calculate the rotor bar currents. 
 

A five-phase carrier based PWM (Pulse Width Modulation) induction motor drive 
has been analyzed. The induction machine windings have been connected in alternate 
ways to increase the torque produced by the machine. A third harmonic voltage 
component has been injected to determine the ability of a five phase machine to 
contribute a third harmonic torque component to the fundamental torque component. It 
has been found out that with sinusoidally distributed stator winding, the effect of the third 
harmonic torque component is negligible. 
 



 ii

The dynamics of a five-phase induction motor under open phase faults has been 
discussed. Using stationary reference frame and harmonic balance technique, circuit 
based models have been used to analyze the open phase, two adjacent phases and two 
non-adjacent phase faults. Simulation and steady state results have shown that the five 
phase machine can start and develop torque with one or two of its phases missing. Mall 
signal analysis has been carried out to determine the stability of the machine at different 
open phase fault conditions, revealing that despite the missing phases, the machine is 
stable at relatively high operating speed. 

 
A voltage source inverter has been reconfigured for the purpose of obtaining high 

speeds in the regions of field weakening operation. The motive being to investigate the 
possibilities of operating a multiphase induction motor drive in field weakening region 
under optimum torque production. With a multiphase systems, different winding 
connections can be obtained apart from the conventional star and delta configurations. 
Such connections would give higher voltages across the machine’s phase winding and 
thus allowing the for relatively higher torque production in the regions of field weakening 
operation. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

 

In general, the induction machines having three-phase windings are normally used, 

since the standard power supply is three phase. However, when fed by an inverter, there 

is no need for a fixed number of phases, some other phases being possible and 

advantageous. 

A multiphase machine can operate normally after loss of one or more phases. This 

improved reliability stems from the fact that only two independently controllable current 

components are necessary to create a rotating field. In the three-phase machine, this is 

only possible if the neutral of the motor is connected to the dc link midpoint to allow 

zero-sequence current component to flow [1.1]. In an m-phase star-connected machine 

with isolated neutral, there are (m-1) degrees of freedom. It is possible to achieve the 

rotating magneto- motive force by controlling the remaining phase currents even after 

losing up to m-3 phases. For example, a five-phase machine can continue to operate if 

one or even two phases of the supply are lost. When only one phase is lost (open 

circuited), it does not matter which phase because of the spatial symmetry of the stator 

windings in the machine, the results are the same regardless of which phase is open. 

Much published work has shown that drives with more than three phases have 

various advantages over conventional three phase drives, such as reduction in amplitude 
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and increase in frequency of pulsating torque, reduction in harmonic currents, increase in 

current per phase without the need to increase the phase voltage, and reduction in the 

voltage-level in the dc (direct current) link [2.1, 2.2]. 

Another important aspect of machines with a higher number of phases is their 

improved reliability, since they can operate even when one phase is missing [2.1]. An 

increase in number of phase can result in an increase in torque/ampere relation for the 

same volume of the machine, such that five-phase machines can develop torque using not 

only the fundamental, but also using higher harmonics of the air gap field [2.1, 2.3].  

The types of multi-phase machines for variable-speed applications are in principle 

the same as their three-phase counterparts. These include induction and synchronous 

multiphase machines. Synchronous multiphase machines may be with permanent magnet 

excitation, with field winding excitation, or of reluctance type. 

Three-phase induction and cylindrical synchronous machines are normally designed 

with distributed stator winding that gives near-sinusoidal magnetomotive force (MMF) 

distribution and is supplied with sinusoidal currents. The permanent magnet synchronous 

machine has a trapezoidal flux distribution and rectangular stator current supply. 

Nevertheless, spatial MMF distribution is never perfectly sinusoidal and some spatial 

harmonics are inevitably present. For multiphase machines, a near-sinusoidal MMF 

distribution requires use of more than one slot per pole per phase. As the number of 

phases increases, it becomes progressively difficult to realize a near-sinusoidal MMF 

distribution. The minimum number of slots required for this purpose for a three-phase 

four-pole machine is 24, whereas for the five-phase four-pole machine the minimum 

number of slots required for production of a near-sinusoidal MMF distribution is 40 [1.2]. 
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Some of the advantages of multiphase machines when compared to their three-phase 

counterparts are [1.2, 1.3] 

• Fundamental stator currents produce a field with a lower space-harmonic content. 

• The frequency of the lowest torque ripple component being proportional to m2 , 

increases with the number of phases. 

• Since only two currents are required for the flux/torque control of an ac machine, 

regardless of the number of phases, the remaining degrees of freedom can be 

utilized for other purposes. One such purpose, available only if the machine is 

with sinusoidal MMF distribution, is the independent control of multi-motor 

multiphase drive systems with a single power electronic converter supply. 

• As a consequence of the improvement in the harmonic content of the MMF, the 

noise emanated from a machine reduces and the efficiency can be higher than in a 

three-phase machine. 

All multiphase variable-speed drives share a couple of common features. 

• For a given machine’s output power, utilization of more than three-phases enables 

splitting of the power across a larger number of inverter legs, thus enabling use of 

semiconductor switches lower rating. 

• Due to a larger number of phases, multiphase machines are characterized with 

much better fault tolerance than the three-phase machines. Independent flux and 

torque control requires means for independent control of two currents. This 

becomes impossible in a three-phase machine if one phase becomes open-

circuited, but is not a problem in a multiphase machine as long as no more than 

( )3−m  phases are faulted. 
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1.2 Control of Variable-speed Multiphase Induction Motor Drives 

 

Methods of speed control of multiphase induction machines are in principle the 

same as or three-phase induction machines. These methods are namely as constant 

voltage per hertz ⎟
⎠
⎞⎜

⎝
⎛

f
V  control, vector control, and direct torque control (DTC). 

Constant f
V  for the multiphase variable-speed induction motor drive development in 

conjunction with voltage source inverters operated in the 0180  conduction mode was 

presented in [1.4] and [1.5]. In the recent times, the emphasis has shifted to vector control 

and direct torque control (DTC). 

 

1.2.1 Vector Control of Multiphase Induction Machines 

 

For a symmetrical multiphase induction machine with sinusoidally distributed stator 

winding, the same vector control schemes for a three-phase induction machine are 

directly applicable regardless of the number of phases. The only difference is that the co-

ordinate transformation has to produce an m-phase set of stator current or stator voltage 

references, depending on whether current control is stationary or in synchronous rotating 

reference frame. Indirect rotor flux oriented control (FOC) schemes for multiphase 

induction machine using these two types of current control. 
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Assuming the stator winding has a singe neutral point, the scheme of Figure 1.1 

utilizes ( )1−m  stationary current controllers. Either phase currents or phase current 

components in the stationary reference frame can be controlled an the standard ramp 

comparison current control method offers the same quality of performance as with three-

phase induction motor drives. 

The scheme of Figure 1.2 has only two current controllers. However, since an m-

phase machine essentially has ( )1−m  independent currents, utilization of this scheme 

will suffice only if there are not any winding and /or supply asymmetries within the m-

phase stator winding and / or supply. This scheme also requires an adequate method of 

inverter PWM control to avoid creation of an unwanted low-order stator voltage 

harmonics that represent voltage yx −  components in Equation (2.3) and therefore lead 

to the flow of large stator yx −  current components, as discussed in Chapter 2. In the 

case of a six-phase induction machine with two isolated neutral points, the scheme of 

Figure 3 would require four current controllers which would apply to both the control 

based on the double dq −  winding representation and to the control based on the model 

which in addition to the dq −  stator current controllers, one needs to add a pair of yx −  

current controllers [1.6 - 1.8]. 

Most literature on control related analysis has considered five-phase or 

asymmetrical six-phase induction machines. Indirect rotor filed oriented control can be 

applied to other phase numbers as presented in [1.9 - 1.14] where a 15-phase induction 

machine is considered. In [1.11 - 1.14], a 15-phase induction machine for electric ship 

propulsion, configured as a three five-phase stator windings (vector and DTC have been 

considered in [1.11 - 1.13], while [1.12 - 1.14] used V/f control. Control of a 15-phase 
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induction motor drive is also discussed in [1.7]. Whereas an analysis of possible supply 

options for a 36.5 MW, 16 Hz, nine-phase variable speed drive aimed at electric ship 

propulsion is reported in [1.6]. 

It is concluded in [1.6] that if a good quality of current control is achieved and an 

appropriate method of PWM for multiphase voltage source inverter (VSI) is applied, the 

performance of a vector controlled multiphase induction machine will be very much the 

same as its three-phase counterpart. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Indirect rotor flux oriented controller for m-phase induction motor with 

sinusoidal distribution of the magneto-motive force and phase current control. 
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The parameter and symbols shown in Figure 1.1 are defined as follows 

**1
1

dsr iT
K =           (1.1) 

r

r
r r

LT =  is the rotor time constant 

rω  is the electrical rotor speed 

rmω  is the mechanical rotor speed 

*
slω  is the electrical slip speed 

*
rω  is the reference rotor speed 

*
qsi  is the reference q-axis stator current 

*
dsi  is the reference d-axis stator current 

PI  stands for proportional integral controller 

eθ  is the instantaneous rotor flux space vector position 

**
3

*
2

*
1 ,,,, miiii L  are the reference stator phase currents 
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Figure 1.2 Indirect rotor field oriented control of a multiphase induction machine. 

 

The current control of Figure 1.2 is in the rotating reference frame. The stator q  and 

d  axis reference currents and rotor flux position are obtained as in Figure 1.1. Some of 

the defining equations for the system of Figure 1.2 are 

'
' dr
r

m
rdseqs L

L
iLe λωω σ +=         (1.2) 

'
2'

'

dr
r

mr
qseds L

Lr
iLe λω σ −−=         (1.3) 
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'

2

r

m
s L

L
LL −=σ           (1.5) 

where 

sL  is the stator self inductance 

'
rL  is the rotor self inductance referred to stator side 

mL  is the magnetizing inductance 

**
3

*
2

*
1 ,,,, mvvvv L  are the reference stator phase voltages 

miiii ,,,, 321 L  are the stator phase currents 

*
αv  and *

βv  are the α  and β  axis reference stationary voltages, respectively 

αi  and βi  are the α  and β  axis reference stationary currents, respectively 

qsi  and dsi  are the q  and d  axis currents, respectively, in the synchronous reference 

frame 

*
qsv  and *

dsv  are the q  and d  axis reference voltages, respectively, in the synchronous 

reference frame 

*
qsi  and *

dsi  are the q  and d  axis reference currents, respectively, in the synchronous 

reference frame. 

'
drλ  is the rotor d-axis flux linkage 

 

 

 

 



 10

1.2.2 Direct Torque Control (DTC) 

 

For a three-phase induction machine, two basic approaches of direct torque control 

(DTC) can be identified [1.6]. The first approach utilizes hysteresis stator flux and torque 

controllers in conjunction with an optimum stator voltage vector section table leading to a 

variable switching frequency. In the second approach, an appropriate method of inverter 

PWM control is applied while keeping the switching frequency constant. These two 

approaches can be applied to multiphase induction machines achieving the same dynamic 

performance as for the three-phase induction machines. The important differences are 

predominantly caused by the existence of additional degrees of freedom in multiphase 

machines due to the x  and y  components. 

If the multiphase machine is with sinusoidal magneto-motive force distribution, 

DTC scheme needs to apply sinusoidal voltages to the stator windings of the machine. 

The unwanted low-order frequency components that would excite the x  and y  circuits 

are to be avoided. This can be avoided if the constant switching frequency is used. Since 

a multiphase induction machine is supplied from a multiphase voltage source inverter. 

Constant switching frequency DTC of a multiphase induction machine can be realized by 

using appropriate PWM method that ensures sinusoidal voltage output from the inverter. 

In this thesis, indirect rotor flux oriented control (FOC) for a five phase induction 

machine is presented. The rotor speed is controlled by using a ramp of the reference 

speed. Using rotor flux oriented control, the five-phase inverter is reconfigured for 

improved extended speed drives is presented. It investigates the possibilities of operating 
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a multi-phase induction motor drive in field weakening region under optimum torque 

production. 

 

1.3 Field Weakening Operation of Induction Motors 

 

Maximum torque production in the field-weakening region is a desired property of 

vector-controlled induction motors in applications such as traction and spindle drives. 

Field weakening operation consists of two steps: the choice of the proper flux reference 

to get maximum toque and producing the necessary currents to meet the flux and torque 

references. The classical field weakening technique, 
rω

1 , in rotor field oriented drives 

ahs been shown to provide flux reference that are too high, reducing the amount of 

current available to produce the torque, and therefore, the torque capability of the drive 

[7.3, 1.15]. In [7.3], the optimal current references for maximum torque were obtained by 

taking into account both current and voltage limits for the inverter and motor. In [1.15] it 

was shown that almost optimal flux current references could be obtained by applying 
rω

1  

to the stator flux. In these references, only steady state operation has been considered. 

Assuming that a proper flux reference is available, dynamic field weakening relies 

on the dynamic response of both the flux and current regulators. At high speeds, the 

available voltage will mostly be used to counteract the back emf. Small transient errors in 

flux regulation could result in insufficient voltage margin to create the desired torque-

producing current, dramatically affecting the drive performance. 



 12

1.4 Fault Analysis in Multiphase Machines 

 

A good number of research work has been presented on faults in electric machines 

[5.3]. Various categories of faults have been discussed for multi-phase machines inter-

turn short circuits [5.4, 5.5] based on winding function approach. In [2.2] a dq model 

based on transformation theory for five-phase induction machines has been presented and 

the analysis of the machine under asymmetrical connections is discussed. 

A control strategy of multiphase machines under asymmetric fault conditions due to 

open phase is presented in [4.7]. The authors used a five-phase synchronous motor with 

one open phase as a practical example. 

So far there is no work that has developed a circuit based model which can be used 

to predict not only the steady-state and stability of the open-phase five phase induction 

machine but also the dynamics of the pulsating torque. Although it is known that faulted 

multi-phase machines can produce significant average torques, not much work has been 

done to quantify this. 

In this work, to determine the steady-state and dynamic stability performance, first a 

five-phase induction machine with one phase (phase ‘a’) open is modeled in stationary 

reference frame. Then the same analysis is carried out for two phase open, ‘a’ and ‘b’ (for 

adjacent phases) and ‘a’ and ‘c’ (for non-adjacent phases). For the first time, using 

harmonic balance technique it has been possible to develop a circuit based model that has 

been used to perform the steady-state and dynamic analysis of a faulted machine. The 

steady-state speed harmonics and torque pulsations have been calculated and the results 
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compare fairly well with the simulation results based on the full-order dynamic model of 

the faulted machine. 

Furthermore, the small-signal stability study has been made through the small signal 

analysis whereby the dynamic model obtained from the harmonic balance technique has 

been used. At low speeds, the machine exhibits instability due to the rotor flux linkages. 

This instability is eliminated when the machine speeds up close to synchronous speed. 

This indicates that the machine can still be able to start under one or two open stator 

phase faults and provide significant torque to meet most load requirements. 

 

1.5 Connections of Multiphase Machines 

 

One of the advantages of a multiphase machine apart from its tolerance is that it can 

be used in high speed applications. In general, the maximum speed of the machine is 

limited by the inverter voltage and current limits. High speed operation can be made 

possible by either employing an inverter with higher voltage or by reducing the counter 

emf value of the machine using field weakening techniques. Other techniques employed 

to achieve significant wider speed ranges include reducing the per phase equivalent 

impedance of the machine, pole amplitude and phase modulation by changing the number 

of poles. These techniques require additional semiconductor devices in the converter as 

well as special machine designs. An m-phase machine (where 3>m ) can be connected 

in 
2

1+m  different ways. With these available alternatives, the speed range of an m-phase 

machine can be significantly increased. As the connection pattern changes from one to 
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the other, the impedance of the machine seen by the inverter varies making it possible to 

achieve higher speeds before the converter rating voltage is reached. In such connection 

transitions different torque-speed characteristics are realized. In this work, the approach 

in reconfiguring the inverter in order to achieve wider speed range of operation for the 

multiphase induction machines is presented. 

 

1.6 Multiphase PWM Voltage Source Inverter 

 

DC/AC voltage source inverters (VSI) are extensively used in motor drives to 

generate controllable frequency and ac voltage magnitudes using various pulse width 

modulation (PWM) strategies. The carrier-based PWM is very popular due to its 

simplicity of implementation, known harmonic waveform characteristics, and low 

harmonic distortion. Figure 1.3 shows a schematic diagram of five-phase voltage source 

converter. 

The turn on and turn off sequences of a switching device are represented by an 

existence function which has a value of unity when it is turned on and becomes zero 

when it is turned off [4.1]. The existence function of a two-level converter comprising of 

two switching devices is represented by ijS , edcbai ,,,,=  and npj ,=  where i  

represents the load phase to which the device is connected, and j  signifies top (p) and 

bottom (n) device of the converter leg. Hence, apS , anS  which take values of zero or 

unity are, respectively, the existence functions of the top device and the bottom device of 

the inverter leg which is connected to phase ‘a’ of the load. 
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Figure 1.3 Five-phase two-level voltage source inverter supplying a five-phase induction 

machine 

Energy conversion in converters is achieved by the Pulse Width Modulation (PWM) 

technique [3.5]. The turn on and turn off time of each switching device is calculated from 

a control scheme and when these PWM pluses are applied, the fundamental voltages 

embedded in the output PWM voltages are the same as the desired ones. The PWM 

technique can be generally divided into Carrier-based PWM (CPWM) and Space Vector 

PWM (SVPWM). In the CPWM method, the modulation signals which contain certain 

magnitude, frequency and angle information are compared with a high frequency carrier 

signal to generate the switching pulses. The pulses are “one” when modulation signals are 

larger than the carrier signal and “zero” when modulation signal are smaller than carrier 

signal. However, the turn on and turn off times of each device are calculated and then 

sent to the PWM generator directly in the SVPWM method. 
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1.7 Scope of the Thesis 

 

The main objective of this research is to explore the advantages of multiphase 

induction machines. The analysis presented in this Thesis considers a five phase 

induction machine as an example. An existing 2-pole, three-phase stator winding of a 

three-phase squirrel cage induction machine was rewound to be a 4-pole, five-phase 

stator winding of a five-phase squirrel cage induction machine. In some instances, a 

seven-phase induction machine has been included in order to emphasize the generality. 

Chapter 2 presents the theory of multiphase systems in which the reference frame of 

transformation is presented. General expressions for calculating the real and reactive 

powers for the three, five and seven phase systems are derived. In addition, vector space 

modulation for the five phase voltage source inverters is discussed. 

The full order model of a five-phase induction machine is discussed in Chapter 3. 

Computer simulation results are presented. Using two three-phase inverters, open circuit 

and blocked rotor tests are carried out to determine the machine parameters. The 

approach of using winding function to determine the self and mutual inductances can be 

used to analyze the machine performance when there inter-turn and intra-turn faults. 

Thus, the model would give the actual values of the inductances that are taking part in the 

machine operation. 

Chapter 4 discusses the carrier based PWM scheme for the five-phase induction 

motor drive. Efforts are made to simulate the machine with different stator winding 

connections and analyze the capability of producing the third harmonic component 

torque. 
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A thorough analysis of the machine dynamics for open phase faults on the stator 

windings is discussed in Chapter 5. The harmonic balance technique models give way to 

analyzing the machine performance under open phase faults. It makes it possible to 

determine the harmonic components of speed and torque. 

Rotor flux vector control of five-phase induction machine is discussed in Chapter 6. 

This precedes the discussion on speed range operation which is presented in Chapter 7. 

Chapter 8 includes the conclusion and suggestions for future work on five-phase 

induction machines and multi-phase systems.  
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CHAPTER 2 

THEORY OF MULTIPHASE SYSTEMS 

 

2.1 Introduction 

 

Multi-phase machines have attracted increased interest in recent years. This is due 

several advantages that they offer as compared to the conventional three-phase ones. In 

the presence of a power electronic converter which is needed for variables speed ac drive, 

the number of phases is essentially not restricted and multiphase machines are nowadays 

considered as potentially viable solutions for high power and high current applications. 

Apart from their applications in traction and electric ship propulsion, some investigation 

is going on for a more-electric aircraft concept, because of their fault tolerance which 

enables disturbance-free mode of operation in case of loss of one or more phases [2.1]. 

With such a large number of phases, the analysis of the multiphase machines 

becomes complicated. In order to include space harmonics, the proper reference frame is 

required. This will eliminate the time variance of mutual inductance as well as 

simplifying the model for performance calculation. In this Chapter, a generalized 

reference frame is presented. Using the complex reference frame transformation, the 

expressions for the real and reactive powers of the three, five and seven phase systems 

are derived. It has been shown that depending on the reference frame used, the power is 

not always invariant. Therefore, it is very important to consider the effect of the 

multiplying factor if power computation will be part of the analysis. 
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2.1.1 Transformations 

 

For the purpose of analysis of energy conversion characteristics, an n-phase-stator, 

m-phase rotor balanced machine can be reduced to an equivalent two-phase machine. 

The analysis of the n-m winding machine involves two essential steps [2.2]. 

(a) establishing the equations of motion in terms of a set of variables, and 

(b) eliminating as many of the variables as possible without losing any essential 

information. 

The stationary reference frame `transformations, which prove useful in reducing the 

variables in the n-m phase machine, are generalized versions of the complex symmetrical 

component transformation and the real transformation. 

A linear complex transformation of variables is defined by 

yTx x=           (2.1) 

where 

[ ]Tnn yyyyy 121 −= L        (2.2) 

[ ]Tmmo xxxxxx 1221 −−= L        (2.3) 

Equation (2.2) is a vector of real variables, whereas Equation (2.3) is the complex vector. 

xT  is the symmetrical component transformation matrix given by [2.2] 
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The inverse of the transformation matrix is [2.2] 
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where 

m
j

ea
π2

=  is the thm  root of unity and 
m
π2  is the characteristic angle. 

The first element in Equation (2.3) is called the zero sequence, and it has a real value. For 

a multiphase system with even number of phases, there will be two real vectors, the first 

one and the other at 
2
m , where m  is the number of phases. 

For 5=m , the following identities will apply 

m
j

ea
π2

=  m
j

ea
π4

2 =  2
6

3 −== aea m
j π

 1
8

4 −== aea m
j π

 

1
12

6 aea m
j

==
π

 2
16

8 −== aea m
j π

 1
2

* −−
== aea m

j π
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( ) 2
4

*2 −−
== aea m

j π

 ( ) ( ) 2*2
6

*3 −−−
=== aaea m

j π

 ( ) ( ) 1*1
8

*4 aaea m
j

=== −−
π

 

( ) ( ) 1*1
12

*6 −−
=== aaea m

j π

 ( ) ( ) 2*2
16

*8 aaea m
j

=== −−
π

 and so on. 

The stationary reference frame transformation matrices and their inverses for three, five 

and seven phase systems are given by Equations (2.4c), (2.4d) and (2.4e), respectively. 
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For an arbitrary reference frame transformation, then the transformation matrices given 

are multiplied by θje , where 0θωθ += t , ω  is the angular speed of the reference frame 

and 0θ  is the reference frame initial angle. 

The reference frame transformation produces m  variables. If the number of phases is 

odd, then there 
2

1−m  forward rotating complex variable component and
2

1−m  backward 
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rotating complex components which are the conjugates of the other set if the system is 

balanced. The remaining component is the zero sequence component. This is in real form. 

If the number of phases is even, then there are two zero sequence components, the second 

one occurring at 
2
m . The remaining components are complex conjugates, with ( )

2
2−m  

forward rotating and the other ( )
2

2−m  backward rotating. 

 

2.2 Three-phase System 

 

In order to arrive at the general transformation of the multi-phase systems, a brief 

review of the three-phase system transformation is given first. The y  vector of Equation 

(2.1) can take variables of any form (for example, currents, voltages, flux linkages). As 

an example of three-phase system, the voltage and current are considered 

[ ]Tcsbsas vvvv =          (2.5) 

[ ]Tcsbsas iiii =          (2.6) 

where 

asv , bsv  and csv  are the phase voltages and asi , bsi  and csi  are the phase currents for the 

three-phase system. In this particular case, 3=m  and therefore, 

3
2πj

ea =  

Transforming the phase voltages and currents into a complex form by using the stationary 

reference frame complex transformation matrix, the following equations are obtained 
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[ ]csbsasqds vaavvv 2

3
2

++=         (2.7) 

[ ]csbsasqds iaaiii 2

3
2

++=         (2.8) 

The zero sequence components are give by 

[ ]csbsasos vvvv ++=
3
2         (2.9) 

[ ]csbsasos iiii ++=
3
2         (2.10) 

 

2.2.1 Three-phase Power Computation 

 

The three-phase complex power, S , is given by 

**
ososqdsqds ivivS +=          (2.11) 

where 

[ ]csbsasqds iaiaii 21*

3
2 −− ++=         (2.12) 

Therefore, the complex power, qdS , due to the qd  component is given by 

[ ] [ ]csbsascsbsasqd iaiaivaavvS 212

3
2 −− ++++=      (2.13) 

⎥
⎥
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Substituting for 3
2πj

ea = , the following is obtained 
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    (2.15) 

 

2.2.2 Real Power Computation for a Three-phase System 

 

The active (real power), qdS , due to the qd  voltage and current components is 

obtained by evaluating the real part of Equation (2.15). This result will later be combined 

with the power due to the zero sequence components to obtain the overall active power in 

the three-phase system. 

Considering the real part of Equation (2.15), the following can be deduced 
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Since the zero sequence component has a real value, it can contribute to the active power 

[ ][ ]csbsascsbsasos iiivvvS ++++=
3
2        (2.18) 

[ ]bscsascscsbsasbscsasbsascscsbsbsasasos ivivivivivivivivivP ++++++++=
3
2   (2.19) 
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Combining Equations (2.17) and (2.19) gives 
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This results into 
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Equation (2.20) gives a general expression for computing real (active) power by 

using natural (abc) variables in a three-phase system. 

Now, if  

0=++ csbsas iii          (2.21) 

0=++ csbsas vvv          (2.22) 

Thus 

csbsas vvv −−=          (2.23) 
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csasbs vvv −−=          (2.24) 

bsascs vvv −−=          (2.25) 

Then by substituting these conditions into Equation (2.20) the following is obtained 

( ) ( )⎥⎦
⎤

⎢⎣
⎡ ++−++=+= cscsasasbsbscscsbsbsasasosqds ivivivivivivPPP

2
12

3
2  

[ ]cscsbsbsasasosqds ivivivPPP ++=+=       (2.26) 

Therefore, Equation (2.26) is the power equation for a balanced three-phase system. 

It is important to note that in Equation (2.26), the total three-phase active power is the 

sum of the individual phase active powers, as expected. Therefore, with the 

transformation chosen, the power is invariant. In order the power obtained by using the 

transformed qdo  variable to using the reference frame of transformation as given in 

Equation (2.4a), the general expression for real power will be as given by Equation (2.20) 

and for a special condition of when Equation (2.21) is true, then the real power will be 

calculated by using Equation (2.26). 

 

2.2.3 Reactive Power Computation for a Three-phase System 

 

The imaginary part of Equation (2.15) will give the reactive power Q . As it has 

already been mentioned earlier, the zero sequence components do not contribute to 

reactive power. Therefore, considering the imaginary part of Equation (2.15) the 

following is deduced 
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which simplifies into 

[ ]csbsbscsbsasasbsascscsas ivivivivivivQ −+−+−=
3
3     (2.31) 

Therefore knowing the per phase quantities, the three-phase reactive power can be 

directly obtained by using Equation (2.31). 

 

2.3 Five-phase System 

 

As opposed to a three-phase system in which there are one complex vector and a 

zero sequence component, in a five-phase system there are two complex vectors and one 

zero sequence component. 

The real (scalar) voltage and current vectors for the five phase are given as 

For the voltage vector 

[ ]Tesdscsbsas vvvvvv =        (2.32) 
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Fro the currents vector 

[ ]Tesdscsbsas iiiiii =         (2.33) 

Using Equation (2.1) and (2.4a), the first complex vector ( qd ) after transformation 

will be 

For the voltages 

[ ]esdscsbsasqds vavavaavvv 432

5
2

++++=       (2.34) 

For the currents 

[ ]esdscsbsasqds iaiaiaaiii 432

5
2

++++=       (2.37) 

Using the relations given in section 2.1, the following voltage and current equations 

are obtained 

For the voltages 

[ ]esdscsbsasqds vavavaavvv 122

5
2 −− ++++=      (2.36) 

For the currents 

[ ]esdscsbsasqds iaiaiaaiii 122

5
2 −− ++++=       (2.37) 

Similarly, using Equations (2.1) and (2.4a), the second complex vector ( xy ) is given by 

For the voltages 

[ ]esdscsbsasxys vavavavavv 8642

5
2

++++=      (2.38) 

For the currents 
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[ ]esdscsbsasxys iaiaiaiaii 8642

5
2

++++=       (2.39) 

Applying the definitions of section 2.1, gives the flowing voltage and current equations 

For the voltages 

[ ]esdscsbsasxys vavavavavv 2112

5
2 −− ++++=      (2.40) 

For the currents 

[ ]esdscsbsasxys iaiaiaiaii 2112

5
2 −− ++++=       (2.41) 

The zero sequence components, from Equations (2.1) and (2.4a), the transformed 

voltage and current equations are given by 

For the voltages 

[ ]esdscsbsasos vvvvvv ++++=
5
2        (2.42) 

For the currents 

[ ]esdscsbsasos iiiiii ++++=
5
2        (2.43) 

 

2.3.1 Five-phase Power Computation 

 

The complex power in the five-phase system will be given by all the three 

components. Whereas the qd  and xy  components contribute to both the real and reactive 

powers, the zero sequence components contribute only to the real power. 

Using the transformed vectors, the five-phase complex power, s , is given by 
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***
ososxysxysqdsqds ivivivS ++=         (2.44) 

where 

[ ]esdscsbsasqds iaiaiaiaii 1221*

5
2

++++= −−       (2.45) 

[ ]esdscsbsasxys iaiaiaiaii 2112*

5
2

++++= −−       (2.46) 

[ ]esdscsbsasosos iiiiiii ++++==
5
2*        (2.47) 

 

2.3.1.1 Complex Power Due to qd  Components. The complex power due to the 

qd  complex vector components is given by 

*
qdsqdsqds ivS =           (2.48) 

Substituting for the voltage and current complex vectors, results into 

[ ] [ ]esdscsbsasesdscsbsasqds iaiaiaiaivavavaavvS 1221122

5
2

++++++++= −−−−  (2.49) 

Equation (2.49) results into 
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Applying the identities of section 2.1, gives 
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Applying the definitions of section 2.1 to Equation (2.51), gives 
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  (2.52) 

 

2.3.1.2 Real power due to qd  components. Evaluating the real part of Equation 

(2.52) will give the active (real power) due to the qd  components. Thus 
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 (2.53) 

Combining the like terms, Equation (2.53) yields 
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           (2.54) 

Equation (2.54) gives the real power due to the qd  complex voltage and current 

components. 

 

2.3.1.3 Reactive power due to qd  components. Evaluating the imaginary part of 

(2.52) will give the reactive (imaginary power) due to the qd  components. Thus 
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Combining the like terms, Equation (2.55) yields 
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           (2.56) 

Equation (2.56) gives the reactive power due to the qd  complex voltage and current 

components. 

 

2.3.1.4 Complex power due to xy  components. The complex power due to the xy  

complex vector components is given by 

*
xysxysxys ivS =           (2.57) 

Substituting for the voltage and current complex vectors, results into 

[ ] [ ]esdscsbsasesdscsbsasxys iaiaiaiaivavavavavS 21122112

5
2

++++++++= −−−−  (2.58) 

Equation (2.58) results into 
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Applying the identities of section 2.1, Equation (2.59) gives 
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Applying the definitions of section 2.1 to Equation (2.60), gives 
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  (2.61) 

 

2.3.1.5 Real power due to xy  components. Evaluating the real part of Equation 

(2.61) will give the active (real power) due to the xy  components. Thus 
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           (2.62) 

Combining the like terms, Equation (2.62) yields 
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Equation (2.6) gives the real power due to the xy  complex voltage and current 

components. 

 

2.3.1.6 Reactive power due to xy  components. Evaluating the imaginary part of 

Equation (2.61) will give the reactive (imaginary power) due to the xy  components. Thus 
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Combining the like terms, Equation (2.64) yields 
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           (2.65) 

Equation (2.65) gives the reactive power due to the xy  complex voltage and current 

components. 
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2.3.1.7 Real power due to zero sequence components. The zero sequence 

components are scalar vectors. Therefore, they do not contribute to the reactive power. 

The power due to the zero sequence is given by 

*
ososos ivS =           (2.66) 

Substituting for the zero sequence voltage and current vectors, gives 

[ ] [ ]esdscsbsasesdscsbsasos iiiiivvvvvS ++++++++=
5
2     (2.67) 

Equation (2.67) results into 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++++++++
++++++++
++++++++

=

dsescsescsdsbsdsasdsescsdscsbscsascs

asesesdsesbsdsbscsbsasbsesasdsas

bsescsasbsasesesdsdscscsbsbsasas

os

iviviviviviviviviv
iviviviviviviviv
iviviviviviviviv

P
5
2   (2.68) 

Equation (2.68) gives the value of the real power contributed by the zero sequence 

components. 

 

2.3.2 Total Power in a Five-phase System 

 

The overall powers in the five-phase systems can be obtained by combining 

Equations (2.54), (2.63) and (2.68) for the total real power, whereas for the total reactive 

power, the Equations to be combined are (2.56) and (2.65). 

 

2.3.2.1 Total real power in a five-phase system. This is obtained by adding 

together the powers given by Equations (2.54), (2.63) and (2.68). Thus 

osxysqds PPPP ++=          (2.69) 
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           (2.70) 

Combining like terms, Equation (2.70) results into 
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csbsasdsesescsbsasds
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           (2.71) 

Therefore, Equation (2.71) will give the general expression for the real power in a five-

phase system. 

Now consider a balanced system, such that 

0=++++ esdscsbsas vvvvv         (2.72) 

0=++++ esdscsbsas iiiii         (2.73) 

Thus 
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esdscsbsas iiiii +++=−         (2.74) 

esdscsasbs iiiii ++++=−         (2.75) 

esdsbsascs iiiii +++=−         (2.76) 

escsbsasds iiiii +++=−         (2.77) 

dscsbsases iiiii +++=−         (2.78) 

Substituting Equations (2.74) trough (7.78) into Equation (2.71), gives 

( )[ ]esesdsdscscsbsbsasas ivivivivivP ++++=
5
κ       (2.79) 

where 

2
5

5
4cos

5
2cos2 =⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−=

ππκ        (2.80) 

Therefore, substituting for the result of Equation (2.80) into Equation (2.79) results into 

( )[ ]esesdsdscscsbsbsasas ivivivivivP ++++=
2
5

5
2      (2.81) 

[ ]esesdsdscscsbsbsasas ivivivivivP ++++=       (2.82) 

Equation (2.82) gives the expression for the real power in a balanced five-phase 

system when the condition given in Equation (2.73) is satisfied. For the general case, the 

real (active) power will be given by Equation (2.71). 

 

2.3.2.2 Total reactive power in a five-phase system. This is obtained by adding 

together the powers given by Equations (2.56) and (2.65). Thus 

xysqds QQQ +=          (2.83) 
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Combining like terms of Equation (2.84) gives 
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Q  (2.85) 

Equation (2.85) gives the expression for determining the reactive power of a five-phase 

system.  

Thus if the phase voltages and phase currents are known for five-phase system, then 

the real and reactive powers can be readily obtained by using Equations (2.71) and (2.85), 

respectively. For a special case when the system voltages and currents are balanced, the 

real power can be obtained from Equation (2.82). 

 

2.4 Seven-phase System 

 

When the analysis presented in the previous sections is extended to a seven-phase 

system, the respective power expressions can be obtained. The voltage and current 
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matrices are given as [ ]Tgsfsesdscsbsas vvvvvvvv =  and 

[ ]Tgsfsesdscsbsas iiiiiiii = . 

The complex transformed voltage vectors and currents used for seven phase are 

[ ]gsfsesdscsbsasqds vavavavavaavvv 12332

7
2 −−− ++++++=    (2.86) 

[ ]gsfsesdscsbsassxy vavaavvavavavv 23132
1 7

2 −−− ++++++=    (2.87) 

[ ]gsfsesdscsbsassxy vaavvavavavavv 32213
2 7

2 −−− ++++++=    (2.88) 

[ ]gsfsesdscsbsassxy vavavavavavavv 312213
3 7

2
++++++= −−−    (2.88) 

[ ]gsfsesdscsbsassxy vavavavavavavv 231132
4 7

2
++++++= −−−    (2.89) 

[ ]gsfsesdscsbsassxy vavavavavavavv 123321
5 7

2
++++++= −−−    (2.90) 

[ ]gsfsesdscsbsasos vvvvvvvv ++++++=
7
2      (2.91) 

The currents are given by 

[ ]gsfsesdscsbsasqds iaiaiaiaiaaiii 12332

7
2 −−− ++++++=     (2.92) 

[ ]gsfsesdscsbsassxy iaiaaiiaiaiaii 23132
1 7

2 −−− ++++++=     (2.93) 

[ ]gsfsesdscsbsassxy iaaiiaiaiaiaii 32213
2 7

2 −−− ++++++=     (2.94) 

[ ]gsfsesdscsbsassxy iaiaiaiaiaiaii 312213
3 7

2
++++++= −−−     (2.95) 
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[ ]gsfsesdscsbsassxy iaiaiaiaiaiaii 231132
4 7

2
++++++= −−−     (2.96) 

[ ]gsfsesdscsbsassxy iaiaiaiaiaiaii 123321
5 7

2
++++++= −−−     (2.97) 

[ ]gsfsesdscsbsasos iiiiiiii ++++++=
7
2       (2.98) 

The conjugates of the currents are given by 

[ ]gsfsesdscsbsasqds iaiaiaiaiaiaii 123321*

7
2

++++++= −−−     (2.100) 

[ ]gsfsesdscsbsassxy iaiaiaiaiaiaii 231132*
1 7

2
++++++= −−−     (2.101) 

[ ]gsfsesdscsbsassxy iaiaiaiaiaiaii 312213*
2 7

2
++++++= −−−     (2.102) 

[ ]gsfsesdscsbsasos iiiiiiii ++++++=
7
2       (2.103) 

The complex power is given by 

**
22

*
11

*
osossxysxysxysxyqdsqds ivivivivS +++=       (2.104) 

The general expression for the real power in the seven-phase system is given by 
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7
2  (2.105) 

Now, if the system is balanced and the machine is star-connected, then 
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0=++++++ gsfsesdscsbsas iiiiiii        (2.106) 

Substituting Equation (2.106) into Equation (2.105), results into 

gsgsfsfsesesdsdscscsbsbsasas ivivivivivivivP ++++++=     (2.107) 

The general expression for the reactive power in the seven-phase system is given by 
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 (2.108) 

 

2.5 Modulation Technique for Multi-phase Converters 

 

The highest number of power that can be obtained from the conventional electrical 

power system is three-phase. Due to the advancement in power electronic devices, 

converters of many phases can be readily available and thus convert the available three-

phase to any number of output phases that are require to supply the multi-phase 
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machinery. Figure 2.1 shows a schematic diagram of a five-phase voltage source 

converter. The switching of the devices are described by switching functions which take 

the values of one and zero when the devices are turned on or off, respectively. 

The switching functions of the top devices are ipS  ( )edcbai ,,,,= . These are 

complimentary with the switching functions of the bottom devices. The voltages applied 

to the load are given by 

( ) noinip
d vvs

v
+=−12

2
        (2.109) 

The switching function can be averaged and given by 

( )ipip ms += 1
2
1          (2.110) 

where ipm  is the modulation signal of the thi  inverter leg. 

inv  is the thi  phase voltage and nov  is the neutral voltage. 
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Figure 2.1 Schematic diagram of a five-phase voltage source converter. 
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To synthesize the desired phase voltages, the modulation signals are compared with 

a high frequency triangle waveform using the sine-triangle carrier-based pulse width 

modulation (PWM). The modulation signals are given by 

( )noin
d

ip vv
v

m +=
2          (2.111) 

For better performance of the converter, the neutral voltage nov  can be selected to 

take any best form, as it is indeterminate and can take any realistic values [2.2-2.4]. 

A five-phase voltage source inverter with an input dc voltage given as dv  has 32 

switching modes, 30 of which are active and the other two are null modes. The converter 

is to generate five phase voltages. 

The load voltage Equations of the five-phase converter expressed in terms of the 

existence functions and input DC voltage dv  are given as 

( ) noinip
d

io vvS
v

v +=−= 12
2

,  edcbai ,,,,=      (2.112) 

( ) ( )( ) ( ) noanap
d

apap
d

anap
d

ao vvS
v

SS
v

SS
v

v +=−=−−=−= 12
2

1
22

   (2.113) 

Similarly, 

( ) nobnbp
d

bo vvS
v

v +=−= 12
2

        (2.114) 

( ) nocncp
d

co vvS
v

v +=−= 12
2

        (2.115) 

( ) nodndp
d

do vvS
v

v +=−= 12
2

        (2.116) 

( ) noenep
d

eo vvS
v

v +=−= 12
2

        (2.117) 
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noendncnbnaneodocoboao vvvvvvvvvvv 5+++++=++++     (2.118) 

and 
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For balanced five-phase system, 

0=++++ endncnbnan vvvvv         (2.120) 

Therefore, 

noeodocoboao vvvvvv 5=++++        (2.121) 
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From the transformation given in (2.4d), for the five phase balanced variables 

transformed af , bf , cf , df , ef , the generalized qdxy12os arbitrary reference frame 

transformed variables expressed in complex-variable form are given by 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−

−−

−−

−−

aaaa
aaaa
aaaa
aaaa

T

221

212

212

122

5

1
1
1
1

11111

5
2   

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−

−−

−−

−−

−

122

212

212

1221

1
5

1
1
1
1

11111

5
2

aaaa
aaaa
aaaa
aaaa

T  (2.4d) 

[ ]esdscsbsasos ffffff ++++=
5
2        (2.123) 

[ ]esdscsbsasqds fafafaafff 122

5
2 −− ++++=      (2.124) 

[ ]esdscsbsasxys faaffafaff 112
1 5

2 −− ++++=      (2.125) 
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[ ]esdscsbsasxys fafaaffaff 212
2 5

2
++++= −−      (2.126) 

[ ]esdscsbsasxys affafafaff ++++= −− 221
3 5

2      (2.127) 

Substituting Equation (2.122) into Equations (2.113) through (2.117), the phase 

voltages can be obtained as 

( )epdpcpbpap
d

an SSSSSvv −−−−= 4
5

       (2.128) 

( )epdpcpbpap
d

bn SSSSSvv −−−+−= 4
5

      (2.129) 

( )epdpcpbpap
d

cn SSSSSvv −−+−−= 4
5

      (2.130) 

( )epdpcpbpap
d

dn SSSSSvv −+−−−= 4
5

      (2.131) 

( )epdpcpbpap
d

en SSSSSvv 4
5

+−−−−=       (2.132) 

Substituting the states into Equations (2.128) through (2.132) gives the respective 

inverter output phase voltage for each mode as presented in the Table 2.1 below. 
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Table 2.1 Phase voltages for the five-phase inverter 

MODE Sap Sbp Scp Sdp Sep van vbn vcn vdn ven 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 1 -0.2Vd -0.2Vd -0.2Vd -0.2Vd 0.8Vd 

3 0 0 0 1 0 -0.2Vd -0.2Vd -0.2Vd 0.8Vd -0.2Vd 

4 0 0 0 1 1 -0.4Vd -0.4Vd -0.4Vd 0.6Vd 0.6Vd 

5 0 0 1 0 0 -0.2Vd -0.2Vd 0.8Vd -0.2Vd -0.2Vd 

6 0 0 1 0 1 -0.4Vd -0.4Vd 0.6Vd -0.4Vd 0.6Vd 

7 0 0 1 1 0 -0.4Vd -0.4Vd 0.6Vd 0.6Vd -0.4Vd 

8 0 0 1 1 1 -0.6Vd -0.6Vd 0.4Vd 0.4Vd 0.4Vd 

9 0 1 0 0 0 -0.2Vd 0.8Vd -0.2Vd -0.2Vd -0.2Vd 

10 0 1 0 0 1 -0.4Vd 0.6Vd -0.4Vd -0.4Vd 0.6Vd 

11 0 1 0 1 0 -0.4Vd 0.6Vd -0.4Vd 0.6Vd -0.4Vd 

12 0 1 0 1 1 -0.6Vd 0.4Vd -0.6Vd 0.4Vd 0.4Vd 

13 0 1 1 0 0 -0.4Vd 0.6Vd 0.6Vd -0.4Vd -0.4Vd 
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Table 2.1 continued 

MODE Sap Sbp Scp Sdp Sep van vbn vcn vdn ven 

14 0 1 1 0 1 -0.6Vd 0.4Vd 0.4Vd -0.6Vd 0.4Vd 

15 0 1 1 1 0 -0.6Vd 0.4Vd 0.4Vd 0.4Vd -0.6Vd 

16 0 1 1 1 1 -0.8Vd 0.2Vd 0.2Vd 0.2Vd 0.2Vd 

17 1 0 0 0 0 0.8Vd -0.2Vd -0.2Vd -0.2Vd -0.2Vd 

18 1 0 0 0 1 0.6Vd -0.4Vd -0.4Vd -0.4Vd 0.6Vd 

19 1 0 0 1 0 0.6Vd -0.4Vd -0.4Vd 0.6Vd -0.4Vd 

20 1 0 0 1 1 0.4Vd -0.6Vd -0.6Vd 0.4Vd 0.4Vd 

21 1 0 1 0 0 0.6Vd -0.4Vd 0.6Vd -0.4Vd -0.4Vd 

22 1 0 1 0 1 0.4Vd -0.6Vd 0.4Vd -0.6Vd 0.4Vd 

23 1 0 1 1 0 0.4Vd -0.6Vd 0.4Vd 0.4Vd -0.6Vd 

24 1 0 1 1 1 0.2Vd -0.8Vd 0.2Vd 0.2Vd 0.2Vd 

25 1 1 0 0 0 0.6Vd 0.6Vd -0.4Vd -0.4Vd -0.4Vd 

26 1 1 0 0 1 0.4Vd 0.4Vd -0.6Vd -0.6Vd 0.4Vd 
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Table 2.1 continued 

MODE Sap Sbp Scp Sdp Sep van vbn vcn vdn ven 

27 1 1 0 1 0 0.4Vd 0.4Vd -0.6Vd 0.4Vd -0.6Vd 

28 1 1 0 1 1 0.2Vd 0.2Vd -0.8Vd 0.2Vd 0.2Vd 

29 1 1 1 0 0 0.4Vd 0.4Vd 0.4Vd -0.6Vd -0.6Vd 

30 1 1 1 0 1 0.2Vd 0.2Vd 0.2Vd -0.8Vd 0.2Vd 

31 1 1 1 1 0 0.2Vd 0.2Vd 0.2Vd 0.2Vd -0.8Vd 

32 1 1 1 1 1 0 0 0 0 0 
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Substituting Equations (2.128) through (2.132) into Equations (2.114) through 

(2.117), the stationary reference frame voltages for each of the four components are 

calculated. The resulting space vector voltage components for the five-phase voltage 

source inverter, normalized with respect to the inverter dc link voltage dv , are shown in 

Table 2.2. These will generate the space vectors qdsv  for the fundamental frequency 

voltages and sxyv 1  for the third harmonic voltages. It can be easily shown that space 

vectors sxyv 2  are the complex conjugates of space vectors sxyv 1 . Similarly, space vectors 

3xysv  are the complex conjugates of space vectors qdsv . Therefore in synthesizing the 

desired voltage vector, only vectors qdsv  and 1xyv  are used. 
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Table 2.2 Space vector voltage components for the five-phase inverter 

MODE Sap Sbp Scp Sdp Sep vq (pu) vd (pu) vx1 (pu) vy1 (pu) vx2 (pu) vy2 (pu) vx3 (pu) vy3 (pu) vno 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.5

2 0 0 0 0 1 0.0618 -0.1902 -0.1618 -0.1176 -0.1618 0.1176 0.0618 0.1902 -0.3

3 0 0 0 1 0 -0.1618 -0.1176 0.0618 0.1902 0.0618 -0.1902 -0.1618 0.1176 -0.3

4 0 0 0 1 1 -0.1000 -0.3078 -0.1000 0.0727 -0.1 -0.0727 -0.1 0.3078 -0.1

5 0 0 1 0 0 -0.1618 0.1176 0.0618 -0.1902 0.0618 0.1902 -0.1618 -0.1176 -0.3

6 0 0 1 0 1 -0.1000 -0.0727 -0.1000 -0.3078 -0.1 0.3078 -0.1 0.0727 -0.1

7 0 0 1 1 0 -0.3236 0 0.1236 0 0.1236 0 -0.3236 0 -0.1

8 0 0 1 1 1 -0.2618 -0.1902 -0.0382 -0.1176 -0.0382 0.1176 -0.2618 0.1902 0.1 

9 0 1 0 0 0 0.0618 0.1902 -0.1618 0.1176 -0.1618 -0.1176 0.0618 -0.1902 -0.3

10 0 1 0 0 1 0.1236 0 -0.3236 0 -0.3236 0 0.1236 0 -0.1

11 0 1 0 1 0 -0.1000 0.0727 -0.1000 0.3078 -0.1 -0.3078 -0.1 -0.0727 -0.1

12 0 1 0 1 1 -0.0382 -0.1176 -0.2618 0.1902 -0.2618 -0.1902 -0.0382 0.1176 0.1 

13 0 1 1 0 0 -0.1000 0.3078 -0.1000 -0.0727 -0.1 0.0727 -0.1 -0.3078 -0.1
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Table 2.2 continued 

MODE Sap Sbp Scp Sdp Sep vq (pu) vd (pu) vx1 (pu) vy1 (pu) vx2 (pu) vy2 (pu) vx3 (pu) vy3 (pu) vno 

14 0 1 1 0 1 -0.0382 0.1176 -0.2618 -0.1902 -0.2618 0.1902 -0.0382 -0.1176 0.1 

15 0 1 1 1 0 -0.2618 0.1902 -0.0382 0.1176 -0.0382 -0.1176 -0.2618 -0.1902 0.1 

16 0 1 1 1 1 -0.2000 0 -0.2000 0 -0.2 0 -0.2 0 0.3 

17 1 0 0 0 0 0.2000 0 0.2000 0 0.2 0 0.2 0 -0.3

18 1 0 0 0 1 0.2618 -0.1902 0.0382 -0.1176 0.0382 0.1176 0.2618 0.1902 -0.1

19 1 0 0 1 0 0.0382 -0.1176 0.2618 0.1902 0.2618 -0.1902 0.0382 0.1176 -0.1

20 1 0 0 1 1 0.1000 -0.3078 0.1000 0.0727 0.1 -0.0727 0.1 0.3078 0.1 

21 1 0 1 0 0 0.0382 0.1176 0.2618 -0.1902 0.2618 0.1902 0.0382 -0.1176 -0.1

22 1 0 1 0 1 0.1000 -0.0727 0.1000 -0.3078 0.1 0.3078 0.1 0.0727 0.1 

23 1 0 1 1 0 -0.1236 0 0.3236 0 0.3236 0 -0.1236 0 0.1 

24 1 0 1 1 1 -0.0618 -0.1902 0.1618 -0.1176 0.1618 0.1176 -0.0618 0.1902 0.3 

25 1 1 0 0 0 0.2618 0.1902 0.0382 0.1176 0.0382 -0.1176 0.2618 -0.1902 -0.1

26 1 1 0 0 1 0.3236 0 -0.1236 0 -0.1236 0 0.3236 0 0.1 
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Table 2.2 continued 

MODE Sap Sbp Scp Sdp Sep vq (pu) vd (pu) vx1 (pu) vy1 (pu) vx2 (pu) vy2 (pu) vx3 (pu) vy3 (pu) vno 

27 1 1 0 1 0 0.1000 0.0727 0.1000 0.3078 0.1 -0.3078 0.1 -0.0727 0.1 

28 1 1 0 1 1 0.1618 -0.1176 -0.0618 0.1902 -0.0618 -0.1902 0.1618 0.1176 0.3 

29 1 1 1 0 0 0.1000 0.3078 0.1000 -0.0727 0.1 0.0727 0.1 -0.3078 0.1 

30 1 1 1 0 1 0.1618 0.1176 -0.0618 -0.1902 -0.0618 0.1902 0.1618 -0.1176 0.3 

31 1 1 1 1 0 -0.0618 0.1902 0.1618 0.1176 0.1618 -0.1176 -0.0618 -0.1902 0.3 

32 1 1 1 1 1 0 0 0 0 0 0 0 0 0.5 
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Figures 2.2 through 2.6 show the voltage space vector diagrams of the five-phase PWM 

inverter. Whereas Figures 2.2 through 2.5 are obtained directly from Equations (2.114) 

through (2.117), Figure 2.6 is obtained by using Equation (2.122). The voltage 

components are normalized with respect to the inverter dc link voltage dv . 
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Figure 2.2 Voltage space vector diagram of a five-phase PWM inverter for qdsv  
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Figure 2.3 Voltage space vector diagram of a five-phase PWM inverter for sxyv 1  
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Figure 2.4 Voltage space vector diagram of a five-phase PWM inverter for sxyv 2  
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Figure 2.5 Voltage space vector diagram of a five-phase PWM inverter for sxyv 3  
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Figure 2.6 Voltage space vector diagram of a five-phase PWM inverter for osv  

In Figure (2.6), the letters stand for the modes as follows 

1=A , 17,9,5,3,2=B , 25,21,19,18,13,11,10,7,6,4=C , 

29,27,26,23,22,20,15,14,12,8=D , 31,30,28,24,16=E , 32=F . 

Reference voltages in any sector of the space vector are synthesized by time-

averaging some four active and two null space vectors as presented in [2.4]. 
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Figure 2.7 Synthesis of the fundamental voltage in sector 1 

In sector 1 of the qdsv  space vector, the active modes are [17( 1qdsv  ), 25( 4qdsv  ), 26( 2qdsv  

), 30( 3qdsv  )] and the two null vectors are [1( 01qdsv  ) and 32( 32qdsv  )]. The corresponding 

voltage vectors in sxyv 1  are also selected. Since the qd voltages of the null vectors are 

zero, the linear equations for determining the averaging times for the vectors are 

3232010144332211 tVtVtVtVtVtVV qdsqdsqdsqdsqdsqdsqds +++++=     (2.133) 

32321010114413312211111 tVtVtVtVtVtVV sxysxysxysxysxysxysxy +++++=    (2.134) 

The time ratio between two null states (1 and 32) are defined as cctt α=01 , 

( ) cc tt α−= 132  with the variable cα  ranging between zero and unity. With 

( )43211 tttttc +++−= , the average neutral voltage corresponding to the selected 

voltage vectors for sector 1 is 

( ) ( ) ( ) ( )( )⎟
⎠
⎞

⎜
⎝
⎛ +++−−−+−++−= 43214231 21

5
621

5
6

5
2

5
4

2
tttttttt

v
V cc

d
o αα  (2.135) 

( )311 5
4 ttVo +−=          (2.136) 

( )4202 5
2 ttV −=          (2.137) 

1,32 
10

27

30

17 26
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*
qdV



 60

( )432100 ttttV +++=          (2.138) 

The expressions for times 1t , 2t , 3t , and 4t  obtained from Equations (2.133) and (2.134) 

are substituted into Equations (2.135) through (2.138) yielding the neutral sequence 

voltage in terms of qdsV  and sxyV 1 . Calculations similar to Equations (2.133-135) are done 

for all the ten sectors of qdsV  for which ten expressions are obtained for the average 

neutral voltages. Using the inverse stationary reference frame transformations (2.4d) the 

qd voltages in the equations for the ten average neutral voltages are expressed in terms of 

the phase voltages which can further be expressed in terms of the instantaneous 

maximum and minimum phase voltages, ( maxV  and minV , respectively). When the q- and 

d-axis reference voltages are expressed in terms of phase voltages, the times spent on the 

voltage vectors can be calculated. 

 

2.6 Conclusion 

 

A theory of multiphase systems has been introduced. The reference frame of 

transformation has been presented and discussed. The expressions for the real and 

reactive powers in multiphase systems have been described. The analysis started with the 

three-phase systems, followed by the five phase system and concluded with the seven 

phase system. General expressions for real and reactive powers have been derived. A 

special case when the sum of the phase currents is zero has shown that the total real 

power of any system is the sum of the individual phase powers, as expected. It has been 

deduced that using the reference frame of transformation discussed in this Chapter, the 
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power is invariant. Thus, there is no need of multiplying the final result by any factor as it 

is done when other forms of transformations are considered. This depends on the 

multiplying factor on the transformation matrix. In this case the multiplying factor is 

m
2 . Thus with the transformed variables, one can easily obtain the actual values of the 

real and reactive powers. The expressions for powers by using natural variables will ease 

the power computation if the phase variables are readily available.  

A space vector modulation scheme for the five-phase voltage source inverter has 

been presented. For a five-phase system, there are five vectors ( qdf , sxyf 1 , sxyf 2 , 

sxyf 3 .and osf ). Only two of the them ( qdsf  and sxyf 1 ) are sufficient to determine the 

switching strategy of a five phase voltage source inverter. The other two are the complex 

conjugates. The fifth one is the zero sequence component, which is essentially a real 

quantity. In realizing the voltage vector in the space vector diagram, the use of the neutral 

voltage gives freedom of utilizing the null states in obtaining the switching times for each 

device. 
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CHAPTER 3 

FULL ORDER MODELING OF A FIVE PHASE INDUCTION MACHINE 

 

3.1 Introduction 

 

The induction machine has been widely used over the last three decades in 

practically all applications requiring variable speed. This is due to its robustness, 

versatility and reliability. 

In general, the induction machines having three-phase windings are normally used, 

since the standard power supply is three phase. However, when fed by an inverter, there 

is no need for a fixed number of phases, some other phases being possible and 

advantageous. 

Much published work has shown that drives with more than three phases have 

various advantages over conventional three phase drives, such as reduction in amplitude 

and increase in frequency of pulsating torque, reduction in harmonic currents, increase in 

current per phase without the need to increase the phase voltage, and reduction in the 

voltage-level in the dc (direct current) link [3.1, 3.2] 

Another important aspect of machines with a higher number of phases is their 

improved reliability, since they can operate even when one phase is missing [3.1]. An 

increase in number of phase can result in an increase in torque/Ampere relation for the 

same volume of the machine, such that five-phase machines can develop torque using not 

only the fundamental, but also using higher harmonics of the air gap field [3.1, [3.2]. 
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Control strategies and electrical drives for machines with more than three phases have 

also been presented in several publications [3.2, [3.4]. Hence the analysis, design, and 

application of such machines as the five phase induction machine requires adequate 

mathematical models to be established through which their performance and advantages 

can be evaluated. 

Calculation of machine parameters must be done differently from the three phase 

machines since the distribution of windings is not the same. In this work, therefore a full 

order model has been used to determine these parameters whereby the higher order 

harmonics are taken into account. Also, by using the derived expressions, the 

fundamental and third harmonic components of the machine parameters are determined. 

 

3.2 Coupled Model of a Five-Phase Induction Machine 

3.2.1 General Winding Function 

 

The derivation of the general winding function from the fundamental relationships is 

the subject of this section. With all the assumptions or simplifications removed, a general 

Equation for the winding function of a winding distribution can be obtained [3.5, [3.6]. 

A general diagram of an electric machine is given in Figure 3.1 [3.5], in which the air gap 

length may not be constant. A closed area which includes the stator core, the air gap and 

the rotor core can be found and its boundary is shown as a dash line in the figure, where 

AB is in the stator core; O is the central point of stator; OA and OB go through the rotor, 

the air gap and the stator core and can be considered to be orthogonal to the inner surface 

of the stator. Based on the Ampere's Law, the magnetic field (H) of the boundary AOB 
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can be expressed in terms of the current density J, the differential length ∂l and the area 

∂s as 

∫∫ ⋅=⋅
SC

dsJdlH          (3.1) 

If the turn function of an arbitrary winding ‘a’ is ( )θan , where θ  is the angle around the 

inner surface of the stator, then Equation (3.1) can be written as 

( ) aa
C

indlH ⋅=⋅∫ θ           (3.2) 

There are two assumptions that need to be clarified before the next step. The first 

one is The air gap is so small compared to the stator or the rotor core that the magnetic 

field in the air gap can be considered to be orthogonal to the inner surface of the stator. 

This is a very fundamental assumption in electric machine analysis. The second one is 

The permeability of iron is much greater than that of air, hence the magneto-motive force 

drops on the stator and the rotor cores can be ignored. 

A

Bo

 

Figure 3.1 General diagram for an electric machine showing non-constant air gap length 
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A general definition for the air gap is expressed as 

( ) ( ) ( )( )γθθγθθθ +−−+−= rmrm aagg coscos1, 210      (3.3) 

where 1a  and 2a  are constants, which represent the degree of static and dynamic 

eccentricity, respectively; rmθ  is the rotor mechanical angle; 0g  is the average air gap 

length and angle γ  defines the changes of the distribution of the air gap length around 

the inner stator surface. 

It is clear from (3.3) that the air gap length not only depends on the angle around the 

stator, but also on the rotor angle, which will be true under almost all possible conditions. 

The constant air gap length condition can be achieved by setting 1a  and 2a  to be zero. 

Applying the above two assumptions to Equation (3.2), the integration part of the 

Equation (3.2) can be restated as 

( ) ( ) ( ) ( )rmarma
C

gHgHdlH θθθθ ,00, ⋅−⋅=⋅∫      (3.4) 

where ( )rmg θ,0  is the air gap length at the starting point and the value of θ  at the 

starting point is assumed to be zero. ( )0aH  is the magnetic field at the starting point 

while ( )rmg θθ ,  and ( )θaH  are the air gap length and magnetic field at θ  angle point, 

respectively. 

Substituting (3.4) into (3.2), 

( ) ( ) ( ) ( ) ( ) aarmarma ingHgH ⋅=⋅−⋅ θθθθθ ,00,      (3.5) 

An expression for the magnetic field around the stator can be found from (3.5) as 

( ) ( ) ( ) ( )
( )rm

rmaaa
a g

gHin
H

θθ
θθ

θ
,

,00 ⋅+⋅
=        (3.6) 
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The ( )θaH  and ( )0aH  are unknown and must be solved. Hence Gauss's Law is applied 

to determine the unknown quantity. If a cylinder passing through the air gap is 

considered, Gauss's Law can be expressed as 

( ) 0
2

0
0 =∫

π

θθµ dlrH sisa          (3.7) 

where isr is the radius of the inner stator surface; sl  is the length of the machine. 

Substituting (3.6) into (3.7), 

( ) ( ) ( )
( ) 0

,
,002

0
0 =

⋅+⋅
∫
π

θ
θθ

θθ
µ d

g
gHin

lr
rm

rmaaa
sis       (3.8) 

Rearranging Equation (3.8) gives 

( ) ( )

( )
( )

( )
a

rm

rm

a

rma i
d

g

d
g

n

gH ⋅−=⋅

∫

∫
π

π

θ
θθ

θ
θθ
θ

θ 2

0

2

0

,
1
,

,00       (3.9) 

Substituting (9) into (6),  

( ) ( )
( ) ( )

( )
( )

( )
a

rm

rm

a

rmrm

aa
a i

d
g

d
g

n

gg
in

H ⋅−
⋅

=

∫

∫
π

π

θ
θθ

θ
θθ
θ

θθθθ
θ

θ 2

0

2

0

,
1
,

,
1

,
     (3.10) 

Simplification of (10) yields (11), 

( ) ( ) ( )rmaaa gHiN θθθθ ,⋅=⋅         (3.11) 

( )θaN  is called the winding function. Then the winding function ( )θaN  is expressed as 
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If the air gap length is constant, 

( ) 0, gg rm =θθ  

The winding function in Equation (12) can be simplified as 
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where ( )θan  is the average of the turn function. Equation (3.13) is similar to the 

definition of the winding function traditionally used for constant air gap length. 

 

3.2.2 Calculation of Stator Inductances 

 

The expression for winding inductances is calculated using the winding function and 

the turn function of the windings. If the winding function of thi  winding is expressed as 

( )θiN , where θ  is the angle around the stator, then from (3.9) the magnetic field around 

the stator can be expressed as 

( ) ( )
( ) i

rm

i
i i

g
NH ⋅=

θθ
θθ

,
         (3.14) 
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where ( )rmg θθ ,  is the air gap function and ii  is the current flowing through the thi  

winding. 

Then the flux density in the air gap can be written as 

( ) ( )
( ) i

rm

i
i i

g
NB ⋅=

θθ
θµθ

,0         (3.15) 

Assume the mutual inductance between thi  winding and thj  winding is the objective and 

the turn function of thj  winding is ( )θjn . The flux linkage induced in thj  winding due to 

the thi  winding current ii  can be expressed as 

( ) ( ) ( ) θθθ
θθ

µλ
π

dNn
g

irl ij
rm

iji ⋅⋅⋅⋅⋅= ∫
2

0
0 ,

1       (3.16) 

where r  is the mean value of radius of the air gap middle line and l  is the effective 

length of the stator core. Since the definition of the mutual inductance is 

i

ji
ji i

L
λ

=           (3.17) 

The general expression for the mutual inductance calculation is 

( ) ( ) ( ) θθθ
θθ

µ
π

dNn
g

rlL ij
rm

ji ⋅⋅⋅= ∫
2

0
0 ,

1       (3.18) 

The stator inductances considered include the stator winding self-inductances and the 

mutual inductances between the stator windings. Since only the uniform air gap condition 

is considered in this Chapter, the air gap function is a constant 

( ) 0, gg rm =θθ           (3.19) 

The general expression to calculate the self-inductance of thi  winding is 
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( ) ( ) θθθµ
π

dNn
g

rlL iiii ⋅⋅⋅= ∫
2

0 0
0

1        (3.20) 

where ( )θin  is the turn function of thi  winding; ( )θiN  is the winding function of thi  

winding; 0g  is the constant air gap. 

 

3.3 Five Phase Stator Winding Design 

3.3.1 Winding Design 

 

An existing 2-pole, three-phase induction machine was rewound to be a 4-pole, five-

phase stator winding. The following are the ratings of the original three-phase induction 

squirrel cage machine 

Series No. 5K184AG1720    Power 5 hp 

Voltage 208-220/440 V    Current 13.4/6.7 A 

Frequency 60 Hz     Speed 3460 rpm. 

Stator slots 30     Rotor slots 28. 

Since it is possible to have a four-pole five–phase fractional slot-stator winding[3.7]-

[3.9], the  rewound stator winding is a double-layer five-phase stator fractional slot 

winding. The stator has thirty (30) slots. The ratings of the five-phase machine are 

calculated and presented in section 3.4.3. 
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3.3.2 Winding Configuration 

 

The average number of slots per pole per phase, q , is given by 
2
3

20
30

===
mP
S

q s  in 

which 3 and 2 are the lowest pair of whole numbers, where sS  is the number of stator 

slots, P  is the number of poles and m  is the number of stator phases. As each pole phase 

groups must have an integral number of coils, 
2
11

2
3
==q , can only be obtained if the 2 

(the denominator of q ) phase groups under 2 poles have different number of coils 

totaling up to 3 coils (numerator of q ). Now 3 coils for each phase lying under 2 poles 

can be obtained if we have one (1) pole phase group of one (1) coil and one (1) pole 

phase group of two (2) coils. This gives an average value of 
2
11

2
2111
=

×+×
=q . Two 

poles make one basic unit of this winding. As this winding has four poles, there are two 

units of two poles, each covering three slots of each phase. The ( ) 211 =+  pole phase 

groups of each phase in a unit must be connected in series and as there are 2
2
4
=  such 

units, the maximum number of parallel paths is equal to two (2), which is the same as the 

number of units. 

Consider q  in the form of 
2
3 , where the numerator and denominator have no common 

factor, we have 

(i) number of poles in a unit = 2 (denominator of q ) 

(ii) number of slots per phase in each unit = 3 (numerator of q ) 
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(iii) number of units =
qofatordeno

P
unitpoles

polesofnumbertotal
min/

=  

Considering the form 
2
11=q , we observe that there are 

(i) 2-1=1 group of 1 coil each and 

(ii) 1 group of 1+1=2 coils each.  

This connection algorithm can be expressed  in a general form as 

d
nI

d
M

mP
Sq +===  

where M  and d  have no common divisor. Thus for a fractional slot winding 

(a) number of poles in a unit is 2=d  

(b) number of slots per phase in each unit is 3== qdM  

(c) number of total slots in each unit is 1535 =×=mM  

(d) number of units = 2
2
4
==

d
P , which is the maximum number of parallel paths. 

(e) Each phase, in a unit, contains nd −  groups of I  coils each and n  groups of 

1+I  coils each 

Now, dividing the table in five vertical parts, each having 3
5

15
=  columns and 2  rows, 

and the mark the cross (X) in the upper left square and move from left to right  

continuously in every second square, the result is as shown in Table 3.1. The sequence of 

coil groups is shown in Table 3.2, whereas Table 3.3 shows the distribution of slots in a 

unit. Figure 3.2 shows a winding layout and Figure 3.3 shows a clock diagram of the 

stator winding. 
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Table 3.1 Development of the winding diagram 

A D B E C 

X  X  X  X  X  X  X  X 

 X  X  X  X  X  X  X  

 

Table 3.2 Sequence of coil groups 

Phase A D B E C A D B E C 

No. of coils in phase group 2 1 2 1 2 1 2 1 2 1 

 

Table 3.3 Distribution of slots in a unit 

Phase   

A 1, 2 9 

D 3 10, 11 

B 4, 5 12 

E 6 13, 14 

C 7, 8 15 
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Figure 3.2 Winding diagram for the design of a five-phase induction machine 

 

10
11

12

 

Figure 3.3 Clock diagram for the design of a five-phase induction machine 
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3.3.3 Conductor Size and Ratings of the Five-Phase Induction Machine 

 

The original three-phase machine had the following specifications on its nameplate 

Series No. 5K184AG1720    Power 5 hp 

Voltage 208-220/440 V    Current 13.4/6.7 A 

Frequency 60 Hz     Speed 3460 rpm. 

The measured dimensions are as follows 

Stator core length mmL 76.71= , Stator inner diameter; mmDin 48.101= , stator outer 

diameter mmDout 51.184= . 

Rotor core length mmL 40.70= , Rotor outer diameter mmDoutrot 62.100= . 

From the above data, the calculations for the five phase stator winding were conducted as 

follows 

The following assumptions were made 

(a) The average flux density in the air gap is 2/45.0 mWbBav =  

(b) Line-to line voltage is VVLL 220= . 

(c) Winding factor, 955.0=wsK . 

(d) Power factor, 85.0=pf and efficiency, pu85.0=η . 

Now, the length of the core is given as mmL .704= . 

Pole pitch mm
poles

Din 7.79
4

48.101
=

×
==
ππ

τ . 

Stator phase voltage (star connection) V
V

E LL
s 02.127

3
220

3
=== . 

Flux per pole WbLBavm
310525.2 −×== τφ . 
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Stator turn per phase 19873.197
44.4

≈==
wsm

s
s Kf

E
T

φ
. 

Total conductors 19802 == stotal mTT . 

Conductors per slot 66
30

1980
===

s

otal
ss S

T
Z . 

The output power WWhpP 373074655 =×== . 

Stator current A
pfEm

PI
s

s 13.8
85.085.002.1275

7465
=

×××
×

=
×××

=
η

. 

Area of a stator conductor, 2323.2
5.3

13.8 mm
I

a
s

s
s ===

δ
. 

Total copper area in each slot 232.153323.266 mmaZ sss =×= . 

 

3.3.4 Turn and Winding Functions 

 

The turn and winding functions of the stator winding are shown in Figure 3.4 and 

Figure 3.5, respectively, where 33=sN  is the number of conductors per layer per slot 

for the stator winding and 33
6

198
6

=== s
s

T
N . sT  is the number of turns per phase. 

For phase ‘a’, the self-inductance is 

( ) ( ) θθθµ
π

dNn
g

rlL aaaa ⋅⋅⋅= ∫
2

0 0
0

1       (3.21) 

Since the turn function of phase ‘a’ is a piecewise linear Equation, the integration 

can only be done in each linear region and the results of each linear region are added to 

obtain the final result. 
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Figure 3.4 The turn functions of the stator winding. 

 

Figure 3.5 The winding functions of the stator winding. 
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The expression for the self-inductance of phase ‘a’ can be simplified as 

( ) ( ) ( )[ ]∫ ⋅−⋅=
π

θθθθ
µ 2

00

0 dnnn
g

rl
L aaaaa       (3.22) 

where ( )θan  is the averages of the phase ‘a’ winding functions. 

Similar expressions can be found for phases ‘b’, ‘c’, ‘d’ and ‘e’ as 

( ) ( ) ( )[ ]∫ ⋅−⋅=
π

θθθθ
µ 2

00

0 dnnn
g

rl
L bbbbb       (3.23) 

( ) ( ) ( )[ ]∫ ⋅−⋅=
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( ) ( ) ( )[ ]∫ ⋅−⋅=
π
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( ) ( ) ( )[ ]∫ ⋅−⋅=
π

θθθθ
µ 2

00

0 dnnn
g

rl
L eeeee       (3.26) 

where  ( )θbn , ( )θcn , ( )θdn  and, ( )θen  are the averages of the phases ‘b’, ‘c’, ‘d’ 

and ‘e’ turn functions, respectively. 

The self-inductances of three phases have the same value and the value of the self-

inductances is 

( ) ( )

( ) ( ) ( )
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where sN  is the number of conductors per layer per slot for the stator winding. This 

expression of self-inductance calculation is only good for this particular machine design.  

 

3.3.5 Stator Mutual Inductances 

 

The general expression for the mutual inductance is 

( ) ( ) θθθµ
π

dNn
g

rlL jiij ⋅⋅⋅= ∫
2

0 0
0

1        (3.29) 

where ( )θin  is the turn function of thi  winding; ( )θjN  is the winding function of thj  

winding, edcbaji ,,,,, =  and ji ≠ . 

The calculation method and process are similar to the one for self-inductance, but 

the number of linear region is much more than that. Unlike the three-phase machine, the 

mutual inductances are not the same for the five-phase machine. The mutual inductances 

between adjacent phases are the same, whereas for the phases which are not adjacent, 

their mutual inductances are have a different value. The expression for the mutual 

inductance between phase ‘a’ and phase ‘b’ of the stator winding is 
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Similarly for the remaining adjacent phases, the mutual inductances are 
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The expression for the mutual inductance between phase ‘a’ and phase ‘c’ of the stator 

winding is 
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Similarly for the remaining non-adjacent phases, the mutual inductances are 

2

0

0

225
608

sebdacebdac N
g

rl
LLLLL

πµ
−=====      (3.31) 

where edcbaji ,,,,, =  and ji ≠ . It has to be noted here that jiij LL = . 

 

3.3.6 Calculation of Rotor Inductances 

 

The squirrel cage rotor with n  (even or odd) bars and two end rings to short circuit 

all the bars together is considered as n  identical magnetically coupled circuits. Each 

circuit is composed of two adjunct rotor bars and segments of the end rings connect two 
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adjacent bars together at both ends of the bars. Each bar and end ring segment of the rotor 

loop is equivalently represented by a serial connection of a resistor and an inductor as 

shown in Figure 3.6.  

The resistance and the inductance of the rotor bar are represented by br  and bl , 

respectively; the resistance and inductance of the partial end winding in the rotor loop are 

represented by er  and el , respectively. Three rotor loops are shown in Figure 3.7 and the 

current flowing through the rotor loops are represented by 1−ki , ki  and 1+ki , 

respectively. Since every rotor loop is treated as an independent phase, a healthy cage 

rotor having n  rotor bars becomes a n  phases balanced system. 

The turn function of thi  rotor loop is shown in Figure 3.7 (a). Since a constant air 

gap length is considered in this Chapter, the winding function of the thi  rotor loop can be 

easily found with Figure 3.7 (b). 
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Figure 3.6 Squirrel cage rotor equivalent circuit 
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Figure 3.7 Rotor 
thi  rotor loop turn and winding function, (a) turn function, (b) winding 

function. 
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The turn function of the thi  rotor loop is 
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in         (3.32) 

The winding function can be expressed as 
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where rα  is the thi  rotor loop pitch. Since a symmetrical equally spaced rotor bar 

structure is considered in the analysis, all the rotor loops have the same pitch rα . 

None of the turn and winding functions shown in Figure 3.7 take the skew of the 

rotor into the consideration. If the rotor is skewed, the turn function and winding function 

are shown in Figure 3.8. 
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Figure 3.8 Rotor 
thi  rotor loop turn and winding function for skewed rotor, (a) turn 

function, (b) winding function. 
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When the skewing factor of the rotor is considered, the expressions for the turn and 

winding functions become (3.34) and (3.35), respectively 
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where rfactorskew αβ ⋅= . 

Substituting the turn function and winding function of the thi  rotor loop into the 

general expression for the self-inductance given in (3.20), the self-inductance for the thi  

rotor loop can be determined. Since all the rotor loops have the same self-inductance 

under the uniform air gap condition, its expression is 
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The winding functions of the adjacent rotor loops will overlap each other when the 

rotor is skewed, such that the mutual inductances between thi  and thi 1+  will be different 

from thi  and thki +  ( )1,2 −= nk , where n  is the number of rotor bar. 

The mutual inductance between thi  and thi 1+  rotor loop is 
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 (3.37) 

All the mutual inductance between thi  and thki +  rotor loop have the same value 

and it can be calculated by 
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3.3.7 Calculation of Stator-Rotor Mutual Inductances 

 

Both the stator and the rotor loop winding functions are represented by piecewise 

linear Equations while the position of the thi  rotor loop depends on the rotor angle. Using 

the expression for the mutual inductance, the mutual inductances between thi  rotor loop 

and the stator winding set are shown in Figure 3.9. 

( ) ( ) θθθµ
π

dNn
g

rlL jiij ⋅⋅⋅= ∫
2

0 0
0

1        (3.39) 

where edcbai ,,,,=  and nj ,,2,1 L= , where n  is the rotor bar number. 
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Figure 3.9 Stator rotor mutual inductance. 
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Figure 3.10 Stator-to- rotor bar mutual inductances (a) stator phase ‘a’ to rotor bar 

number 1 (b) stator phase ‘b’ to rotor bar number 1 (c) stator phase ‘c’ to rotor bar 

number 1 (d) stator phase ‘d’ to rotor bar number 1 (e) stator phase ‘e’ to rotor bar 

number 1. 

 

3.4 Model of the Five Phase Stator Winding Machine 

 

Based on the magnetic circuit theory, a full model of the induction machine can be 

developed. The reason it is called a full model is that this model is not based on any 

assumptions of stator windings or rotor bars distribution. Hence all the harmonics are 

included into the model. 

(a)

(b)

(c)

(d)

(e)
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The general coupled circuit model can be expressed as 

dt
diRv λ

+⋅=           (3.40) 

where v , i  and λ  are the terminal voltage, current and flux linkage in each circuit; R  is 

the matrix of resistance. Applying this general Equation to the five phase stator winding 

induction machine leads to the full model. 

 

3.4.1 Stator Voltage Equation 

 

For the stator winding, the stator voltage Equation is expressed as 

abcdeabcdeabcdeabcde piRv λ+=         (3.41) 

where abcdeR  is a diagonal 55×  matrix, in which the diagonal value depends on the 

resistances per phase of the stator’ winding; p  represents the operator 
dt
d
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The flux linkage can be written as the contribution of two components as 

rssabcde λλλ +=          (3.43) 

The first term in Equation (3.43) represents the stator flux linkage due to the stator 

currents; the second term is the stator flux linkage due to the rotor current. 
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3.4.2 Stator Flux Linkage Due to the Stator Currents 

 

The stator flux linkage of the stator due to the stator currents can be expressed as 
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3.4.3  Stator Flux Linkage Due to the Rotor Currents 

 

The cage rotor having n  rotor bars can be modeled as a n  phase system. The total 

stator flux linkage due to the rotor currents can be written as 
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where aiL  is the mutual inductance between the phase ‘a’ and thi  rotor loop, biL  is the 

mutual inductance between the phase ‘b’ and thi  rotor loop, ciL  is the mutual inductance 

between the phase ‘c’ and thi  rotor loop, diL  is the mutual inductance between the phase 

‘d’ and thi  rotor loop, eiL  is the mutual inductance between the phase ‘e’ and thi  rotor 

loop. 
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3.4.4  Rotor Voltage Equation 

 

The voltage Equation for the thk  rotor loop can be represented as 

( ) rkkbkbkeb piririrr λ+⋅−⋅−⋅+= −+ 1120       (3.46) 

where br  is the bar resistance; er  is the resistance of the segment of end ring; ki , 1−ki  

and 1+ki  are the currents of the thk , thk 1−  and thk 1+  loop, respectively; rkλ  is the flux 

linkage of the thk  rotor loop. This Equation is valid for all the rotor loops, therefore the 

total rotor voltage Equation can be written in the matrix form as 
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The compact form of the above Equation is 

rrr piR λ+⋅=0          (3.48) 

where rR  is the resistance matrix, ri  is the rotor loop current vector and rλ  is the rotor 

loop flux linkage vector. The expression for rotor flux linkage can be expressed as 

rrrsr λλλ +=           (3.49) 

The expression for each term of (3.49) can be written as 
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where irjL  is the mutual inductance between the stator thi  winding and thj  rotor loop, 

edcbai ,,,,=  and nj L,2,1= , n  is the number of rotor loop; rrL  is the self-inductance 

of the rotor loops; 1rmL  is the mutual inductance between the adjunct rotor loops; 2rmL  is 

the mutual inductance between the rotor loops that are not adjunct; bl  and el  are the 

leakage inductance of the rotor bar and the segment of end ring, respectively. 

 

3.5  Torque Equation 

 

The electro-magnetic force developed by the machine is the only one that couples 

the electrical Equation with the mechanical Equation. From the energy point of view, the 

torque is determined by the instantaneous power transferred in the electromechanical 

system. The co-energy in a magnetic field is defined as 

 f

J

j
jjc WiW −= ∑

=1
λ  and ∫∑

=

⋅=
J

j
jjf diW

1
λ       (3.52) 

where ji  and jλ  are the current and flux linkage of thj  circuit, respectively. fW  is the 

total field energy in the system. In the five-phase induction machine (with 5 stator 

windings and n rotor bars), there are five stator currents and n rotor current. Hence for 

this particular five-phase induction machine, the total field energy can be expressed as 
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The electromagnetic torque can be obtained from the magnetic co-energy as 
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where rmθ  is the mechanical angle of the rotor. 

Only terms in Equation (3.53) which are the functions of the rotor angle can 

contribute the electromagnetic torque. So applying (3.54) to (3.53), the electromagnetic 

torque can be expressed as 
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For a linear magnetic circuit, 

jiij LL =           (3.56) 

Hence the torque Equation is simplified as 

r
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3.6 Development of the Equivalent Circuit 

 

In this section, we are introducing a letter ''h  which will stand for the harmonic 

number. Therefore, the general Equations can be evaluated for any significant harmonic 

component. 
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3.6.1 QD Transformation 

 

In order to develop the equivalent circuit for the five phase induction machine, the 

above voltage, flux and torque Equations are transformed into qd reference frame to 

eliminate the tome varying quantities. We are adopting an arbitrary reference frame 

rotating at a speed ω . In the simulation part, the rotor reference frame ( rω ) will be used. 

( ) abcdesshqdsh vTv θ=          (3.58) 

( ) abcdesshqdsh iTi θ=          (3.59) 

( ) abcdesshqdsh T λθλ =          (3.60) 

( ) nrhqdrh vTv L1234θ=          (3.61) 

( ) nrhqdrh iTi L1234θ=          (3.62) 

( ) nrhqdrh T L1234λθλ =          (3.63) 
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For 3,1=h  
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where n  is the number of rotor bars. 
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( ) ( ) ( ) ( ) qdshshshqdshshsqdhshqdsh pTTiTrTv λθθθθ 11 −− +=  

qdshqdshqdshsqdhqdsh jpirv ωλλ −+=        (3.72) 

( ) ( ) ( ) qdrhrhrhqdrhrhrqdhrhqdrh pTTiTrTv λθθθ 11 −− +=  

( ) qdrhrqdrhqdrhrqdhqdrh jpirv λωωλ −−+=       (3.73) 

The transformed stator and rotor flux linkages are given by Equations (3.74) and 

(3.75), respectively 

qdrhsrqdhqdshssqdhqdsh iLiL +=λ         (3.74) 

qdshrsqdhqdrhrrqdhqdrh iLiL +=λ         (3.75) 
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Substituting the flux Equations into the voltage Equations, we have 

( ) ( )qdrhsrqdhqdshssqdhqdrhsrqdhqdshssqdhqdshsqdhqdsh iLiLjiLiLpirv +−++= ω   (3.76) 

( ) ( )( )qdshrsqdhqdrhrrqdhrqdshrsqdhqdrhrrqdhqdrhrqdhqdrh iLiLjiLiLpirv +−−++= ωω   (3.77) 

When the voltage Equations are referred to the stator side, then we have 

( ) ( )''
qdrh

qd
Ihsrqdhqdshssqdhqdrh

qd
Ihsrqdhqdshssqdhqdshsqdhqdsh iNLiLjiNLiLpirv +−++= ω  (3.78) 

( )
( )( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−−

+++
=

qdshrsqdh
qd
Vhqdrh

qd
Ihrrqdh

qd
Vhr

qdshrsqdh
qd
Vhqdrh

qd
Ihrrqdh

qd
Vhqdrh

qd
Ihrqdh

qd
Vh

qdrh
qd
Vh iLNiNLNj

iLNiNLNpiNrN
vN

'

'

ωω
  (3.79) 

''''
qdrhsrqdhqdshssqdhqdrhsrqdhqdshssqdhqdshsqdhqdsh iLjiLjpiLpiLirv ωω −−++=   (3.80) 

( ) ''''
qdrhsrqdhqdrhsrqdhqdshssqdhqdshssqdhsqdhqdsh iLjpiLpiLiLjrv ωω −++−=    (3.81) 

( )
( )( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−−

+++
=

qdshrsqdhqdrhrrqdhr

qdshrsqdhqdrhrrqdhqdrhrqdh
qdrh iLiLj

iLiLpir
v

'''

'''''
'

ωω
     (3.82) 

qd
Ihsrqdhsrqdh NLL =' ,  qdrh

qd
Vhqdrh vNv =' ,  qd

Ihrqdh
qd
Vhrqdh NrNr ='  (3.83) 

qd
Ihrrqdh

qd
Vhrrqdh NLNL =' ,  rsqdh

qd
Vhrsqdh LNL ='      (3.84) 

The fluxes referred to the stator side become 

''
qdrhsrqdhqdshssqdhqdsh iLiL +=λ ,  qdshrsqdhqdrhrrqdhqdrh iLiL '''' +=λ    (3.85) 

Dynamic Equations for simulation 

dshqshsqhqshqsh irvp ωλλ −−=         (3.86) 

qshdshsdhdshdsh irvp ωλλ +−=         (3.87) 

( ) '''''
drhrqrhrqhqrhqrh jirvp λωωλ −−−=        (3.88) 

( ) '''''
qrhrdrhrdhdrhdrh jirvp λωωλ −+−=        (3.89) 
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In this work, only the fundamental and third harmonic components have been 

considered. The torque is obtained as follows 

( )11111 22 dsqsqsdse iiPmT λλ −⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛=        (3.90) 

( )33333 22
3 dsqsqsdse iiPmT λλ −⎟

⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛=        (3.91) 

31 eee TTT +=           (3.92) 

The mechanical Equation is given by 

( )Ler TT
J

Pp −=
2

ω          (3.93) 

where rω  is the rotor speed ( )sec/rad , m is the number of stator phases, P  is the 

number of poles, J  is the moment of inertia ( )2kgm  and LT  is the load torque ( )Nm . 

 

3.7 Fundamental Component Based Parameter Determination 

 

The primary and secondary m.m.fs, expressed in ampere-turns per pair poles, are 

[3.8, 3.9] 

phpphpppphbphph ININmkkM '22
==

π
      (3.94) 

and 

shsshsspshbshsph ININmkkM '22
==

π
       (3.95) 

where 



 96

pppphbphp NmkkN
π

22' =         (3.96) 

sspshbshs NmkkN
π

22' =         (3.97) 

The vector sum of these two m.m.fs must then be just sufficient to maintain the flux 

φ  through the magnetic circuit. Under no-load conditions, it is necessary that 

ohpshsphp INININ ''' =+         (3.98) 

where ohI  is the per phase no-load current taken from the line by the primary winding 

necessary to produce the m.m.f needed to maintain the flux hφ . 

Dividing through by '
pN , we get 

ohsh
p

s
ph II

N
N

I =+ '

'

         (3.99) 

'
'

'

shphohsh
p

s IIII
N
N

=−=         (3.100) 

pppphbph

sspshbsh

p

s

ph

sh

Nmkk
Nmkk

N
N

I
I

== '

''

       (3.101) 

bphk  is the distribution (breadth) factor for the primary (stator) winding 

pphk  is the pitch factor for the primary (stator) winding 

pm  is the number of phases for the primary (stator) winding 

pN  is the number of series turns per phase for the primary (stator) winding 

bshk  is the distribution (breadth) factor for the secondary (rotor) winding 

pshk  is the pitch factor for the secondary (rotor) winding 
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sm  is the number of phases for the secondary (rotor) winding 

sN  is the number of series turns per phase for the secondary (rotor) winding 

At standstill conditions, the e.m.f developed in each phase of the primary (stator) 

and the secondary (rotor) windings are, respectively, given by 

hpphpphbphph NfkkE φ44.4=         (3.102) 

hsshpshbshsh NfkkE φ44.4=         (3.103) 

spshbsh

ppphbph

sshpshbsh

pphpphbph

sh

ph

Nkk
Nkk

Nfkk
Nfkk

E
E

== , since phsh ff =     (3.104) 

where 

hφ  is the air gap flux 

phf  is the hth frequency of the voltages and currents in the primary (stator) winding 

shf  is the hth frequency of the voltages and currents in the secondary (rotor) winding 

Now, if the primary (stator) and secondary (rotor) turns per phase ( pN  and sN , 

respectively) are replaced by the corresponding number of conductors per phase ( pZ  and 

1=sZ ), the ratio of the current transformation is 

pppphbph

r

pppphbph

sspshbsh

p

s

ph

sh

ZmkPk
Z

Zmkk
Zmkk

N
N

I
I 2

'

''

===      (3.105) 

Which is the factor by which the actual rotor current per bar must be multiplied to 

convert it to equivalent primary (stator) current. The corresponding factor for converting 

actual rotor e.m.f per phase to equivalent primary (stator) value is 

ppphbph
spshbsh

ppphbph

sh

ph Zkk
Nkk
Nkk

E
E

==        (3.106) 
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The parameters of the machine can be determined by using derived expressions as 

follows 

(a) qd Transformed parameters 

When the actual time varying parameters have been transformed constant values by 

using qd transformation, then the appropriate turn transformations for the machine 

parameters will be 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

r
r

swshsqd
Ih

S
hPS

NKm
N

πsin
, for current transformation     (3.107) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

r

swshqd
Vh

S
hP

NK
N

πsin
, for voltage transformation     (3.108) 

2

sinsinsin ⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝
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⎟⎟
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⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

r

swsh

r

s

r

swsh

r
r

swshsqd
Vh

qd
Ih

S
hP

NK
S
m

S
hP

NK

S
hPS

NKm
NN

πππ
, for resistive impedance 

transformation          (3.109) 

qd
rh

r
r

swshs
rh R

S
hPS

NKm
R

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

π2

22
'

sin
, this is the rotor resistance referred to the stator. 

where 

rS  is the number of rotor bars 

P  is the number of poles 

h  is the harmonic number 

qd
rhR  is the actual hth qd-rotor resistance 
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(b) Turn transformation of actual parameters 

The following turn expressions will be used for transformation of the machine 

variable when dealing with actual peak values of the variables and parameters [3.8, 3.9] 

wrhr

wshss
Ih KS

KNm
N

2
= , for current transformation     (3.110) 

wrh

wshs
Vh K

KN
N

2
= , for voltage transformation      (3.111) 

 

2

22422

wrhr

wshss

wrh

wshs

wrhr

wshss
VhIh KS

KNm
K

KN
KS

KNm
NN == , for resistive impedance transformation (3.112) 
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NKm
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4
, this is the rotor resistance referred to the stator. 

where 

⎟⎟
⎠

⎞
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⎝

⎛
+=

r

e
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S
hP

R
RR

π2sin2
 is the actual equivalent rotor resistance 

The rotor leakage inductance is given by 
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 (3.113) 

For 1,1 == hK  
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NKm
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swss
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  (3.114) 

The rotor self inductance is given by 

( )mhrlh
swshs

r
r

qd
rh LL

NKm
S

hPS
L +

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

= '
22

2sin π

       (3.115) 

mhrlh
qd
rhrh LLLL +== '''          (3.116) 

Self inductance of a stator phase due to the air gap flux is [3.8, 3.9] 

∑
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e
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g
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π
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       (3.117) 

where eg  is the effective air gap, el  is the effective length, and N  is the total number of 

turns per phase. To obtain the total self inductance 1sL , the leakage inductances should be 

added to 1msL . 

Mutual inductance between two stator phases is [3.8, 3.9] 

( )∑
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=
⎟⎟
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⎞
⎜⎜
⎝

⎛
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⎠
⎞
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0 21cos4
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e
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i
h

K
P
N

g
rl

L π
π

µ
,  )(...,1 oddhi =    (3.118) 

The mutual slot leakage inductance should be added to the value given by the above 

Equation to obtain the total mutual inductances siL  ( )...,3,2=i  [3.8, 3.9] 

( ) ∑
∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−
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2
2

0 sin141
h re

e
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      (3.119) 

( )θπ
π

µ
h

S
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hg
rl

L
h re

e
loop cossin14
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2
2

0 ∑
∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=       (3.120) 
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where θ  is the angle between the axes of two rotor loops. The hth term of the above series 

is the contribution of the hth harmonic to the inductance. 

To obtain the total self inductance of a loop, its leakage inductance of the end ring 

segments and the slot leakage  inductance should be added to its air gap self inductance 

( ) loopLn 1−  [3.8, 3.9] 

( ) ( ) loopebr LnLLL 121 −++=         (3.121) 

loopbr LLL −−=2          (3.122) 

loopri LL −= ,   ...,4,3=i         (3.123) 

where bL  is the slot leakage inductance and eL  is the leakage inductance of the ring 

segments. 

If the rS  rotor bars are divided into P  basic periods, the above should be 

modified to 

( ) ( ) loopebr LPnLLL −++= 21        (3.124) 

loopbr PLLL −−=2          (3.125) 

loopri PLL −= ,   ...,4,3=i         (3.126) 

 

3.7.1 Mutual Inductance Between a Rotor Loop and a Stator Phase 

 

The mutual inductance between the ith stator phase and the jth rotor loop can be 

obtained by [3.8, 3.9] 
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Or equivalently 
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where θ  and 'θ  are the mechanical and electrical angles between the axes of the stator 

phase and rotor loop. 

 

3.7.2 Two Axis Equivalent Inductances 

 

The expression for the two-axis inductances can be derived. The stator two-axis 

inductance is 

L+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

s
ssqdsh m

hLLL π2cos2 21        (3.129) 

Substituting for ( )L,2,1' =isLsi  
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Defining the hth harmonic (stator) magnetizing inductance mhL  as [3.8, 3.9] 
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The qdshL  can be written as 

( )Ll
l

l ,2,1,0, ±±=+=+= ∑ KhKmLLL smlsqdsh     (3.132) 
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It is assumed that the mutual slot leakage is lumped with the leakage inductance lsL . 

For squirrel cage rotor with rS  rotor bars or rS '  bars per basic period, since 

'
'

P
S

P
S rr = , the rotor two-axis inductance is 

L+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

r
rrqdrh S

hPLLL π2cos2 21        (3.133) 

Substituting for ( )L,2,1' =isLri  
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( )L,2,1,0 ±±=K  

Substituting mhL  obtained previously, we have  
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( )L,2,1,0 ±±=K  

qdrhL  can also be expressed as 
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       (3.136) 

The summation ∑
⎟
⎠
⎞

⎜
⎝
⎛ +K r h

P
SK

h
2

2

, ( )L,2,1,0 ±±=K  in the above Equations can be 

evaluated from the following identity 
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The actual parameters obtained from the full-order modeling whereby the mutual stator-

to-rotor bar inductances are calculated during the simulation are shown Table 3.4. Using 

the turn transformations of section 3.7 (a), these parameters are referred to the stator side 

as they appear in Table 3.5, and they are close to those determined by sung the 

fundamental component approach. 

 

Table 3.4 Machine parameters before being referred to the stator side 

Parameters From the Full order model simulation 

 Fundamental component Third harmonic component 

sr  Ω320.0  Ω320.0  

rr  Ωµ87.4  Ωµ55.24  

srL  mH5.1  mH52  

rsL  Hµ7.2  Hµ7.92  

rrL  Hµ332.2  Hµ129.2  
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Table 3.5 Machine parameters referred to the stator side 

Parameters From the Full order model simulation 

 Fundamental component Third harmonic component 

sr  Ω320.0  Ω320.0  

'
rr  Ω6888.0  Ω4421.0  

'
srL  H3185.0  H0295.0  

'
rsL  H3185.0  H0295.0  

'
rrL  mH3297.0  H0383.0  

 

3.8 Simulation Results 

 

The simulation results for starting transient and load performance of the five-phase 

machine are presented in this section. The stator is supplied from a 60 Hz, 230 V line-to-

line rms voltages for the fundamental components. To obtain the third harmonic 

components, the magnitude of the harmonic voltage is taken as 15% of the fundamental. 

The load torque applied is 8.5 Nm. 

Figures 3.11 and 3.12 show the fundamental component of the qd-transformed 

stator-to-stator mutual inductance and rotor bar self inductance. The qd  rotor-bar-to-

stator and stator-to-rotor bar mutual inductances are shown in Figures 3.13 and 3.14, 

respectively; whereas Figure 3.15 shows the qd fundamental component of the rotor bar 

resistance. 
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The machine is run at no-load for five seconds at which a load torque of 8.5 Nm is 

applied. The no-load and load characteristics for different variables are shown in Figures 

3.16, 3.17, 3.18, 3.19, 3.20, 3.21, 3.22 and 3.23 for the fundamental components of the 

no-load speed, load speed, no-load electromagnetic torque, load electromagnetic torque, 

no-load stator current, load stator current, no-load rotor bar current and load rotor bar 

current, respectively. 

Figures 3.24 and 3.25 show the total electromagnetic torque at no-load and load, 

respectively. This is obtained by adding the two values of electromagnetic torques, i.e. 

the fundamental component value and the harmonic component value. The third 

harmonic components for the stator currents at no-load, stator currents at load, rotor bar 

currents at no-load, rotor bar currents at load, electromagnetic torque at load and 

electromagnetic torque at no-load are represented by figures 3.26, 3.27, 3.28, 3.29, 3.30 

and 3.31, respectively. 

The third harmonic components of the qd rotor bar resistance, qd stator mutual 

inductance, qd rotor bar self inductance, qd rotor bar-to-stator mutual inductance, and the 

qd stator-to-rotor mutual inductance are shown in figures 3.32, 3.33, 3.34, 3.35 and 3.36, 

respectively. 
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Figure 3.11 Fundamental component of the qd-stator inductance (a) 1ssqL  (b) 1ssdL  (c) 

12ssqL  (d) 21ssdL  
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Figure 3.12 Fundamental component of the qd-rotor bar self inductance (a) '
1rqL  (b) '

1rdL  

(c) '
12rqL  (d) '

21rdL  
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(b) 

(c) 

(d) 
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Figure 3.13 Fundamental component of the qd-rotor bar-to-stator mutual inductance (a) 

1rsqL  (b) 1rsdL  (c) 12rsqL  (d) 21rsdL  
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Figure 3.14 Fundamental component of the qd-stator-to-rotor bar mutual inductance (a) 

1srqL  (b) 1srdL  (c) 12srqL  (d) 21srdL  
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Figure 3.15 Fundamental component of the qd-rotor bar resistance 1rqR  
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Figure 3.16 Starting transients of the rotor speed at no-load 
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Figure 3.17 Rotor speed at a load torque of 8.5 Nm 
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Figure 3.18 Fundamental components of the electromagnetic torque at no-load 
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Figure 3.19 Fundamental components of the electromagnetic torque at a load torque of 

8.5 Nm 



 116

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-100

0

100

i as
  [

A
]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-50

0

50

100

i bs
  [

A
]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-50

0

50

100

i cs
  [

A
]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-100

-50

0

50

i ds
  [

A
]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-100

-50

0

50

Time  [sec]

i es
  [

A
]

 

Figure 3.20 Fundamental components of the stator phase currents at no-load (a) phase ‘a’ 

(b) phase ‘b’ (c) phase ‘c’ (d) phase ‘d’ (e) phase ‘e’ 
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(c) 

(d) 

(e) 
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Figure 3.21 Fundamental components of the stator phase currents at a load torque of 8.5 

Nm (a) phase ‘a’ (b) phase ‘b’ (c) phase ‘c’ (d) phase ‘d’ (e) phase ‘e’ 

(a) 

(b) 

(c) 

(d) 

(e) 
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Figure 3.22 Fundamental components of the actual rotor bar currents at no load (a) bar 1 

(b) bar 7 and (c) bar 14 

(a) 

(b) 

(c) 
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Figure 3.23 Fundamental components of the actual rotor bar currents at a load torque of 

8.5 Nm (a) bar 1 (b) bar 7 and (c) bar 14 

(a) 

(b) 

(c) 
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Figure 3.24 Total electromagnetic torque ( )31 ee TT +  at no-load 
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Figure 3.25 Total electromagnetic torque ( )31 ee TT +  at a load torque of 8.5 Nm 
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Figure 3.26 Third harmonic components of the stator phase currents at no-load (a) phase 

‘a’ (b) phase ‘b’ (c) phase ‘c’ (d) phase ‘d’ (e) phase ‘e’ 

(a) 

(b) 

(c) 

(d) 

(e) 
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Figure 3.27 Third harmonic components of the stator phase currents at a load torque of 

8.5 Nm (a) phase ‘a’ (b) phase ‘b’ (c) phase ‘c’ (d) phase ‘d’ (e) phase ‘e’ 

(a) 

(b) 

(c) 

(d) 

(e) 
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Figure 3.28 Third harmonic components of the actual rotor bar currents at no load (a) bar 

1 (b) bar 7 and (c) bar 14 

(a) 

(b) 

(c) 
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Figure 3.29 Third harmonic components of the actual rotor bar currents at a load torque 

of 8.5 Nm (a) bar 1 (b) bar 7 and (c) bar 14 

(a) 

(b) 

(c) 
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Figure 3.30 Third harmonic component of the electromagnetic torque at no-load 
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Figure 3.31 Third harmonic component of the electromagnetic torque at a load torque of 

8.5 Nm 
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Figure 3.32 Third harmonic component of the qd-rotor bar resistance 1rqR  
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Figure 3.33 Third harmonic component of the qd-stator inductance (a) 3ssqL  (b) 3ssdL  (c) 

32ssqL  (e) 23ssdL  
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(c) 

(d) 
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Figure 3.34 Third harmonic component of the qd-rotor bar self inductance (a) 3rqL  (b) 

3rdL  (c) 32rqL  (e) 23rdL  

(a) 
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(c) 

(d) 
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Figure 3.35 Third harmonic component of the qd-rotor bar-to-stator mutual inductance 

(a) 3rsqL  (b) 3rsdL  (c) 32rsqL  (d) 23rsdL  
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(c) 

(d) 
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Figure 3.36 Third harmonic component of the qd-stator-to-rotor bar mutual inductance 

(a) 3srqL  (b) 3srdL  (c) 32srqL  (d) 23srdL  
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3.9 Experimental Determination of Machine Parameters 

 

The machine parameters were identified by performing no load and locked rotor 

tests. The machine was energized by balanced abcde and acebd voltages into determine 

the fundamental and third harmonic components of the machine parameters, respectively. 

The no-load test was used to determine the magnetizing inductance as well as the 

core loss resistance whereas the locked rotor test was used to determine the copper loss 

resistance and the leakage inductance. 

The five-phase induction motor was energized from the five-phases of the two 

three-phase inverters, one inverter providing only two phases (d and e).   

 

3.9.1 Experimental results 

 

3.9.1.1 No-load test. The five phase induction machine is supplied from two three 

phase voltage source inverters at no load. The no-load speed is 1800 rpm. The results for 

the no-load test are shown in Table 3.6 

 

3.9.1.2 Determination of the Magnetizing inductance from the line-to-line 

voltages. For the determination of the magnetizing inductance, two kinds of 

measurements were taken. First the line-to-line voltages between adjacent phases were 

taken as shown in Table 3.7. Secondly, the phase ‘a’ voltage and phase ‘a’ current were 

measured as shown in Table 3.8. The result based on either of the two is plotted in Figure 

3.37. 
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Table 3.6 No-load Tests Power, voltage and current measurements 

Vae Vbe Vce Vde Ias Ibs Ics Ids Ies Pae Pbe Pce Pde 

95 148 148 97 2.1 1.9 1.8 1.3 1.95 195 110 60 52 

84 130 129 86 1.95 1.7 1.55 1.15 1.75 155 95 44 40 

75 115 115 76 1.75 1.6 1.40 1.0 1.55 120 80 30 30 

65 101 100 67 1.55 1.35 1.25 0.89 1.4 100 65 20 24 

55 86 86 56 1.35 1.25 1.1 0.84 1.25 70 56 10 16 

47 73 72.5 45 1.15 1.1 1.0 0.75 1.1 60 50 4 10 

39 58 57 39 1.0 1.0 1.0 0.65 1.0 45 45 3 6 

30 48 48 31 0.5 0.5 0.5 0.5 0.925 30 35 2 4 

Pij is the power measured by the wattmeter connected between phase i and j. 

 

Table 3.7 No-load Tests Line-to-line Voltage and current measurements 

Vab Vbc Vcd Vde Ias Ibs Ics Ids Ies 

150 150 145 152 4.15 3.65 3.2 2.65 3.355 

146 146 140 148 3.85 3.4 3 2.45 3.15 

140 140 134 143 3.55 3.15 2.75 2.3 3 

134 134 128 138 3.3 2.95 2.6 2.15 2.8 

128 128 122 130 3.055 2.75 2.45 2.05 2.155 

120 120 116 124 2.875 2.575 2.3 1.925 2.475 

114 114 110 120 2.7 2.425 2.15 1.825 2.325 

108 108 104 116 2.575 2.275 2 1.7 2.2 
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Table 3.7 Continued 

Vab Vbc Vcd Vde Ias Ibs Ics Ids Ies 

100 100 98 110 2.675 2.125 1.9 1.6 2.05 

94 94 92 104 2.225 2 1.75 1.5 1.925 

88 88 86 98 2.05 1.85 1.65 1.4 1.8 

82 82 80 92 1.95 1.75 1.55 1.3 1.65 

78 78 74 88 1.85 1.6 1.45 1.2 1.55 

72 72 68 84 1.7 1.5 1.35 1.1 1.45 

64 64 62 76 1.55 1.35 1.2 1 1.325 

57 57 55 72 1.4 1.25 0.5 0.7 1.225 

50 50 48 64 1.275 1.2 0.45 0.625 1.125 

44 44 42.5 58 1.15 1.1 0.25 0.6 1.025 

38 38 37 50 1.05 1.05 0.25 0.525 0.975 

32 32 31.5 42 1 1 0.25 0.55 0.95 

28 28 26 36 1 1 0.25 0.575 0.975 

 

Table 3.8 No-load Tests Phase ‘a’ voltage and phase ‘a’ current measurements 

Van1 127 4.075 117.5 3.5 107 3.05 96.5 2.675 85.5 2.35 75 

Ias1 122 3.775 112.5 3.25 102 2.85 91 2.525 80.2 2.2 70 

 

Van1 2.075  65 1.8 54.5 1.55 44 1.275 33 1.1 23 1.05 

Ias1 1.95  59.5 1.7 49 1.45 38.5 1.2 28.5 1.05 18 1.3 
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Also from the results of Table 3.8, the core loss resistance, 1cR  could be determined 

by using the following relations 

2
1

1
1

c

oc
oc I

P
R =  

2
1

2
11 mocc III −=  

1

1
1

m

co
m X

V
I =  

11 2 mm fLX π=  

where 1ocP , 1ocI  and 1ocV  are the average values for power, current and voltage, 

respectively obtained from the no-load tests. 
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Figure 3.37 Fundamental component of the magnetizing inductance 

 



 137

3.9.1.3 Third harmonic magnetizing inductance calculation. To determine the 

third harmonic component of the magnetizing inductance, the machine was energized by 

balanced acebd voltages. The phase ‘a’ voltage and current were measured and the results 

recorded as shown in Table 3.9. 

The inductance is then obtained as 

3

3
3

as

an
m I

V
X =    

s

m
m

X
L

ω
3

3 =  

ss fπω 2= , sf  is the supply voltage 

Figure 3.38 shows the variation of the third harmonic inductance with the phase ‘a’ 

voltage. 

 

3.9.1.4 Locked rotor test. The locked rotor stator line-to-line voltages, current and 

power were recorded for each measurement and then the average value was calculated for 

each phase. One stator phase, in this case phase ‘e’, was made the references such that at 

every instant, four readings for line-to-line voltages, five readings for the phase currents 

and four readings for the power were taken as shown in Table 3.10. 

 

Table 3.9 No-load Tests Phase ‘a’ third harmonic voltage and current measurements 

Van3 36 33.5 31 29 27 26 25 24 23 21.5 20.5 19.5 18 15 

Ias3 7.3 6.65 6.1 5.65 5.35 5.1 4.95 4.75 4.6 4.25 4.05 3.85 3.6 3.2 
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Figure 3.38 Third harmonic component of the magnetizing inductance 

 

Table 3.10 Locked rotor t test Line-to-line voltages, current and power measurements 

Vae Vbe Vce Vde Iasc Ibsc Icsc Idsc Iesc Paesc Pbesc Pcesc Pdesc 

56 90 85 59 7 7 7 7 7 365 450 132 17 

55 86 84 57 6 6 6 6 6 310 395 96 14 

40 65 64 44 4.7 4.5 4.55 4.25 4.85 190 210 58 10 

30 50 50 34 3.35 3.5 3.4 2.85 3.3 110 120 20 6 

25 40 41 27 2.75 2.5 2.4 2.3 2.70 75 70 8 4 

15 28 28 20 1.6 1.5 1.4 1.2 1.55 25 25 2 2 

 

Relationship between line-to-line voltage and phase voltage is given by 
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Adjacent phases ⎟
⎠
⎞

⎜
⎝
⎛−=

5
2cos22 π

phLLadj VV  

Non-adjacent phases ⎟
⎠
⎞

⎜
⎝
⎛−=

5
4cos22 π

phLLnonadj VV  

where phV  is the rms phase voltage. 

The parameters are the calculated as follows 

2
br

br
br I

P
R = , 

br

br
br I

V
Z =  

22
brbrbr RZX −=  

where brV  is the blocked rotor stator average phase voltage 

brI  is the blocked rotor stator average phase current 

brP  is the blocked rotor stator average phase power 

brR  is the blocked rotor resistance 

brZ  is the blocked rotor impedance 

brX  is the blocked rotor reactance 

The equivalent leakage inductance is given by 

s

br
br

X
L

ω
= , ss fπω 2=  sf  is the supply frequency. 

 

 

 

 

 



 140

1 2 3 4 5 6 7
0.014

0.015

0.016

0.017

0.018

0.019

0.02

0.021

0.022

0.023

0.024

 Ibr  [ A ]

 L
br

  [
 H

 ]

 

Figure 2.39 Locked Rotor Leakage inductance, brL  against stator current, 
brI  
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Figure 3.40 Locked Rotor Winding resistance, 
brR  against stator current, 

brI  
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Figure 3.41 Locked Rotor Impedance, 
brZ  against stator current, 

brI  
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Table 3.11 Summary of the Test parameters 

 Fundamental component  Third harmonic component 

1. 1sR  Ω8.1   3sR  Ω8.1  

2. '
1rR  Ω9086.2   '

3rR  Ω8669.1  

3. 1mL  mH7.86   3mL  mH4.13  

4. 1lsL  mH95.8   3lsL  mH8669.1  

5. '
1lrL  mH95.8   '

1lrL  mH9.4  

6. 1cR  Ω4052.65    

 

Figures 3.39, 3.40 and 3.41 show the equivalent leakage inductance, equivalent 

winding resistance and equivalent impedance, respectively, as they vary with the current 

in a locked rotor test. 

The stator winding resistance was obtained by directly measuring the resistance 

between two phases and then taking the average value. It was found to be Ω8.1 . Table 

3.11 shows the summary of the machine parameters as they were obtained from no-load 

and locked rotor tests for both the fundamental and harmonic components. 

 

3.10 Conclusion 

 

The analysis and model of a five phase induction machine have been presented. 

First the stator winding has been redesigned to five phases instead of the previous three 

phases. Then the turn and winding functions have been calculated. These are used in 
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directly determining the machine parameters. The full-order model in which all higher 

order harmonics are accounted for has been described and used to determine these 

parameters. The fundamental and third harmonic parameters of the machine windings 

have been determined. 

The full order model of the five phase induction machine has been presented and 

simulation results are included in the Chapter. The model takes into account the 

contribution of the harmonic contents. The fundamental and third harmonic components 

of machine parameters and variables have been computed and presented for the 

simulation of the developed model. The derivation for the voltage and current turns ratios 

have been derived and presented in this Chapter. These ratios are used to transform the 

machine parameters from one side (rotor) to the other side (stator). 

The experimental results for determination of the machine parameters are also 

included. No-load and blocked rotor tests have been carried out to determine the 

fundamental and third harmonic components of the five phase machine. The machine is 

supplied from a balanced five phase supply via two three-phase inverters controlled by 

the digital signal processor (DSP). 
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CHAPTER 4 

CARRIER BASED PWM SCHEME FOR FIVE PHASE INDUCTION MOTOR 

DRIVE 

 

4.1 Introduction 

 

DC/AC voltage source inverters (VSI) are extensively used in motor drives to 

generate controllable frequency and ac voltage magnitudes using various pulse width 

modulation (PWM) strategies. The carrier-based PWM is very popular due to its 

simplicity of implementation, known harmonic waveform characteristics, and low 

harmonic distortion. Figure (4.1) shows a schematic diagram of five-phase voltage source 

converter. 

apS bpS cpS
dpS epS

enSdnScnS
bnSanS

o

2
dv

 
2
dv e

d
c

b
a

IM

asi

bsi
csi

dsi

esi

 

Figure 4.1 Five-phase two-level voltage source inverter supplying a five-phase induction 

machine 
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The turn on and turn off sequences of a switching device are represented by an 

existence function which has a value of unity when it is turned on and becomes zero 

when it is turned off [4.1]. The existence function of a two-level converter comprising of 

two switching devices is represented by ijS , edcbai ,,,,=  and npj ,=  where i  

represents the load phase to which the device is connected, and j  signifies top (p) and 

bottom (n) device of the converter leg. Hence, apS , anS  which take values of zero or 

unity, are, respectively the existence functions of the top device and the bottom device of 

the inverter leg which is connected to phase ‘a’ of the load. 

The load voltage Equations of the five-phase converter expressed in terms of the 

existence functions and input DC voltage dv  are given as 

( ) noinip
d

io vvS
v

v +=−= 12
2

,  edcbai ,,,,=      (4.1) 

( ) ( )( ) ( ) noanap
d

apap
d

anap
d

ao vvS
v

SS
v

SS
v

v +=−=−−=−= 12
2

1
22

   (4.2) 

Similarly, 

( ) nobnbp
d

bo vvS
v

v +=−= 12
2

        (4.3) 

( ) nocncp
d

co vvS
v

v +=−= 12
2

        (4.4) 

( ) nodndp
d

do vvS
v

v +=−= 12
2

        (4.5) 

( ) noenep
d

eo vvS
v

v +=−= 12
2

        (4.6) 

noendncnbnaneodocoboao vvvvvvvvvvv 5+++++=++++     (4.7) 

and 
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( ) ( ) ( )

( ) ( ) ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−+−+

−+−+−
=++++

12
2

12
2

12
2

12
2

12
2

ep
d

dp
d

cp
d

bp
d

ap
d

eodocoboao

S
v

S
v

S
v

S
v

S
v

vvvvv    (4.8) 

For balanced five-phase system, 

0=++++ endncnbnan vvvvv         (4.9) 

Therefore, 

noeodocoboao vvvvvv 5=++++        (4.10) 

( ) ( ) ( ) ( ) ( )12
2

12
2

12
2

12
2

12
2

5 −+−+−+−+−= ep
d

dp
d

cp
d

bp
d

ap
d

no S
v

S
v

S
v

S
v

S
v

v  (4.11) 

endncnbnan vvvvv ,,,,  are the desired (reference ) phase voltages of the load. The voltage 

between a reference ‘o’ of the inverter and the neutral of the load is denoted by nov . 

In order to prevent short-circuiting the DC source and satisfy the Kirchhoff’s voltage law, 

ipS  and inS  cannot be turned on at the same time. Hence Kirchhoff’s voltage law 

constraints the existence function such that 1=+ inip SS . The existing function is a series 

of modulation pulses whose magnitude is either unity or zero. A Fourier approximation 

of this function is given as [4.1] 

( )ipip MS += 1.5.0          (4.12) 

The expressions for the modulation signals are therefore expressed as 

( )
d

noin
ip v

vv
M

+
=

2
, edcbai ,,,,=       (4.13) 

The PWM modulation signals for the five top devices of the converter are ipM . 

Equation (4.13) gives the most general expression for the modulation signals in which 

reasonable expressions for the zero sequence signal nov  can be included. The appropriate 
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zero sequence signal may give rise to minimum switching loss, improved current and/or 

phase voltage waveforms. These signals are compared with a high frequency triangle 

carrier waveform to produce the PWM switching pulses which are given to the base 

drives to turn on and turn off the switching devices.  The average neutral voltage, nov  is 

determined below. Equations (4.2-4.6) can be expressed as 

( ) ioip
d vS

v
=−12

2
         (4.14) 

( ) inip
d

no vS
v

v −−= 12
2

        (4.15) 

d

in
ip

d

no

v
v

S
v
v 2

12
2

−−=          (4.16) 

d

no

d

in
ip v

v
v
v

S
22

12 +=−          (4.17) 

oippip mmS +=−12          (4.18) 

where
d

in
ipp v

v
m

2
= , 

d

no
o v

v
m

2
= , and edcbai ,,,,= . 

When the switching function of the top device is unity (when it is turned on), then  

ippo mm −= 1           (4.19) 

When the switching function of the top device is zero (when it is turned off), then  

ippo mm −−= 1          (4.20) 

There are six feasible solutions for om  from (4.19) and (4.20) since the Equation is 

over-determined yielding an infinite number of possibilities. However, om  must lie 

within 1 and -1 since the normalized high-frequency triangular signal also lies within this 
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range. A reasonable solution can be obtained by considering the extrema of (4.19) and 

(4.20). With the following definitions,  

( )ippmMaxM =max   ( )ippmMinM =min      (4.21) 

where Max  and Min , respectively denotes the maximum and minimum value of ippm  . 

The extrema of the om  are ( )max1 M− , ( )min1 M−− , ( )min1 M−  and ( )max1 M−−  of 

which only the first have magnitudes between the range (1,-1). The two solutions are now 

linearly weighed to determine the average value of om , om  where 10 ≤≤ α  and is 

given as 

( ) ( )( )maxmin 111 MMmo −−+−−= αα       (4.22) 

( ) ( )( ) minmax121 MMmo ααα −−+−=       (4.23) 

The values of α  gives rise to an infinite number of carrier-base PWM modulation 

signals [4.1, 4.2]. The generalized discontinuous modulation signals (GDPWM) are 

obtained when α  is given by 

( )( )( )[ ]δωα ++= te5cossgn1.5.0        (4.24) 

( )xSgn  is 1, 0 and -1 when x  is positive, zero and negative, respectively. By varying the 

modulation angle δ , various discontinuous modulation signals are generated. When α  = 

0.5, this carrier-based modulation schemes corresponds to the known space vector 

modulation scheme where the null states are time- weighed equally. Figures 4.2 through 

4.5 show the modulation signals and corresponding phase ‘a’ load voltage at different 

values of α  and modulation angle δ . In this result, the peak value of the fundamental 

voltage is 150 V, and that of the third harmonic voltage is 15 V. The dc voltage is 300 V. 

Figures 4.2 through 4.7 show the result when only the fundamental component is 
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considered, whereas Figure 4.8 through 4.25 show the results in which both the 

fundamental voltage and third harmonic voltage have been considered. 
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Figure 4.2 Five-phase modulation signals for 5.0=α   
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Figure 4.3 Phase ‘a’ load voltage, 5.0=α  
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Figure 4.4 Five-phase modulation signals for ( )( )( )[ ]δωα ++= te5cossgn15.0 , 036−=δ  
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Figure 4.5 Phase ‘a’ load voltage, ( )( )( )[ ]δωα ++= te5cossgn15.0 , 036−=δ  
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Figure 4.6 Five-phase modulation signals for ( )( )( )[ ]δωα ++= te5cossgn15.0 , 00=δ  
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Figure 4.7 Phase ‘a’ load voltage, ( )( )( )[ ]δωα ++= te5cossgn15.0 , 00=δ  
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Figure 4.8 Phase ‘a’ fundamental and reference voltage, ( )( )( )[ ]δωα ++= te5cossgn15.0 , 

036−=δ , Vvm 153 +=  

0 0.005 0.01 0.015 0.02 0.025 0.03
-1

0

1

m
a

0 0.005 0.01 0.015 0.02 0.025 0.03
-1

0

1

m
b

0 0.005 0.01 0.015 0.02 0.025 0.03
-1

0

1

m
c

0 0.005 0.01 0.015 0.02 0.025 0.03
-1

0

1

m
d

0 0.005 0.01 0.015 0.02 0.025 0.03
-1

0

1

Time

m
e

 

Figure 4.9 Five-phase modulation signals for ( )( )( )[ ]δωα ++= te5cossgn15.0 , 036−=δ , 

Vvm 153 +=  
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Figure 4.10 Phase ‘a’ load voltage, ( )( )( )[ ]δωα ++= te5cossgn15.0 , 036−=δ , 

Vvm 153 +=  
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Figure 4.11 Phase ‘a’ fundamental and reference voltage, 

( )( )( )[ ]δωα ++= te5cossgn15.0 , 00=δ , Vvm 153 +=  
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Figure 4.12 Five-phase modulation signals for ( )( )( )[ ]δωα ++= te5cossgn15.0 , 00=δ , 

Vvm 153 +=  
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Figure 4.13 Phase ‘a’ load voltage, ( )( )( )[ ]δωα ++= te5cossgn15.0 , 00=δ , Vvm 153 +=  
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Figure 4.14 Phase ‘a’ fundamental and reference voltage, 5.0=α , Vvm 153 +=  
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Figure 4.15 Five-phase modulation signals for 5.0=α , Vvm 153 +=  



 156

 

0 0.005 0.01 0.015 0.02 0.025 0.03
-300

-200

-100

0

100

200

300

Time

v an

 

Figure 4.16 Phase ‘a’ load voltage, 5.0=α , Vvm 153 +=  
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Figure 4.17 Phase ‘a’ fundamental and reference voltage, 5.0=α , Vvm 153 −=  
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Figure 4.18 Five-phase modulation signals for 5.0=α , Vvm 153 −=  
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Figure 4.19 Phase ‘a’ load voltage, 5.0=α , Vvm 153 −=  



 158

0 0.005 0.01 0.015 0.02 0.025 0.03
-150

-100

-50

0

50

100

150

Time

v an
1,  

  v
an

re
f

van1

vanref

 

Figure 4.20 Phase ‘a’ fundamental and reference voltage, 

( )( )( )[ ]δωα ++= te5cossgn15.0 , 00=δ , Vvm 153 −=  
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Figure 4.21 Five-phase modulation signals for ( )( )( )[ ]δωα ++= te5cossgn15.0 , 00=δ , 

Vvm 153 −=  
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Figure 4.22 Phase ‘a’ load voltage, ( )( )( )[ ]δωα ++= te5cossgn15.0 , 00=δ , Vvm 153 −=  
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Figure 4.23 Phase ‘a’ fundamental and reference voltage, 

( )( )( )[ ]δωα ++= te5cossgn15.0 , 036−=δ , Vvm 153 −=  
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Figure 4.24 Five-phase modulation signals for ( )( )( )[ ]δωα ++= te5cossgn15.0 , 

036−=δ , Vvm 153 −=  
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Figure 4.25 Phase ‘a’ load voltage, ( )( )( )[ ]δωα ++= te5cossgn15.0 , 036−=δ , 

Vvm 153 −=  
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4.2 Simulation Results 

 

The five phase machine is simulated by using three different sets of connections 

(a) it is assumed to be star-connected the phase voltages across the machine windings 

are asv , bsv , csv , dsv  and esv , Figure 35 (a) 

(b) It is assumed to be conventionally delta connected the phase voltages across the 

machine windings are bsas vv − , csbs vv − , dscs vv − , esds vv − , and ases vv − , Figure 

35 (b) 

(c) It is assumed to be alternately delta connected the phase voltages across the 

machine windings are csas vv − , dsbs vv − , escs vv − , asds vv − , and bses vv − , Figure 

35 (c). 

 

In all simulations, the no-load transients for the electromagnetic torque, stator phase 

a current, rotor phase current and rotor speed are presented. Then a rated load torque of 

8.5 Nm is applied at a time instant of 0.5 seconds, and the results are also presented. The 

phase a voltage of the machine winding is also shown. 

In each different winding connection the machine is supplied directly from the 

mains (direct online), and then via an inverter. The derived voltage and current relations 

for the three different stator winding connections as given below. 
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Figure 4.26 Different stator winding connections (a) star (b) normal (conventional) delta 

and (c) alternate delta. 
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4.2.1 Conventional Star Connection, Figure 4.26 (a) 

 

Phase voltages are given by 

( )emas Vv θcos= , ⎟
⎠
⎞

⎜
⎝
⎛ −=

5
2cos πθ embs Vv , ⎟

⎠
⎞

⎜
⎝
⎛ −=

5
4cos πθ emcs Vv ,

 ⎟
⎠
⎞

⎜
⎝
⎛ −=

5
6cos πθ emds Vv , ⎟

⎠
⎞

⎜
⎝
⎛ −=

5
8cos πθ emes Vv  

Line-to-line voltages are given by 

⎟
⎠
⎞

⎜
⎝
⎛ +=

10
3cos1756.1 πθ emab Vv , ⎟

⎠
⎞

⎜
⎝
⎛ −=

10
cos1756.1 πθ embc Vv ,

 ⎟
⎠
⎞

⎜
⎝
⎛ −=

10
5cos1756.1 πθ emcd Vv , ⎟

⎠
⎞

⎜
⎝
⎛ −=

10
9cos1756.1 πθ emde Vv ,

 ⎟
⎠
⎞

⎜
⎝
⎛ +=

10
7cos1756.1 πθ emea Vv  

Line and phase currents are the same. 

( )δθ += ema Ii cos , ⎟
⎠
⎞

⎜
⎝
⎛ −+=

5
2cos πδθ emb Ii , ⎟

⎠
⎞

⎜
⎝
⎛ −+=

5
4cos πδθ emc Ii ,

 ⎟
⎠
⎞

⎜
⎝
⎛ −+=

5
6cos πδθ emd Ii , ⎟

⎠
⎞

⎜
⎝
⎛ −+=

5
8cos πδθ eme Ii  
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4.2.2 Conventional Delta Connection, Figure 4.26 (b) 

 

Phase and line-to-line voltages are the same are given by 
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⎜
⎝
⎛ +==

10
3cos1756.1 πθ emasab Vvv , ⎟

⎠
⎞

⎜
⎝
⎛ −==

10
cos1756.1 πθ embsbc Vvv ,

 ⎟
⎠
⎞

⎜
⎝
⎛ −==

10
5cos1756.1 πθ emcscd Vvv , ⎟

⎠
⎞

⎜
⎝
⎛ −==

10
9cos1756.1 πθ emdsde Vvv ,

 ⎟
⎠
⎞

⎜
⎝
⎛ +==

10
7cos1756.1 πθ emesea Vvv  

Phase currents are given by 

⎟
⎠
⎞

⎜
⎝
⎛ ++=

10
3cos1756.1 πδθ emab Ii , ⎟

⎠
⎞

⎜
⎝
⎛ −+=

10
cos1756.1 πδθ embc Ii ,

 ⎟
⎠
⎞

⎜
⎝
⎛ −+=

10
5cos1756.1 πδθ emcd Ii , ⎟

⎠
⎞

⎜
⎝
⎛ −+=

10
9cos1756.1 πδθ emde Ii ,

 ⎟
⎠
⎞

⎜
⎝
⎛ ++=

10
7cos1756.1 πδθ emea Ii  

Line currents are given by 

( )δθ += ema Ii cos3820.1 , ⎟
⎠
⎞

⎜
⎝
⎛ −+=

10
4cos3820.1 πδθ emb Ii ,

 ⎟
⎠
⎞

⎜
⎝
⎛ −+=

10
8cos3820.1 πδθ emc Ii , ⎟

⎠
⎞

⎜
⎝
⎛ ++=

10
8cos3820.1 πδθ emd Ii ,

 ⎟
⎠
⎞

⎜
⎝
⎛ ++=

10
4cos3820.1 πδθ eme Ii  
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4.2.3 Alternate Delta Connection, Figure 4.26 (c) 

 

Phase and line-to-line voltages are the same and re given by 

⎟
⎠
⎞

⎜
⎝
⎛ +==

10
cos9021.1 πθ emasac Vvv , ⎟

⎠
⎞

⎜
⎝
⎛ −==

10
3cos9021.1 πθ embsbd Vvv ,

 ⎟
⎠
⎞

⎜
⎝
⎛ −==

10
7cos9021.1 πθ emcsce Vvv , ⎟

⎠
⎞

⎜
⎝
⎛ +==

10
9cos9021.1 πθ emdsda Vvv ,

 ⎟
⎠
⎞

⎜
⎝
⎛ +==

10
5cos9021.1 πθ emeseb Vvv  

Phase currents are given by 

⎟
⎠
⎞

⎜
⎝
⎛ ++=

10
cos9021.1 πδθ emac Ii , ⎟

⎠
⎞

⎜
⎝
⎛ −+=

10
3cos9021.1 πδθ embd Ii ,

 ⎟
⎠
⎞

⎜
⎝
⎛ −+=

10
7cos9021.1 πδθ emce Ii , ⎟

⎠
⎞

⎜
⎝
⎛ ++=

10
9cos9021.1 πδθ emda Ii ,

 ⎟
⎠
⎞

⎜
⎝
⎛ ++=

10
5cos9021.1 πδθ emeb Ii  

Line currents are given by 

( )δθ += ema Ii cos6180.3 , ⎟
⎠
⎞

⎜
⎝
⎛ −+=

10
4cos6180.3 πδθ emb Ii ,

 ⎟
⎠
⎞

⎜
⎝
⎛ −+=

10
8cos6180.3 πδθ emc Ii , ⎟

⎠
⎞

⎜
⎝
⎛ ++=

10
8cos6180.3 πδθ emd Ii ,

 ⎟
⎠
⎞

⎜
⎝
⎛ −+=

10
4cos6180.3 πδθ eme Ii  
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4.2.4 Without Third Harmonic Voltage Injection 

 

The five phase induction machine is supplied with fundamental voltage at a 

fundamental frequency of 60 Hz. Figures (4.27) through (4.38) show different results 

depending on the machine winding connections. 

Figures (4.27) through (4.32) show normal operation without an inverter, whereas 

Figures (4.33) through (4.38) show the results when a five-phase machine is supplied via 

an inverter. Figures (4.27), (4.28), (4.33) and (4.34) the machine winding is star 

connected; Figures (4.29), (4.30), (4.35) and (4.36), the stator winding is delta connected 

(conventionally) and figures (4.31), (4.32), (4.37) and (4.38) are delta connected 

(alternately). 

The peak value of the fundamental voltage used in this simulation is 187.79 V and the dc 

voltage is 360 V. 
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Figure 4.27 Starting transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c) 

torque, (d) rotor phase ‘a’ current, (e) rotor speed 
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Figure 4.28 Load transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c) 

torque, (d) rotor phase ‘a’ current, (e) rotor speed 
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Figure 4.29 Starting transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c) 

torque, (d) rotor phase ‘a’ current, (e) rotor speed 
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Figure 4.30 Load transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c) 

torque, (d) rotor phase ‘a’ current, (e) rotor speed 
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Figure 4.31 Staring transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c) 

torque, (d) rotor phase ‘a’ current, (e) rotor speed 
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Figure 4.32 Load transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c) 

torque, (d) rotor phase ‘a’ current, (e) rotor speed 
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Figure 4.33 Starting transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c) 

torque, (d) rotor phase ‘a’ current, (e) rotor speed 
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Figure 4.34 Load transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c) 

torque, (d) rotor phase ‘a’ current, (e) rotor speed 
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Figure 4.35 Starting transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c) 

torque, (d) rotor phase ‘a’ current, (e) rotor speed 
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Figure 4.36 Load transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c) 

torque, (d) rotor phase ‘a’ current, (e) rotor speed 
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Figure 4.37 Starting transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c) 

torque, (d) rotor phase ‘a’ current, (e) rotor speed 
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Figure 4.38 Load transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c) 

torque, (d) rotor phase ‘a’ current, (e) rotor speed 
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4.2.5 With the Injection of the Third Harmonic Supply Voltage Component 

 

The third harmonic voltage with the 10% magnitude of the fundamental was added to 

the fundamental voltage. The simulation analyzes the effect of this amount if at all there 

is any significant in the overall torque caused by third harmonic component. Figures 

(4.39) through (4.50) show different results depending on the machine winding 

connections. Figures (4.39) through (4.44) show normal operation without an inverter, 

whereas Figures (4.45) through (4.50) show the results when a five-phase machine is 

supplied via an inverter. Figures (4.39), (4.40), (4.45) and (4.46) the machine winding is 

star connected; Figures (4.41), (4.42), (4.47) and (4.48), the stator winding is delta 

connected (conventionally) and figures (4.43), (4.44), (4.49) and (4.50) are delta 

connected (alternately). The peak value of the fundamental voltage used in this 

simulation is 187.79 V and that of the third harmonic component is 18.779 V. The dc 

voltage is 360 V. 
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Figure 4.39 Starting transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c) 

fundamental torque component, (d) third harmonic torque component, (e) total torque, (f) 

rotor phase ‘a’ current, (g) rotor speed 
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Figure 4.40 Load transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c) 

fundamental torque component, (d) third harmonic torque component, (e) total torque, (f) 

rotor phase ‘a’ current, (g) rotor speed 
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Figure 4.41 Starting transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c) 

fundamental torque component, (d) third harmonic torque component, (e) total torque, (f) 

rotor phase ‘a’ current, (g) rotor speed 
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Figure 4.42 Load transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c) 

fundamental torque component, (d) third harmonic torque component, (e) total torque, (f) 

rotor phase ‘a’ current, (g) rotor speed 
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Figure 4.43 Starting transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c) 

fundamental torque component, (d) third harmonic torque component, (e) total torque, (f) 

rotor phase ‘a’ current, (g) rotor speed 
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Figure 4.44 Load transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c) 

fundamental torque component, (d) third harmonic torque component, (e) total torque, (f) 

rotor phase ‘a’ current, (g) rotor speed 
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Figure 4.45 Starting transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c) 

fundamental torque component, (d) third harmonic torque component, (e) total torque, (f) 

rotor phase ‘a’ current, (g) rotor speed 
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Figure 4.46 Load transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c) 

fundamental torque component, (d) third harmonic torque component, (e) total torque, (f) 

rotor phase ‘a’ current, (g) rotor speed. 
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Figure 4.47 Starting transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c) 

fundamental torque component, (d) third harmonic torque component, (e) total torque, (f) 

rotor phase ‘a’ current, (g) rotor speed. 
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Figure 4.48 Load transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c) 

fundamental torque component, (d) third harmonic torque component, (e) total torque, (f) 

rotor phase ‘a’ current, (g) rotor speed 
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Figure 4.49 Starting transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c) 

fundamental torque component, (d) third harmonic torque component, (e) total torque, (f) 

rotor phase ‘a’ current, (g) rotor speed 
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Figure 4.50 Load transients (a) stator phase ‘a’ voltage, (b) stator phase ‘a’ current, (c) 

fundamental torque component, (d) third harmonic torque component, (e) total torque, (f) 

rotor phase ‘a’ current, (g) rotor speed 
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4.3 Conclusion 

 

The five-phase carrier based PWM inverter scheme has been analyzed. It is used in 

supplying the five-phase induction machine. The simulation of a five phase induction 

machine has been presented. Both fundamental and third harmonic components have 

been considered. The harmonic voltage of 10% of the magnitude of the fundamental 

voltage has been injected. The effect of this injected voltage is shown in the presented 

results. The third harmonic torque component has a finite value, although not 

contributing much to the required total torque. 

Also three different stator winding connections have been considered, i.e. star 

connection, conventional delta connection and alternate delta connection. For the delta 

connections, two values of the peak phase voltage have been realized. The magnitude of 

the phase voltage for the conventional delta connection is 1.1756 times that of the star 

connection, whereas for the alternate delta connection, it is 1.9021 times that of the star 

connection. This means that more voltage can be obtained in the machine windings 

without a need of increasing the supply voltage. 
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CHAPTER 5 

FIVE PHASE INDUCTION MACHINE UNDER OPEN PHASE FAULTS 

 

5.1 Introduction 

 

The induction machine has been widely used over the last three decades in 

practically all applications requiring variable speed. This is due to its robustness, 

versatility and reliability. 

In general, the induction machines having three-phase windings are normally used, 

since the standard power supply is three phase. However, when fed by an inverter, there 

is no need for a fixed number of phases, some other phases being possible and 

advantageous. 

Much published works have shown that motor drives with more than three phases 

have various advantages over conventional three phase drives, such as reduction in 

amplitude and increase in frequency of pulsating torque, reduction in harmonic currents, 

increase in current per phase without the need to increase the phase voltage, and 

reduction in the voltage-level in the dc (direct current) link [3.2, 5.1]. 

Another important aspect of machines with a higher number of phases is their 

improved reliability, since they can operate even when one phase is missing [5.1]. An 

increase in number of phases can result in an increase in torque/Ampere relation for the 

same volume of the machine, such that five-phase machines can develop torque using not 

only the fundamental, but also using higher harmonics of the air gap field [5.1, 5.2]. A 
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comprehensive review of the advantages of multi-phase electric machines has been 

presented in [5.3]. 

A good number of research work has been presented on faults in electric machines 

[5.4]. Various categories of faults have been discussed for multi-phase machines inter-

turn short circuits [5.4, 5.5] based on winding function approach. In [3.2] a dq model 

based on transformation theory for five-phase induction machines has been presented and 

the analysis of the machine under asymmetrical connections is discussed. 

A control strategy of multiphase machines under asymmetric fault conditions due to 

open phase is presented in [5.6]. The authors used a five-phase synchronous motor with 

one open phase as a practical example. 

So far there is no work that has developed a circuit based model which can be used 

to predict not only the steady-state and stability of the open-phase five phase induction 

machine but also the dynamics of the pulsating torque. Although it is known that faulted 

multi-phase machines can produce significant average torques, not much work has been 

done to quantify this. 

In this Chapter, to determine the steady-state and dynamic stability performance, 

first a five-phase induction machine with one phase (phase ‘a’) open is modeled in 

stationary reference frame. Then the same analysis is carried out for two phase open, ‘a’ 

and ‘b’ (for adjacent phases) and ‘a’ and ‘c’ (for non-adjacent phases). For the first time, 

using harmonic balance technique it has been possible to develop a circuit based model 

that has been used to perform the steady-state and dynamic analysis of a faulted machine. 

The steady-state speed harmonics and torque pulsations have been calculated and the 



 183

results compare fairly well with the simulation results based on the full-order dynamic 

model of the faulted machine. 

Furthermore, the small-signal stability study has been made through the small signal 

analysis whereby the dynamic model obtained from the harmonic balance technique has 

been used. At low speeds, the machine exhibits instability due to the rotor flux linkages. 

This instability is eliminated when the machine speeds up close to synchronous speed. 

This indicates that the machine can still be able to start under one stator phase fault and 

provide significant torque to meet most load requirements. 

Section 5.2 presents the machine modeling in stationary reference frame. The model 

of a faulted machine with stator phase ‘a’ open-circuited is discussed in section 5.3. In 

section 5.4, a thorough presentation of the harmonic balance technique is described. The 

steady state and dynamics models are discussed in section 5.5 and finally the conclusions 

are presented in section 5.6. The approach presented in this work can be extended with 

ease to any number of open phases for a multi-phase machine.  

 

5.2 Five-Phase Induction Machine Modeling in Stationary Reference Frame 

 

The stator and rotor dynamic Equations in the natural reference frame, followed by 

transformation of the machine variables to the qd  variables in the arbitrary reference 

frame, are given in Chapter 2 in which the balanced case for the stator voltages was 

considered. In this case only two components ( q  and d ) of the voltage and current exist, 

the rest are zero. For the open phase faults analysis, whereby the phase voltages across 

the stator machine windings are no longer balanced, then the other voltage components 
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do exist after transformation [3.2]. for the sake of clarity, the dynamic Equations for the 

five phase induction machine will be rewritten as follows 

For the stator winding, the stator voltage Equations are expressed as 

asassas pirv λ+=          (5.1) 

bsbssbs pirv λ+=          (5.2) 

cscsscs pirv λ+=          (5.3) 

a
ds

a
dss

a
ds pirv λ+=          (5.4) 

esesses pirv λ+=          (5.5) 

where a
dscsbsas vvvv ,,,  and esv  are the phase stator voltages, respectively; a

dscsbsas iiii ,,,  

and esi   are the phase stator currents, respectively; a
dscsbsas λλλλ ,,,  and esλ   are the phase 

stator flux linkages, respectively; sr  is the stator phase resistance. The superscript ‘a’ on 

phase ‘d’ variables will be used throughout this Chapter in order to differentiate it from 

the d-axis variables. 

For the stator winding, the stator voltage Equations are expressed as 

ararrar pirv λ+=          (5.6) 

brbrrbr pirv λ+=          (5.7) 

crcrrcr pirv λ+=          (5.8) 

a
dr

a
drr

a
dr pirv λ+=          (5.9) 

ererrer pirv λ+=          (5.10) 
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where a
drcrbrar vvvv ,,,  and erv  are the phase rotor voltages, respectively; a

drcrbrar iiii ,,,  

and eri   are the phase rotor currents, respectively; a
drcrbrar λλλλ ,,,  and erλ   are the phase 

rotor flux linkages, respectively; rr  is the rotor phase resistance 

The arbitrary reference frame transformation matrix is given by 

( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−+−
+−+−
++−−
++−−

=

2
1

2
1

2
1

2
1

2
1

2sinsinsin2sinsin
2coscoscos2coscos

sin2sin2sinsinsin
cos2cos2coscoscos

5
2

αααα
αααα
αααα
αααα

xxxxx
xxxxx
xxxxx
xxxxx

xT   (5.11) 

where 
5

2πα = , xx θθ −= , θ  is the arbitrary reference frame transformation angle. 

00=xθ  is for the stator stationary reference variable transformation and rx θθ =  is for 

the corresponding rotor variable transformation, where rθ  is the electrical rotor angle. 

Therefore, the machine variables can be transformed to qdxyoz  variables as 

( ) abcdezqdxyoz fxTf =          (5.12) 

where 

[ ]Tozyzxzdzqzqdxyoz ffffff = is the variables (voltages, fluxes and currents) matrix 

in qdxyo reference frame and [ ]Tez
a

dzczbzazabcdez ffffff =  is the variable 

(voltages, fluxes and currents) matrix in natural reference frame; z  can replaced with s  

and r  for stator and rotor variables, respectively 

For the open stator phase fault, the five-phase induction machine is modeled in 

stationary reference frame. In this case the reference frame transformation angle is zero, 
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i.e. 00=θ . For the general balanced case, the machine model Equations can then be given 

as follows [5.1]. 

The stator voltage Equations are 

qsqssqs pirv λ+=          (5.13) 

dsdssds pirv λ+=          (5.14) 

xsxssxs pirv λ+=          (5.15) 

ysyssys pirv λ+=          (5.16) 

osossos pirv λ+=          (5.17) 

where ysxsdsqs vvvv ,,,  and osv  are the q-, d-, x-, y- and o-axis stator voltages, 

respectively; ysxsdsqs iiii ,,,  and osi  are the q-, d-, x-, y- and o-axis stator currents, 

respectively; ysxsdsqs λλλλ ,,,  and osλ  are the q-, d-, x-, y- and o-axis stator flux linkages, 

respectively; sr  is the stator phase resistance 

The rotor voltage Equations are 

'''''
drrqrqrrqr pirv λωλ −+=         (5.18) 

'''''
qrrdrdrrdr pirv λωλ ++=         (5.19) 

''''
xrxrrxr pirv λ+=          (5.20) 

''''
yryrryr pirv λ+=          (5.21) 

''''
ororror pirv λ+=          (5.22) 

where '''' ,,, yrxrdrqr vvvv  and '
orv  are the q-, d-, x-, y- and o-axis stator voltages, 

respectively; '''' ,,, yrxrdrqr iiii  and '
ori  are the q-, d-, x-, y- and o-axis rotor currents, 
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respectively; '''' ,,, yrxrdrqr λλλλ  and '
orλ  are the q-, d-, x-, y- and o-axis rotor flux linkages, 

respectively; '
rr  is the rotor phase resistance; p  is the differential operator 

The stator flux linkages are given by 

'
qrmqssqs iLiL +=λ          (5.23) 

'
drmdssds iLiL +=λ          (5.24) 

xslsxs iL=λ           (5.25) 

yslsys iL=λ           (5.26) 

oslsos iL=λ           (5.27) 

where sL  and lsL  are the stator self and leakage inductances, respectively; mL  is the 

magnetizing inductance. 

The rotor flux linkages are given by 

'''
qrrqsmqr iLiL +=λ          (5.28) 

''
drrdsmdr iLiL +=λ          (5.29) 

''
xrlrxr iL=λ           (5.30) 

''
yrlryr iL=λ           (5.31) 

''
orlror iL=λ           (5.32) 

where '
rL  and '

lrL  are the rotor self and leakage inductances, respectively. 

The electromagnetic torque eT  is given by 

( )dsqrqsdr
r

m
e ii

L
LmPT ''

'4
λλ −=         (5.33) 

The rotor speed is given by 
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Ler TTp
P
J

−=ω2          (5.34) 

where m  is the number of phases, P  is the number of poles, J  is the moment of inertia, 

and LT  is the load torque. 

 

5.3 Model of an Open Phase Faulted Five-Phase Induction Machine 

 

Consider the configuration of Figure 5.1 with a switch connected in series with 

phase ‘a’ of the stator winding. Open phase fault occurs when the switch is open such 

that the supply voltage is disconnected from the machine’s phase ‘a’. 

 

Figure 5.1 Open phase ‘a’ of the stator for the five phase induction machine. 
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From the transformation relationships of (5.12), where subscript z is replaced with s 

for stator variables, it can be deduced that 

( ) ( ) ( ) ( )[ ]αααα cos2cos2coscos
5
2

es
a

dscsbsasqs ffffff ++++=    (5.35) 

( ) ( ) ( ) ( )[ ]αααα sin2sin2sinsin
5
2

es
a

dscsbsds fffff ++−−=     (5.36) 

( ) ( ) ( ) ( )[ ]αααα 2coscoscos2cos
5
2

es
a

dscsbsasxs ffffff ++++=    (5.37) 

( ) ( ) ( ) ( )[ ]αααα 2sinsinsin2sin
5
2

es
a

dscsbsys fffff +−+−=     (5.38) 

[ ]es
a

dscsbsasos ffffff ++++=
5
1        (5.39) 

When the stator phase ‘a’ is open, the machine voltages become unbalanced. Since 

phase ‘a’ voltage becomes unknown, then the q- x- and o-axis voltages become unknown 

as they are coupled to asv  in Equations (5.35), (5.37) and (5.39), respectively. 

The relationship between the q-axis and the x-axis stator variables can be given as 

Cff xsqs =−           (5.40) 

[ ]es
a

dscsbsasxsqs fffffff ++++=+ 25
4 ε       (5.41) 

where 

( )
( ) ( )[ ]

( ) ( )[ ]ααε

ααε

ε

2coscos
5
2

2coscos
5
2

2

1

1

+=

−=

+−−= es
a

dscsbs ffffC

        (5.42) 
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When the variable f  is replaced with the stator phase voltages and currents, 

Equation (5.40) is used to eliminate the unknown phase ‘a’ voltage. Also Equation (5.41) 

is used to get the relationship between the q-axis and x-axis stator currents. Thus, (5.40) 

and (5.41) turn into 

Cvv xsqs =−           (5.43) 

( )es
a
dscsbsxsqs iiiiii +++=+ 2ε        (5.44) 

Kirchhoff’s current law (KCL) still holds true such that 

0=++++ es
a
dscsbsas iiiii         (5.45) 

Now since 0=asi , then from Equations (5.44) and (5.45) 

0=+ xsqs ii           (5.46) 

When (5.46) is substituted into (5.15), the x-axis stator voltage Equation becomes 

qslsqssxs piLirv −−=          (5.47) 

Substituting (5.47) into (5.43) gives 

qslsqssqs piLirCv −−=         (5.48) 

Equations (5.13) and (5.48) can now be combined to give 

qsqslsqss ppiLirC λ++= 2         (5.49) 

Now, the stator flux linkages and the rotor currents can be eliminated as follows 

( )qsmqr
r

m
qssqs iL

L
L

iL −+= '
' λλ         (5.50) 

( )dsmdr
r

m
dssds iL

L
L

iL −+= '
' λλ         (5.51) 

( )qsmqr
r

qr iL
L

i −= '
'

' 1 λ          (5.52) 
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( )dsmdr
r

dr iL
L

i −= '
'

' 1 λ          (5.53) 

Substituting (5.50) and (5.51) into (5.49) and (5.14), respectively, and then 

rearranging, results into 

( )'''
2'' 21

qrmqsrsr
mrsrls

qs pLiLrCL
LLLLL

pi λ−−
−+

=      (5.54) 

( )'''
2'

1
drmdsrsdsr

mrs
ds pLiLrvL

LLL
pi λ−−

−
=       (5.55) 

Substituting (5.52) and (5.53) into (5.18) and (5.19), respectively leads to 

( ) ''
'

'
''

drrqsmqr
r

r
qrqr iL

L
rvp λωλλ +−−=        (5.56) 

( ) ''
'

'
''

qrrdsmdr
r

r
drdr iL

L
rvp λωλλ −−−=        (5.57) 

 

Then from (5.35) phase ‘a’ voltage is given by 

[ ] ( ) [ ] ( )αα 2coscos
2
5 a

dscsesbsqsas vvvvvv +−+−=      (5.58) 

Equations (5.33), (5.34), (5.54), (5.55), (5.56), (5.57) and (5.58) are the defining 

dynamic Equations for the faulted machine and are used to determine the circuit based 

model of the open phase faulted five phase induction machine. They are used to simulate 

the machine for this faulted condition. 

In this analysis, the real and reactive powers have been calculated to show the effect 

of oscillations in the speed and torque. The stator input real and reactive powers are given 

in terms of the natural reference frame variable as (5.59) and (5.60), respectively, the 

derivation of which has been presented in Chapter 2. Equation (5.59a) presents the 
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general expression fro the real power, whereas Equation (5.59b) represents the expression 

for the real power when the system voltages and currents are balanced. Equation (5.60) 

represents the general expression for the reactive power in all cases. 
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[ ]esesdsdscscsbsbsasas ivivivivivp ++++=       (5.59b) 
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q  (5.60) 

 

5.3.1 Harmonic Balance Technique for One Stator Open Phase Fault 

 

By using the harmonic balance approach, the Equations for the calculation of the 

steady state and harmonic quantities are derived in this section. The state variables are 

assumed to have the form of the supply voltages. The supply voltages are represented by 

( )
α

θ

j
mbss

j
bssbs

eVv

evv e

−=

= Re
         (5.61) 
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( )
α

θ

2

Re
j

mcss

j
csscs

eVv

evv e

−=

=
         (5.62) 

( )
α

θ

2

Re
j

m
a
dss

ja
dss

a
ds

eVv

evv e

=

=
         (5.63) 

( )
α

θ

j
mess

j
esses

eVv

evv e

=

= Re
         (5.64) 

where mV  is the peak of the phase voltage. In view of the form of the supply phase 

voltages, the state variables and the input voltages are therefore defined as [5.7] 

( )ej
qssqs evv θRe=          (5.65) 

( )ej
dssds evv θRe=          (5.67) 

( )ej
xssxs evv θRe=          (5.68) 

( )ej
qssqs eii θRe=          (5.69) 

( )ej
dssds eii θRe=          (5.70) 

( )ej
xssxs eii θRe=          (5.71) 

( )ej
qssqs e θλλ Re=          (5.72) 

( )ej
dssds e θλλ Re=          (5.73) 

( )ej
qrrqr e θλλ '' Re=          (5.74) 

( )ej
drrdr e θλλ '' Re=          (5.75) 

( )ej
qrrqr eii θ'' Re=          (5.76) 

( )ej
drrdr eii θ'' Re=          (5.77) 
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where tee ωθ = , ee fπω 2= , ef  is the frequency of the supply voltage, qssv , dssv ,and xssv  

are the complex peaks of the q-, d- and x-axis stator voltages, respectively; qssi , dssi ,and 

xssi  are the respective q-, d- and x-axis complex peaks of the stator phase currents, qssλ , 

dssλ , and xssλ  are the complex peaks of the q-, d- and x-axis stator flux linkages, 

respectively;. '
qrrλ , '

drrλ ,and '
xrrλ  are the complex peaks of the q-, d- and x-axis rotor flux 

linkages, respectively; '
qrri , '

drri ,and '
xrri  are the complex peaks of the q-, d- and x-axis 

rotor phase currents, respectively. 

It has to be noted here that ( )xRe  refers to the real part of quantity x . In obtaining the 

model Equations based on the harmonic balance technique, the following relation has 

been used [5.8, 5.9] 

( ) ( ) ( ) ( )[ ]xyxyyx ReRe
2
1ReRe * +=        (5.78) 

Only up to the second order harmonics are considered. 

Substituting the stator fluxes and currents into the torque Equation (5.33), results 

into 

( ) ( ) ( ) ( )[ ]eeee j
dss

j
qrr

j
qss

j
drr

r

m
e eieeie

L
LmPT θθθθ λλ ReReReRe

4
''

' −=    (5.79) 

Applying (5.78) on (5.79) and then separating real and imaginary terms gives 

( ) ( ) ( ) ( )[ ]ee j
dssqrrdssqrr

j
qssdrrqssdrr

r

m
e eiieii

L
LmPT θθ λλλλ 2'*'2'*'

' ReReReRe
2
1

4
−−+=  (5.80) 

The torque has two components, the average component and the pulsating component 

given by  

epulseavge TTT +=          (5.81) 
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where 

( ) ( )[ ]*'*'
' ReRe

8 dssqrrqssdrr
r

m
eavg II

L
LmPT λλ −=       (5.82) 

( ) ( )[ ]dssqrrqssdrr
r

m
epuls II

L
LmPT ''

' ReRe
8

λλ −=       (5.83) 

eavgT  is the average torque component, and epulsT  is the pulsating torque component which 

is oscillating at twice the supply frequency. 

Using the speed Equation (5.34) and the result of (5.80) it is obvious that the speed 

will have both the average value and the second order harmonic content. Therefore 

( )ej
rror e θωωω 2
1Re+=         (5.84) 

where roω  is the average rotor speed and 1rω  is the complex peak of the speed harmonic 

component. 

When Equations (5.61) through (5.77) and (5.84) definitions are substituted into 

Equations (5.54) through (5.58), the following harmonic balance technique model results 

Similarly, from Equations (5.54) 
( ) ( ) ( ) ( )( )eeee j

qrrm
j

qssrs
j

r
j

qss epLeiLreCLeip θθθθ λτ '''
1 ReRe2ReRe −−=   (5.85) 

( ) ( ) ( )
( ) ( )⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

−−

−
=+

ee

ee

ee

j
qrrme

j
qrrm

j
qssrs

j
rj

qsse
j

qss
eLjepL

eiLreCL
eijepi

θθ

θθ
θθ

λωλ
τω

''

''

1
ReRe

Re2
ReRe  (5.86) 

( )''''
1 2 qrrmeqrrmqssrsrqsseqss LjpLiLrCLijpi λωλτω −−−=+     (5.87) 

where 

2''1
1

mrsrls LLLLL −+
=τ  

[ ]essdsscssbss vvvvC +−−= 1ε  
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Similarly, from Equations (5.55) 
( ) ( ) ( ) ( ){ }eeee j

drrmr
j

dsss
j

dssr
j

dss epLLeirevLeip θθθθ λτ '''
2 ReReReRe −−=   (5.88) 

( ) ( ) ( ) ( )
( ) ( )⎥⎥⎦

⎤

⎢
⎢
⎣

⎡

−−

−
=+

ee

ee

ee

j
drrem

j
drrm

r
j

dsss
j

dssrj
dsse

j
dss

ejLepL

LeirevL
eijepi

θθ

θθ
θθ

λωλ
τω

''

''

2
ReRe

ReRe
ReRe  (5.89) 

( )''''
2 drrmedrrmdssrsdssrdssedss LjpLiLrvLijpi λωλτω −−−=+     (5.90) 

where 

2'2
1

mrs LLL −
=τ  

from Equation (5.56), 

( ) ( )
( ) ( )[ ] ( )[ ]ee

e

e

e j
drr

j
rroj

qssm

j
qrr

r

rj
qrr ee

eIL

e

L
r

ep θθ
θ

θ
θ λωω

λ
λ '2

1

'

'

'
' ReRe

Re

Re
Re ++

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
−=   (5.91) 

( ) ( )

( ) ( )( )

( ) ( )
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λ
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1

'*
1

'

'
'

'

''

Re
2
1

Re
2
1Re

ReRe

ReRe  (5.92) 

Considering the fundamental component ( )eje θ  and ignoring the third harmonic 
component, we have 

( ) '*
1

''
'

'
'''

drrrdrrroqssmqrr
r

r
qrrqrreqrr iL

L
rvjp λωλωλλωλ ++−−=+     (5.93) 

Similarly, from Equation (5.57), 

( ) ( )
( ) ( )[ ] ( )[ ]ee

e

e

e j
qrr

j
rroj

dssm

j
drr

r

rj
drr ee

eiL

e
L
rep θθ

θ

θ
θ λωω

λ
λ '2
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'

'

'
' ReRe

Re

Re
Re +−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−=   (5.94) 
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( ) ( )
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j
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j
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eILe
L
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θθ

θθ

θθ

λω

λωλω

λ

λωλ

2'
1

'*
1

'

'
'

'

''

Re
2
1

Re
2
1Re

ReRe

ReRe   (5.95) 

Considering the fundamental component ( )eje θ  and ignoring the third harmonic 
component, we have 

( ) '*
1

''
'

'
'''

qrrrqrrrodssmdrr
r

r
drrdrredrr iL

L
rvjp λωλωλλωλ −−−−=+     (5.96) 

From Equation (5.58), 

( ) ( ) ( ) ( )[ ] ( )

( ) ( )[ ] ( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−

+−
=

α

α

θθ

θθθ
θ

2cosReRe

cosReReRe
2
5

Re
ee

eee

e

j
dss

j
css

j
ess

j
bss

j
qssj

ass

evev

evevev
ev    (5.97) 

[ ] ( ) [ ] ( )αα 2coscos
2
5

dsscssessbssqssass vvvvvv +−+−=     (5.98) 

Performing the same analysis on Equations (5.15) and (5.16), gives 

( ) ( ) ( )[ ]eee j
xsss

j
xss

ls

j
xss eirev

L
eip θθθ ReRe1Re −=      (5.99) 

( ) ( ) ( ) ( )[ ]eeee j
xsss

j
xss

ls

j
xsse

j
xss eirev

L
eijepi θθθθ ω ReRe1ReRe −=+    (5.100) 

[ ]xsssxss
ls

xssexss irv
L

ijpi −=+
1ω        (5.101) 

from Equation (5.16) 

( ) ( ) ( )[ ]eee j
ysss

j
yss

ls

j
yss eirev

L
eip θθθ ReRe1Re −=      (5.102) 

( ) ( ) ( ) ( )[ ]eeee j
ysss

j
yss

ls

j
ysse

j
yss eirev

L
eijepi θθθθ ω ReRe1ReRe −=+    (5.103) 
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[ ]ysssyss
ls

ysseyss irv
L

ijpi −=+
1ω        (5.104) 

Substituting Equations (5.80) and (5.84) into Equation (5.34) 

( )[ ] ( ) ( )
( ) ( ) Lj

dssqrrdssqrr

j
qssdrrqssdrr

r

mj
rro T

eii

eii

L
LmPep

P
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e
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⎥
⎦
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⎢
⎣

⎡
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1
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2
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4
Re2   (5.105) 
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( ) ( )
( ) ( ) Lj
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r

m
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j
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P
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e
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−
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⎥
⎦

⎤

⎢
⎢
⎣

⎡
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+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

+
θ

θ

θ

θ

λλ

λλ

ωω

ωω
2'*'

2'*'

'2
1

2
1

ReRe

ReRe

2
1

42Re

Re2  (5.106) 

Separating the first and second order harmonic components gives 

Leoro TTp
P
J

−=ω2          (5.107) 

( ) epulsrer Tjp
P
J

=+ 11 22 ωωω         (5.108) 

where eavgT  is the average electromagnetic torque and epulsT  is the magnitude of the 

pulsating torque given in Equations (5.82) and (5.83), respectively. 

Equations (5.87), (5.90), (5.93), (5.96), (5.98), (5.107), and (5.108) form the dynamic 

model which is used for steady state performance and stability analysis of the open phase 

faulted five-phase induction machine. 

 

5.3.2 Steady State and Dynamic Model Analysis 

 

5.3.2.1 Steady state model. The model obtained by harmonic balance technique can 

be used in analyzing the steady state performance of the faulted machine. In this 

particular case, the peaks of the state variables are constant and therefore the derivatives 

of the state variables are zero. Thus at, steady-state, Equations become 
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[ ]qsssooqrrmlseqssrsls
orls

qss irCLLjiLrL
LL

v ααλω
α

−++
+

= ''1     (5.109) 

( ) '*
1

''
'

'
'

2
1

drrrdrrroqssmqrr
r

r
qrre iL

L
rj λωλωλλω ++−−=      (5.110) 

( ) '*
1

''
'

'
'

2
1

qrrrqrrrodssmdrr
r

r
drre iL

L
rj λωλωλλω −−−−=      (5.111) 

[ ]'''1
qrrmerqsssqssr

o
qsse LjLirVLij λω

α
ω −−=       (5.112) 

[ ]'''1
drrmerdsssdssr

o
dsse LjLirVLij λω

α
ω −−=       (5.113) 

[ ]ysssyss
ls

ysse irv
L

ij −=
1ω         (5.114) 

( ) ( )[ ]*'*'
' ReRe

8 dssqrrqssdrr
r

m
eavg ii

L
LmPT λλ −=       (5.115) 

( ) ( )[ ]dssqrrqssdrr
r

m
pul ii

L
LmPT ''

' ReRe
8

λλ −=       (5.116) 

Leavg TT −=0           (5.117) 

puls
e

r T
J
jP
ω

ω
41 −=          (5.118) 

Equation (5.110) can be written as 

'*
1

'''
'

'

'

'

2
10 drrrdrrroqrreqrr
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r
qss

r

mr j
L
r

i
L
Lr

λωλωλωλ ++⎟⎟
⎠

⎞
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⎝

⎛
+−=     (5.119) 

Equation (5.111) can be written as 

'
'

'
'*

1
'

'

'

2
10 drre

r

r
qrrrqrrrodss

r

mr j
L
r

i
L
Lr

λωλωλω ⎟⎟
⎠

⎞
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⎝

⎛
+−−−=      (5.120) 

Substituting (5.109) into (5.112) for qssv  we have 
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'
2

'

'

2

'

2

2'

2

'

qrr
o

me

orls

rmlse
qss

e
o

rs

oorls

sor

oorls

slsr

orls

or Lj
LL

LLLj
i

j
Lr

LL
rL

LL
rLL

LL
CL

λ
α
ω

αα
ω

ω
α

αα
α

αα
αα

α
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−

+
−

+
=

+
−  (5.122) 

Equation (5.113) can be written as 

o

dssr
drr

o

me
dsse

o

rs vLLj
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Lr
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λ
α
ω

ω
α

'
'

'
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⎝

⎛
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Equation (5.114) can be written as 

ls

yss
ysse

ls

s

L
v

ij
L
r

=⎟⎟
⎠

⎞
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⎝

⎛
+ ω          (5.124) 

The resulting model can be computed normally as for any other steady-state system. 

Since there is a coupling term due to the speed harmonic content 1rω , then the steady-

state model becomes nonlinear and thus requires a  nonlinear technique to solve this 

model iteratively. This approach requires the model Equations to be separated into their 

real and imaginary parts, and thus introducing more state variables since each of the state 

variable will be spit into its two components, i.e. the real and imaginary parts as 

independent state variables. If ref  and imf  refer to the real and imaginary parts of the 

quantity f , respectively, then imre jfff += . 

Now, let the quantities of Equations be presented in coordinate form as 

qrimqrreqrr jλλλ +='          (5.109) 
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drimdrredrr jλλλ +='          (5.110) 

qsimqsreqss jiii +=          (5.111) 

dsimdsredss jiii +=          (5.112) 

ysimysreyss jiii +=          (5.113) 

2

'

oorls
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simsre LL

CL
jcc

αα
α

+
−=+         (5.114) 

o

dssr
dsimdsre

vL
jvv

α

'

=+          (5.115) 

From Equation (5.108) it is obvious that the real part of 1rω  is zero ( )01 =rerω , 

hence 1rω  is an imaginary quantity. Therefore 

imrr j 11 ωω =           (5.116) 

Substituting these definitions into Equations (k) – (o) and (g) to (j), we have 
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Separating real and imaginary terms 
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Separating real and imaginary terms 
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Separating real and imaginary terms 
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Separating real and imaginary terms 
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Therefore the steady-state real Equations are 
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These Equations can be written in matrix form as 

ooo xAb =           (5.143) 
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An initial value of 1rω  is assumed (in this case 0.6 rad/sec). The rotor speed is 

varied from 0 to eω . At every speed value, the value of 1rω  is iterated by using the 

pulsating torque to calculate the new value of 1rω  until the threshold is obtained, then 

calculation of different state variables continues. If however the speed pulsations are 

neglected in the voltage Equations, the resulting steady-state Equations are linear and 

admit closed form solutions. 
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5.3.2.2 Small signal analysis. To study the dynamics of the faulted system, small 

signal model is derived from the harmonic balance technique model by causing small 

changes in the state and control variables. 

Equations (5.82), (5.83), (5.87), (5.90), (5.93), (5.96), (5.107) and (5.108) are used 

in developing a small signal model of the form 

uBxAxp ∆+∆=∆          (5.147) 

where x  is the state variable, A  is the state matrix given by (5.164), B is the control 

matrix and u  is the control variable. As it is for the case of the steady-state analysis, the 

resulting equations are split into their real and imaginary parts. Thus, the state matrix 

(5.164) so obtained consists of real parameters. 

The small signal dynamic Equations are 
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Thus, the matrices of Equation (5.144) can be deduced form (5.148) through (5.162) as 
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The stability of the faulted five phase machine is studied through the calculation of 

the eigen values of the resulting state matrix. The entries of (5.164) can be easily 

obtained from Equations (5.148) through (5.162). 
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5.3.3 Results and Discussion 

 

The validity of the various models presented in Sections 5.2-5.3.3 has been 

investigated through the computer simulation of the full-order model of the machine with 

stator phase ‘a’ open-circuited. The steady-state model is used to calculate the state 

variables and then the results are compared. 

Figure 5.2 through Figure 5.4 present the simulation of the free acceleration starting 

process of the machine. The phase voltage is applied to the remaining four phases (b, c, d, 

and e) and Equation (5.58) is used to determine stator phase ‘a’ voltage. Figure 5.2(a) and 

(b) show the rotor speed and electromagnetic torque, respectively, showing the 

characteristics similar to those of the healthy induction machine. In Figure 5.3(a) the 

stator phase ‘a’ current is zero as expected. The stator phase voltages are shown in Figure 

5.4 with the starting transients of the open phase ‘a’ as it develops the voltage is clearly 

displayed in Figure 5.4(a). 

When the rotor speed is in steady state, the load torque is changed from 0 to 11 Nm 

to show the effect of the speed harmonics. The dynamic responses of the machine to load 

changes are shown in Figure 5.5(a) and (b) for the rotor speed and electromagnetic 

torque, respectively. In Figure 5.6 through Figure 5.9, the waveforms of the variables are 

shown after the speed has reached steady-state average value. It is evident from Figure 

5.6(a) and (b) that the speed and torque consist of the harmonics at twice the frequency of 

the supply voltages as predicted by the harmonic balance technique model. The 

unbalance caused by the open phase fault is clearly indicated in the stator phase load 

currents, Figure 5.7. Figure 5.8 (a) shows that when the machine is loaded, the open 
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phase ‘a’ voltage is affect as it is reduced. This is due to the fact that the voltage 

waveform is induced by the other phases and the rotor circuits. The real power and 

reactive power also contain second order oscillations as shown in Figure 5.9 (a) and (b). 

Figure 5.10(a) and Figure 5.10 (b) show the peak values of the rotor speed and 

torque pulsations, respectively as a function of the rotor speed. In Figure 5.6 (a) the 

average rotor speed is approximately 364.6 rad/sec, the peak value of the speed 

oscillations is about 0.04 rad/sec. In Figure 5.6(b) the average torque is 11 Nm and the 

peak of the torque oscillations is about 2.5 Nm. These speed and torque values are fairly 

comparable to those in Figure 5.10(a) and Figure 5.10(b), respectively. 

Figure 5.11 presents the torque-speed characteristics at both normal and open-phase 

faulted conditions. First the normal operation of the machine is computer simulated and 

the steady-state torque curve is superimposed on the simulated curve. Then the same 

procedure is followed for the open phase faulted condition. Under this operation, the 

torque envelope is obtained by adding the peak of the pulsation torque to, and subtracting 

it from the average value obtained from the harmonic balance technique. Comparing the 

results of the dynamic computer simulation and the steady state calculations for both 

cases, the harmonic balance technique gives average and peak values of the torque that 

compare fairly with simulation results. 

Figure 5.12 and Figure 5.13 present the small-signal dynamics of the system when 

the rotor speed is changing. The result of Figure 5.12 is obtained when the rotor speed is 

varied from 0 to 377 rad/sec. The machine shows instability at low speeds. This is 

contributed by both the speed harmonics and the q-axis rotor flux linkage '
qrrλ . In Figure 

5.13, when the rotor speed is varied from 11. 78 rad/sec to 377 rad/sec, the instability due 
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to the q-axis rotor flux linkage disappears. Thus the machine is stable at a relatively high 

speed. This may be due to the fact that at low speed (below 11.78 rad/sec), the machine is 

has not developed enough torque due to the loss of phase. But it quickly recovers beyond 

1.78 rad/sec. This observation can be seen in Figure 5.2 in which it is clear that the 

machine takes a longer time to reach the steady-state speed. 

The speed and torque oscillations are also shown in Figure 5.14 (a) and Figure 

5.14(b), respectively. The results of which compare well with those presented in Figure 

5.6(a) and Figure 5.6(b), respectively, as well as Figure 5.10(a) and Figure 5.10(b), 

respectively. 
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Figure 5.2 Starting transients (a) rotor speed and (b) electromagnetic torque 
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Figure 5.3 Starting transients Stator phase currents (a) phase ‘a’ (b) phase ‘b’ (c) phase 

‘c’ (d) phase ‘d’ (e) phase ‘e’ 
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Figure 5.4 Starting transients stator phase voltages (a) phase ‘a’ (b) phase ‘b’ (c) phase 

‘c’ (d) phase ‘d’ (e) phase ‘e’ 
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Figure 5.5 Simulation Dynamics of (a) rotor speed and (b) electromagnetic torque due to 

a load torque change of  11 Nm  applied at 4 seconds. 
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Figure 5.6 Simulation Steady-state (a) rotor speed and (b) electromagnetic torque at a 

load torque of 11 Nm. 
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Figure 5.7 Simulation Steady-state stator phase currents at a load torque of 11 Nm. 

 

 

 

 



 219

7.97 7.975 7.98 7.985 7.99 7.995 8
-200

-100

0

100

200

v as
  [

 v
 ]

 

 

7.97 7.975 7.98 7.985 7.99 7.995 8
-200

-100

0

100

200

v bs
  [

 v
 ]

7.97 7.975 7.98 7.985 7.99 7.995 8
-200

-100

0

100

200

v cs
  [

 v
 ]

7.97 7.975 7.98 7.985 7.99 7.995 8
-200

-100

0

100

200

v ds
  [

 v
 ]

7.97 7.975 7.98 7.985 7.99 7.995 8
-200

-100

0

100

200

Time  [sec]

v es
  [

 v
 ]

(e)

(c)

(b)

(a)

(d)

 

Figure 5.8 Simulation Steady-state stator phase voltages at a load torque of 11 Nm (a) 

phase ‘a’ (b) phase ‘b’ (c) phase ‘c’ (d) phase ‘d’ (e) phase ‘e’ 
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Figure 5.9 Simulation Steady-state stator input five-phase power (a) Real power and (b) 

Reactive power at a load torque of 11 Nm. 
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Figure 5.10. Steady-state calculation results (a) Peak value of the speed harmonic 

component and (b) Peak value of the torque pulsation 
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Figure 5.11. Various torque components of the five-phase induction machine under 

balanced and a stator phase open based on computer simulation and steady-state 

calculations. 
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Figure 5.12. Small signal stability analysis (a) all state variables included (b) speed 

harmonics are not included (c) both speed harmonics and q-axis rotor flux linkage state 

variables are not included. (Rotor speed is varied from 0 to 377 rad/sec) 
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Figure 5.13. Small signal stability analysis (a) all state variables included (b) speed 

harmonics are not included (c) both speed harmonics and q-axis rotor flux linkage state 

variables are not included. (Rotor speed is varied from 11.78 to 377 rad/sec) 
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Figure 5.14 Simulation Steady-state (a) rotor speed oscillations and (b) electromagnetic 

torque oscillations at a load torque of 11 Nm. 
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5.4 Two Adjacent Phases (‘a’ and ‘b’) Open Circuited 

 

The operation with two adjacent phases (‘a’ and ‘b’) open on fault is depicted in 

Figure 5.15. When the two phases are open, the phase voltages across the machine phase 

windings ‘a’ and ‘b’ become unknown. Under this condition, all the qdxyos transformed 

voltages become unknown. 

The following Equations will apply when the two stator phases “a” and “b” are open 

0=asi            (5.165) 

0=bsi            (5.166) 

 

Figure 5.15 Open phases ‘a’ and ‘b’ of the stator for the five phase induction machine. 

KCL requires that 
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0=++++ es
a
dscsbsas iiiii         (5.167) 

Therefore 

0=++ es
a
dscs iii          (5.168) 

Using Equations (5.35) and (5.37), the q- and x- axis voltages are related by 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛+⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛

+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛+⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛

=−

es
a
ds

csbs

xsqs

vv

vv
vv

5
4cos

5
2cos

5
2cos

5
4cos

5
2cos

5
4cos

5
4cos

5
2cos

5
2

ππππ

ππππ

  (5.169) 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛+⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛

=−

es
a
ds

csbs

xsqs

vv

vv
vv

5
4cos

5
2cos

5
4cos

5
2cos

5
4cos

5
2cos

5
4cos

5
2cos

5
2

ππππ

ππππ

   (5.170) 

( )es
a
dscsbsxsqs vvvvvv +−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=−

5
4cos

5
2cos

5
2 ππ     (5.171) 

From Equations (5.39), (5.167) and (5.168) it can be shown by KCL that 

( ) 0
5
1

=++++= es
a
dscsbsasos iiiiii        (5.172) 

( ) 0
5
1

=++= es
a
dscsos iiii         (5.173) 

Therefore, 

0=osi            (5.174) 

This leads to 

0== oslsos iLλ          (5.175) 

0=+= osossos pirv λ          (5.176) 

Using Equations (5.39) and (5.176) guives 
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( )es
a
dscsbsas vvvvv ++−=+         (5.177) 

Equation (5.35) is re-written as (5.178) 
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Substituting for asv  from (5.178) into (5.177) gives 
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The y-axis voltage is given by 
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Since qsxs ii −= , then 

qslsqssxs piLirv −−=          (5.194) 

Substituting (5.194) into (5.184) gives 
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Substituting for the stator and the rotor current, the q-axis stator voltage Equation 

becomes 
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Therefore, with  asv , csv , qsv , dsv  and ysv  known, then the faulted condition can be 

simulated by using the following dynamic Equations 

The q-axis stator dynamic Equation is 
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1       (5.198) 

The d-axis stator dynamic Equation is 

( )( )drmrdssdsr
mrs

ds pLLirvL
LLL

pi λ−−
−

= 2

1       (5.199) 

The y-axis stator dynamic Equation is 

( )yssys
ls

ys irv
L

pi −=
1          (5.200) 

The phase currents are obtained as 

xsqsas iii +=           (5.201) 
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xsqsbs iii −−=           (5.202) 

ysdscs iii

5
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=     (5.203) 

ds
a
ds ii

⎟
⎠
⎞

⎜
⎝
⎛ −

−=

5
4sin

5
2sin2

5
ππ

        (5.204) 

( )dsyses iii −=

5
4sin4

5
π

        (5.205) 

 

5.4.1 Harmonic Balance Technique for the Two Adjacent Open Phase Faults 

 

The same approach that has been used in section 5.3.1 applies here as well. 

Let 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+

=

2

1
1

mrs

rls

LLL
LL

a
σ  

Then Equation (5.197) can be written as 

( )⎥
⎦

⎤
⎢
⎣

⎡
+

−
+−++= qrmrqss

mrs

ls
qsses

a
dscsqs pLLir

LLL
L

irdvcvbvv λσ 21    (5.206) 

Using Equations (5.61) through (5.84), the following harmonic balance technique 

dynamic model is obtained 

The q-axis stator voltage is given by 
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( )⎥
⎦

⎤
⎢
⎣

⎡
++

−
+−++= qrrmeqrrmqssrs

mrs

ls
qsssess

a
dsscssqss LjpLiLr

LLL
L

irdvcvbvv λωλσ 21  (5.207) 

The q-axis stator voltage Equation is given by 

( )qrrmeqrrmqssrsqssr
mrs

qsseqss LjpLiLrvL
LLL

ijpi λωλω −−−
−

=+ 2

1   (5.208) 

The d-axis stator voltage Equation is given by 

( )( )drrmedrrmrdsssdssr
mrs

dssedss LjpLLirvL
LLL

ijpi λωλω −−−
−

=+ 2

1   (5.209) 

The d-axis stator voltage Equation is given by 

( )ysssyss
ls

ysseyss irv
L

ijpi −=+
1ω        (5.210) 

The q-axis rotor voltage Equation is given by 

( ) *
12

1
drrrdrrroqssmqrr

r

r
qrrqrreqrr iL

L
rvjp λωλωλλωλ ++−−=+    (5.211) 

The q-axis rotor voltage Equation is given by 

( ) *
12

1
qrrrqrrrodssmdrr

r

r
drrdrredrr iL

L
rvjp λωλωλλωλ −−−−=+    (5.212) 

 

5.4.2 Steady State and Dynamic Model Analysis for Two Adjacent Open Phases 

 

5.4.2.1 Steady state model. At steady state, the derivatives of the peaks are zero. 

Therefore, the above Equations (5.206) through (5.212) become 

( ) qrr
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lsme
qsss
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−
+−=++−  (5.213) 
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The d-axis and y-axis stator voltages, respectively, given by (5.219) and (5.220) 

dssqssess
a
dsscss vvtvtvtvt +−=++ 5876        (5.219) 

yssqssess
a
dsscss vvtvtvtvt +−=++ 9121110        (5.220) 

Equations (5.213) through (5.220) can be represented in matrix form as 

111 bxA =           (5.221) 

1
1

11 bAx −=           (5.222) 

where the matrices 1b  and 1x  are, respectively, given by Equations (5.223) and (5.224), 

with 

( )ess
a
dsscss dvcvbvb ++−= 1111 σ , ess

a
dsscss vtvtvtb 876171 ++= , ess

a
dsscss vtvtvtb 121110181 ++=  

[ ]Tdrrqrr bbvvbb 1811711111 000 −−=      (5.223) 

[ ]Tdrrqrryssdssqssyssdssqss iiivvvx λλ=1      (5.224) 

The matrix 1A  is given by Equation (5.225). 
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When the speed harmonic component is taken into account, then the Equations have 

to be separate into their real and imaginary parts. The resulting systems of steady-state 

Equations will be solved by iteration to obtain the results. 

Now let, 

qsimqsreqss jvvv +=          (5.226) 

dsimdsredss jvvv +=          (5.227) 

ysimysreyss jvvv +=          (5.228) 

a
dsim

a
dsre

a
dss jvvv +=          (5.229) 

csimcsrecss jvvv +=          (5.230) 

esimesreess jvvv +=          (5.231) 

imrr j 11 ωω =  

Substituting these Equations (5.109) through (5.116) and (5.226) through (5.231) 

into Equations (5.213) through (5.220), the steady state model comprising of the real 

Equations is obtained as 

From Equation (5.213), 
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Separating real and imaginary parts, 
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From Equation (5.214), 
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Separating the real and imaginary parts 
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From Equation (5.215), 
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Separating the real and imaginary parts 

drimdsimedsresdsre LiiLrvL λω 1122220 ++−=       (5.239) 



 239

drredsimsdsreedsim LiLrivL λω 1122220 −−−=       (5.240) 

From Equation (5.216), 
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Separating the real and imaginary parts 

ysimeysreysre iiLvL ω+−= 44330         (5.242) 

ysimysreeysim iLivL 44330 −−= ω         (5.243) 

From Equation (5.217), 
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Separating the real and imaginary parts 

drimimrdrreroqrimeqrreqsreqrre LiLv λωλωλωλ 16655 2
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+++−=−     (5.245) 

drreimrdrimroqrimqrreeqsimqrim LiLv λωλωλλω 16655 2
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++−−=−     (5.246) 

From Equation (5.218), 
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Separating the real and imaginary parts 

dsredrimedrreqrimrqrrerodrre iLLv 556612
1

++−−−=− λωλλωλω     (5.248) 

dsimdrimdrreeqrrerqrimrodrim iLLv 556612
1

+−−−−=− λλωλωλω     (5.249) 

From Equation (5.219), 
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Separating the real and imaginary parts 

dsreqsreesre
a
dsrecsre vvtvtvtvt +−=++ 5876       (5.251) 

dsimqsimesim
a
dsimcsim vvtvtvtvt +−=++ 5876       (5.252) 

From Equation (5.220), 
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Separating the real and imaginary parts 

ysreqsreesre
a
dsrecsre vvtvtvtvt +−=++ 9121110       (5.254) 

ysimqsimesim
a
dsimcsim vvtvtvtvt +−=++ 9121110       (5.255) 
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These Equations can be written in matrix form as 

222 bxA =           (5.256) 

2
1

22 bAx −=           (5.257) 

where 2b  and 2x  are give by Equations (5.258) and (5.259), respectively, with 

( )esre
a
dsrecsre dvcvbvb ++−= 1211 σ  

( )esim
a
dsimcsim dvcvbvb ++−= 1221 σ  
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a
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a
dsimcsim vtvtvtb 8762141 ++=  
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Let, 
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Then the matrix 2A  is given by 
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[ ]Tdrimdrreqrimqrre bbbbvvvvbbb 21612151214121312212112 000000 −−−−=     (5.258) 

[ ]Tdrimdrreqrimqrreysimysredsimdsreqsimqsreysimysredsimdsreqsimqsre iiiiiivvvvvvx λλλλ=2    (5.259) 
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                 (5.260) 
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5.4.2.2 Small signal analysis for two adjacent open stator phases. Substituting 

Equations (5.109) through (5.1116), (5.226) through (5.231) into Equations (5.207) 

through (5.212) and using Equations (5.159) through (5.162), the following real dynamic 

model equations are obtained 

From Equation (5.207) 

( ) ( ) ( )

( ) ( )

( )
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−++
−

+

+
−

++−

+++++

=+

qrimeqrreeqrimqrre
mrs

mls

qsimqsre
mrs

rsls
qsimqsres

esimesre
a
dsim

a
dsrecsimcsre

qsimqsre

jjpp
LLL

LL

jii
LLL

LrL
jiir

jvvdjvvcjvvb

jvv

λωλωλλ

σ

2

21   (5.261) 

Separating real and imaginary terms 
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From Equation (5.208) 
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Separating real and imaginary terms 
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From Equation (5.209) 
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Separating real and imaginary terms 
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From Equation (5.210) 
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Separating real and imaginary terms 
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From Equation (5.211) 
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Separating real and imaginary terms 
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From Equation (5.212) 
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Separating real and imaginary terms 
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From Equations (5.265), (5.266), (5.268), (5.269), (5.271), (5.272), (5.274), (5.275), 

(5.277), (5.298), and (5.278), can be rearrange and written as 

qsreqrimqsimeqsresqrreqsre vLLiiLrpLip ∆+∆+∆+∆−=∆+∆ 22112277 λωλ    (5.279) 

qsimqrreqsimsqsreeqrimqsim vLLiLripLip ∆+∆−∆−∆−=∆+∆ 22112277 λωλ   (5.280) 

dsredrimdsimedsresdrredsre vLLiiLrpLip ∆+∆+∆+∆−=∆+∆ 22112277 λωλ    (5.281) 

dsimdrredsimsdsreedrimdsim vLLiLripLip ∆+∆−∆−∆−=∆+∆ 22112277 λωλ   (5.282) 
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where 
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Substituting (5.285) into (5.279) for qrrep λ∆ , results into 
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Substituting (5.286) into (5.280) for qrimp λ∆ , results into 
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Substituting (5.287) into (5.281) for drrep λ∆ , results into 
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Substituting (5.288) into (5.282) for drimp λ∆ , results into 
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Let 
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Then Equations (5.290) and (5.292) (5.294) and (5.29) can be written as 
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Equations (5.161) and (5.162) can be written as (5.301) and (5.302), respectively 
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From Equations (5.160), (5.283), (5.284), (5.285), (5.286), (5.287), (5.288), (5.286) , 

(5.297), (5.298), (5.299), (5.300), (5.301) , and (5.302), the A matrix for small signal 

analysis is as presented in Equation , (5.303). 
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5.4.3 Results and Discussion for Two Adjacent Open Phase Fault 

 

The validity of the models presented in section 5.4 - 5.4.2 has been investigated 

through the computer simulation of the full-order model of the machine with stator 

phases ‘a’ and ‘b’ open-circuited. The steady-state model is used to calculate the state 

variables and then the results are compared. 

Figure 5.16 through Figure 5.19 present the simulation of the free acceleration 

starting process of the machine. The phase voltage is applied to the remaining three 

phases (c, d, and e) and Equations (5.187) and (5.180) are used to determine stator phase 

‘a’ and ‘b’ voltages, respectively. Figure 5.16(a) and (b) show the rotor speed and 

electromagnetic torque, respectively, showing the characteristics similar to those of the 

healthy induction machine. In Figure 5.17(a) the stator phase ‘a’ and ‘b’ currents are zero 

as expected. The stator phase voltages are shown in Figure 5.18 with the starting 

transients of the open phases ‘a’ and ‘b’ as they develops the voltages are clearly 

displayed in Figure 5.18(a) and (b), respectively. 

When the rotor speed is in steady state, the load torque is changed from 0 to 11 Nm 

to show the effect of the speed harmonics. The dynamic responses of the machine to load 

changes are shown in Figure 5.19(a) and (b) for the rotor speed and electromagnetic 

torque, respectively. In Figure 5.20 through Figure 5.23, the waveforms of the variables 

are shown after the speed has reached steady-state average value. It is evident from 

Figure 5.20(a) and (b) that the speed and torque consist of the harmonics at twice the 

frequency of the supply voltages as predicted by the harmonic balance technique model. 

The unbalance caused by the open phase fault is clearly indicated in the stator phase load 
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currents, Figure 5.21. Figure 5.22 (a) and (b) show that when the machine is loaded, the 

open phase ‘a’ and ‘b’ voltages are affected as they are reduced. This is due to the fact 

that the voltage waveforms are induced by the other phases and the rotor circuits. 

Figure 5.24(a) and Figure 5.24 (b) show the peak values of the rotor speed and 

torque pulsations, respectively as a function of the rotor speed. In Figure 5.24 (a) the 

average rotor speed is approximately 361.58 rad/sec, the peak value of the speed 

oscillations is about 0.06 rad/sec. In Figure 5.24(b) the average torque is 11 Nm and the 

peak of the torque oscillations is about 1.75 Nm. These speed and torque values are fairly 

comparable to those in Figure 5.20(a) and Figure 5.20(b), respectively. 

Figure 5.26 presents the torque-speed characteristics at both normal and two open-

phase faulted conditions. First the normal operation of the machine is computer simulated 

and the steady-state torque curve is superimposed on the simulated curve. Then the same 

procedure is followed for the open phase faulted condition. Under this operation, the 

torque envelope is obtained by adding the peak of the pulsation torque to, and subtracting 

it from the average value obtained from the harmonic balance technique. Comparing the 

results of the dynamic computer simulation and the steady state calculations for both 

cases, the harmonic balance technique gives average and peak values of the torque that 

compare fairly with simulation results. 

The stator input and reactive powers at steady state are shown in figure 5.27(a) and 

Figure 5.27(b), respectively. The speed and torque oscillations are also shown in figure 

5.28 (a) and Figure 5.28(b), respectively. The results of which compare well with those 

presented in Figure 5.20(a) and Figure 5.20(b), respectively, as well as Figure 5.24(a) and 

Figure 5.24(b), respectively. 
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Figure 5.16 Stator phases ‘a’ and ‘b’ open starting transients (a) rotor speed and (b) 

electromagnetic torque 
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Figure 5.17 Stator phases ‘a’ and ‘b’ open Starting transients Stator phase currents (a) 

phase ‘a’ (b) phase ‘b’ (c) phase ‘c’ (d) phase ‘d’ (e) phase ‘e’ 
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Figure 5.18 Stator phases ‘a’ and ‘b’ open Starting transients stator phase voltages (a) 

phase ‘a’ (b) phase ‘b’ (c) phase ‘c’ (d) phase ‘d’ (e) phase ‘e’ 
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Figure 5.19. Stator phases ‘a’ and ‘b’ open Simulation Dynamics of (a) rotor speed and 

(b) electromagnetic torque due to a load torque change of  11 Nm  applied at 4 seconds. 
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Figure 5.20. Stator phases ‘a’ and ‘b’ open Simulation Steady-state (a) rotor speed and 

(b) electromagnetic torque at a load torque of 11 Nm, showing the presence of the 

harmonic (oscillating) components. 
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Figure 5.21. Stator phases ‘a’ and ‘b’ open Simulation Steady-state stator phase currents 

at a load torque of 11 Nm. 
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Figure 5.22. Stator phases ‘a’ and ‘b’ open Simulation Steady-state stator phase voltages 

at a load torque of 11 Nm (a) phase ‘a’ (b) phase ‘b’ (c) phase ‘c’ (d) phase ‘d’ (e) phase 

‘e’ 
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Figure 5.23. Stator phases ‘a’ and ‘b’ open Simulation Steady-state stator phase voltages 

at a load torque of 11 Nm showing the unbalance 
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Figure 5.24. Steady-state calculation results (a) Peak value of the speed harmonic 

component (b) Peak value of the torque pulsation 
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Figure 5.25 Faulted machine Various torque components of the five-phase induction 

machine under unbalanced stator phases ‘a’ and ‘b’ open based on computer simulation 

and steady-state calculations. 

 

 

 

 



 263

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

-20

-10

0

10

20

30

40

50

60

Rotor Speed, ωr  [ rad/sec ]

El
ec

tro
m

ag
ne

tic
 to

rq
ue

, T
e  [

 N
m

 ]

 

 

Teavg: - Fault operation

Teavg - Tepuls: - Fault operation

Teavg + Tepuls: - Fault operation

Te: Steady-state - Normal operation

Te: Simulation - Normal operation

 

Figure 5.26 Various torque components of the five-phase induction machine under 

balanced and a stator phases ‘a’ and ‘b’ open based on computer simulation and steady 

state calculations. 
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Figure 5.27 Simulation Steady-state stator input five-phase power (a) Real power and (b) 

Reactive power at a load torque of 11 Nm. 
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Figure 5.28 Simulation Steady-state (a) rotor speed oscillations and (b) electromagnetic 

torque oscillations at a load torque of 11 Nm. 
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5.5 Two Non-adjacent Phases (‘a’ and ‘c’) Open Circuited 

 

The operation with two non-adjacent phases (‘a’ and ‘c’) open on fault is depicted 

in Figure 5.29. When the two phases are open, the phase voltages across the machine 

phase windings ‘a’ and ‘c’ become unknown. Under this condition, all the qdxyos 

transformed voltages become unknown. 

The following Equations will apply when the two stator phases “a” and “c” are open 

0=asi            (5.304) 

0=csi            (5.304) 

 

 

Figure 5.29 Open phases ‘a’ and ‘c’ of the stator for the five-phase induction machine. 



 267

KCL requires that 

0=++++ es
a
dscsbsas iiiii         (5.306) 

Therefore 

0=++ es
a
dsbs iii          (5.307) 

( ) 0
5
1

=++++= es
a
dscsbsasos iiiiii  

( ) 0
5
1

=++= es
a
dsbsos iiii  

0=osi            (5.308) 

Which leads to 

0== oslsos iLλ          (5.309) 

0=+= osossos pirv λ          (5.310) 

Equation (5.39), therefore, can be written as 

( )es
a
dsbscsas vvvvv ++−=+         (5.311) 

From Equation (5.35) 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛−= es

a
dscsbsqsas vvvvvv

5
2cos

5
4cos

5
4cos

5
2cos

2
5 ππππ   (5.312) 

Substituting for asv  from (5.312) into (5.311) gives 

( )es
a
dscsbs

es
a
ds

csbs

qs vvvv
vv

vv
v ++−=+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

−

5
2cos

5
4cos

5
4cos

5
2cos

2
5

ππ

ππ

 



 268

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−

=

es
a
ds

bsqs

cs

vv

vv
v

5
2cos1

5
4cos1

5
2cos1

2
5

5
4cos1

1
ππ

π

π
   (5.313) 

es
a
dsbsqscs vvzvyvxv 1111 γ+++=        (5.314) 

where 

5
4cos1

1
2
5

1 π
−

−=x  

⎟
⎠
⎞

⎜
⎝
⎛ −

−

−
=

5
2cos1

5
4cos1

1
1

π
π

y  

⎟
⎠
⎞

⎜
⎝
⎛ −

−

−
=

5
4cos1

5
4cos1

1
1

π
π

z  

⎟
⎠
⎞

⎜
⎝
⎛ −

−

−
=

5
2cos1

5
4cos1

1
1

π
π

γ  

Substituting for csv  from (5.314) into (5.171) gives 

( ) ( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−+
+−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛−

⎟
⎠
⎞

⎜
⎝
⎛

+
es

a
dsbs

xsqs v
vzvy

vvx
1

11
1 1

11
5

4cos
5

2cos
5
2

5
4cos

5
2cos

5
21

γ
ππ

π

π

 (5.315) 

( ) ( ) ( )( )es
a
dsbsxsqs vvzvyvvx γαα −++−−=−⎥⎦

⎤
⎢⎣
⎡ + 111

5
2

5
21     (5.316) 

( ) ( ) ( ) es
a
dsbsxsqs vvzvyvvx γαααα −++−−=−⎥⎦

⎤
⎢⎣
⎡ + 1

5
21

5
21

5
2

5
21     (5.317) 

es
a
dsbsxsqs vdvcvbvva 1111 ++=−        (5.318) 



 269

where 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=

5
4cos

5
2cos1

ππα  

111 5
21 xa α+=  

( )111 1
5
2 yb −= α  

( )1
5
2

111 +−= zc α  

( )111 1
5
2 γα −=d  

Substituting for from (5.318) into (5.312) results into 

[ ]
5

2cos
5

4cos
5

2cos
5

4cos
2
5

1111
ππππγ es

a
dsbses

a
dsbsqsqsas vvvvvzvyvxvv −−−+++−=

 (5.319) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ +−

⎟
⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ −

=

es
a
ds

bsqs

as

vvz

vyvx
v

5
2cos

5
4cos

5
4cos

5
4cos

5
2cos

5
4cos

5
4cos

2
5

11

11

ππγππ

πππ

   (5.320) 

es
a
dsbsqsas vsvsvsvsv 4321 +++=        (5.321) 

where 

⎟
⎠
⎞

⎜
⎝
⎛ −=

5
4cos

2
5

11
πxs  

⎟
⎠
⎞

⎜
⎝
⎛ +−=

5
2cos

5
4cos12

ππys  

⎟
⎠
⎞

⎜
⎝
⎛ +−=

5
4cos

5
4cos13

ππzs  



 270

⎟
⎠
⎞

⎜
⎝
⎛ +−=

5
2cos

5
4cos14

ππγs  

The d-axis voltage is given by 

⎟
⎠
⎞

⎜
⎝
⎛ ++−−= ππππ

5
2sin

5
4sin

5
4sin

5
2sin

5
2

es
a
dscsbsds vvvvv     (5.322) 

Substituting (5.314) into (5.322) gives 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ ++−+++−= ππππγ

5
2sin

5
4sin

5
2sin

5
4sin

5
2

1111 es
a
dsbses

a
dsbsqsds vvvvvzvyvxv  

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

++−

−−−
+−=

πππ

πγππ
π

5
2sin

5
4sin

5
2sin

5
4sin

5
4sin

5
4sin

5
2

5
4sin

5
2

es
a
dsbs

es
a
dsbs

qsds

vvv

vzvyv
xvv  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛ −−

⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ +−

+−=

es

a
dsbs

qsds

v

vzvy
vxv

ππγ

ππππ
π

5
2sin

5
4sin

5
4sin

5
4sin

5
2sin

5
4sin

5
2

5
4sin

5
2  (5.323) 

es
a
dsbsqsds vsvsvsvsv 8765 +++=        (5.324) 

where 

π
5
4sin

5
2

15 xs −=  

⎟
⎠
⎞

⎜
⎝
⎛ +−= ππ

5
2sin

5
4sin

5
2

16 ys  

⎟
⎠
⎞

⎜
⎝
⎛ −−= ππ

5
4sin

5
4sin

5
2

17 zs  

⎟
⎠
⎞

⎜
⎝
⎛ −−= ππγ

5
2sin

5
4sin

5
2

18s  

The y-axis voltage is given by 
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⎟
⎠
⎞

⎜
⎝
⎛ +−+−=

5
4sin

5
2sin

5
2sin

5
4sin

5
2 ππππ

es
a
dscsbsys vvvvv     (5.325) 

Substituting (5.314) into (5.325) results into 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ ++

⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −+

=

es

a
dsbsqs

ys

v

vzvyvx
v

5
4sin

5
2sin

5
2

5
2sin

5
2sin

5
2

5
4sin

5
2sin

5
2

5
2sin

5
2

1

111

ππγ

πππππ

 (5.326) 

es
a
dsbsqsys vsvsvsvsv 1211109 +++=        (5.327) 

where 

5
2sin

5
2

19
πxs =  

⎟
⎠
⎞

⎜
⎝
⎛ −=

5
4sin

5
2sin

5
2

110
ππys  

⎟
⎠
⎞

⎜
⎝
⎛ −=

5
2sin

5
2sin

5
2

111
ππzs  

⎟
⎠
⎞

⎜
⎝
⎛ +=

5
4sin

5
2sin

5
2

112
ππγs  

Since qsxs ii −= , then 

qslsqssxs piLirv −−=          (5.328) 

Substituting (5.328) into (5.318) gives 

esdsbsqslsqssqs vdvcvbpiLirva 1111 ++=++       (5.329) 

Substituting for qspi  from (5.196) into (5.329) gives 

( ) esdsbsqrmrqss
mrs

ls
qssqs

mrs

rls
qs vdvcvbpLLir

LLL
L

irv
LLL

LL
va 111221 ++=+

−
−+

−
+ λ  (5.330) 
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−
+−++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+

=
qrm

rqss

mrs

ls
qssesdsbs

mrs

rls
qs pL

Lir

LLL
L

irvdvcvb

LLL
LL

a
v

λ2111

21

1  (5.331) 

Therefore, with asv , csv , qsv , dsv  and ysv  known, then the faulted condition can be 

simulated by using dynamic Equations (5.198) through (5.200). 

The phase currents are obtained as 

xsqsas iii +=           (5.332) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
−

+
−−−=

5
2sin

5
4sin

5
2sin

2
3

5
2sin

5
4sin

5
4sin

2
5

2222 ππ

π

ππ

π
ysds

xsqsbs

ii
iii    (5.333) 

xsqscs iii −−=           (5.334) 

5
2sin

5
4sin

5
2sin

5
4sin

2
5

22 ππ

ππ

+

−
=

ysds
a
ds

ii
i         (5.335) 

5
2sin

5
4sin

5
2sin

4
5

22 ππ

π

+
−=

ys

es

i
i         (5.336) 

 

5.5.1 Harmonic Balance Technique for the Two Non-adjacent Stator Open Phases 

 

The same approach that has been used in section 5.3.1 applies here as well. 

es
a
dsbsqsds vsvsvsvsv 8765 +++=        (22) 

es
a
dsbsqsys vsvsvsvsv 1211109 +++=        (24) 
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Let 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+

=

21

2
1

mrs

rls

LLL
LL

a
σ  

Then Equation (5.331) can be written as 

( )⎥
⎦

⎤
⎢
⎣

⎡
+

−
+−++= qrmrqss

mrs

ls
qsses

a
dsbsqs pLLir

LLL
L

irvdvcvbv λσ 21112   (5.337) 

Using Equations (5.61) through (5.84), the following harmonic balance technique 

dynamic model is obtained 

The q-axis stator voltage is given by 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+

−
+−++=

qrrme

qrrmqssrs

mrs

ls
qsssess

a
dssbssqss Lj

pLiLr

LLL
L

irvdvcvbv
λω

λ
σ 21112   (5.338) 

The rest of the harmonic balance technique model Equations are as given in 

Equations (5.208) through (5.212). 

 

5.5.2 Steady State and Dynamic Model Analysis for Two Adjacent Open Phases 

 

5.5.2.1 Steady state model. At steady state, the derivatives of the peaks are zero. 

Therefore, the steady state model is given by Equations (5.339) and (5.214) through 

(5.218) become 

( ) qrr
mrs

lsme
qsss

mrs

lsrs
qssess

a
dssbss LLL

LLj
ir

LLL
LLr

vvdvcvb λ
σω

σσ 2
2

221112 −
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
+−=++−  (5.339) 

The d-axis and y-axis stator voltages re, respectively given by (5.340) and (5.341) 
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dssqssess
a
dssbss vvsvsvsvs +−=++ 5876        (5.340) 

yssqssess
a
dssbss vvsvsvsvs +−=++ 9121110       (5.341) 

In matrix form, the steady-state harmonic balance technique model can be 

represented as 

333 bxA =           (5.342) 

3
1

33 bAx −=           (5.343) 

where the matrices 3b  and 3x  are, respectively, given by Equations (5.344) and (5.345), 

with 

( )ess
a
dssbss vdvcvbb 1112311 ++−= σ  

ess
a
dssbss vsvsvsb 876371 ++=  

ess
a
dssbss vsvsvsb 121110381 ++=  

 

[ ]Tdrrqrr bbvvbb 3813713113 000 −−=      (5.344) 

 

[ ]Tdrrqrryssdssqssyssdssqss iiivvvx λλ=3      (5.345) 

The matrix 3A  is given by Equation (5.346). 
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                (5.346) 
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When the speed harmonic component is taken into account, then the Equations have 

to be separate into their real and imaginary parts. The resulting systems of steady-state 

equations will be solved by iteration to obtain the results. 

Substituting Equations (5.109) through (5.116) and (5.226) through (5.231) into 

Equation (5.339), gives 

( ) ( )
( )

( )

( )
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
−

+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
+−−

=⎥
⎦

⎤
⎢
⎣

⎡

++
+++

−

qrimqrre
mrs

lsme

qsimqsres
mrs

lsrs
qsimqsre

esimesre

a
dsim

a
dsrebsimbsre

j
LLL

LLj

jiir
LLL

LLr
jvv

jvvd
jvvcjvvb

λλ
σω

σ
σ

2
2

22

1

11
2

           (5.347) 

( ) ( )
( )

( )

( )
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−
−

+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
+−−

=⎥
⎦

⎤
⎢
⎣

⎡

++
+++

−

qrreqrim
mrs

lsme

qsimqsres
mrs

lsrs
qsimqsre

esimesre

a
dsim

a
dsrebsimbsre

j
LLL

LL

jiir
LLL

LLr
jvv

jvvd
jvvcjvvb

λλ
σω

σ
σ

2
2

22

1

11
2

           (5.348) 

Separating real and imaginary parts, 

[ ] qrim
mrs

lsme
qsres

mrs

lsrs
qsreesre

a
dsrebsre LLL

LL
ir

LLL
LLr

vvdvcvb λ
σω

σσ 2
2

221112 −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
+−=++−  (5.349) 

[ ] qrre
mrs

lsme
qsims

mrs

lsrs
qsimesim

a
dsimbsim LLL

LL
ir

LLL
LLr

vvdvcvb λ
σω

σσ 2
2

221112 −
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
+−=++−  (5.350) 

From Equation (5.214), 

( ) ( ) ( )qrimqrre
mrs

me
qsimqsree

mrs

rs
qsimqsre

mrs

r j
LLL

Lj
jiij

LLL
Lr

jvv
LLL

L
λλ

ω
ω +

−
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
−+

−
= 2220  
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( )

⎥
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⎥
⎥
⎥

⎦
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⎢
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⎣

⎡

−
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−
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⎟⎟
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⎞
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⎛
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−
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−
=

qrim
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qrre

mrs
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qsimeqsim
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qsreeqsre

mrs
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mrs

r

LLL
L
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LLL

Ljr
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LLL
Lr

jvv
LLL

L

λ
ω

λ
ω

ωω
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222

0  

           (5.351) 

Separating the real and imaginary parts 

qrim
mrs

me
qsimeqsre

mrs

rs
qsre

mrs

r

LLL
L

ii
LLL

Lr
v

LLL
L

λ
ω

ω 2220
−

++
−

−
−

=    (5.352) 

qrre
mrs

me
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mrs

rs
qsreeqsim

mrs

r

LLL
L

i
LLL

Lr
iv

LLL
L

λ
ω

ω 2220
−

−
−

−−
−

=    (5.353) 

From Equation (5.215), 

( ) ( ) ( )drimdrre
mrs

me
dsimdsree

mrs
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dsimdsre

mrs

r j
LLL
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jiij

LLL
Lr

jvv
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L
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ω
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−
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⎠

⎞
⎜⎜
⎝

⎛
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−
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−
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⎥
⎥
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⎛
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−
=
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me
drre

mrs

me

dsimedsim
mrs
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dsreedsre

mrs
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mrs
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LLL
Lj
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jvv
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λ
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λ
ω

ωω

22

222

0  

           (5.354) 

Separating the real and imaginary parts 

drimdsimedsresdsre LiiLrvL λω 1122220 ++−=       (5.355) 

drredsimsdsreedsim LiLrivL λω 1122220 −−−=       (5.356) 

From Equation (5.216), 

( ) ( )ysimysree
ls

s
ysimysre

ls

jiij
L
r

jvv
L

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+= ω10  

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−+= ysimeysim

ls

s
ysreeysre

ls

s
ysimysre

ls

ii
L
jr

iji
L
r

jvv
L

ωω10    (5.357) 
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Separating the real and imaginary parts 

ysimeysreysre iiLvL ω+−= 44330         (5.358) 

ysimysreeysim iLivL 44330 −−= ω         (5.359) 

From Equation (5.217), 

( ) ( )

( ) ( ) ⎥
⎥
⎥
⎥

⎦

⎤

⎢
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⎣

⎡
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2
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 (5.360) 

Separating the real and imaginary parts 

drimimrdrreroqrimeqrreqsreqrre LiLv λωλωλωλ 16655 2
1

+++−=−     (5.361) 

drreimrdrimroqrimqrreeqsimqrim LiLv λωλωλλω 16655 2
1

++−−=−     (5.362) 

From Equation (5.218), 

( ) ( ) ( )
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⎥
⎥
⎥
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r
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L
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L
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⎠
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⎜
⎝
⎛ +−−−

=−−

dsimdsre
r

mr
drimedrim
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r

drreedrre
r

r
qrimrqrrerqrimroqrrero

drimdrre

jii
L
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L
jr

j
L
rjj

jvv
λωλ
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1

2
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           (5.363) 

Separating the real and imaginary parts 
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dsredrimedrreqrimrqrrerodrre iLLv 556612
1

++−−−=− λωλλωλω     (5.364) 

dsimdrimdrreeqrrerqrimrodrim iLLv 556612
1

+−−−−=− λλωλωλω     (5.365) 

From Equation (5.340), 

( ) ( ) ( ) ( ) dsimdsreqsimqsreesimesre
a
dsim

a
dsrebsimbsre jvvjvvsjvvsjvvsjvvs +++−=+++++ 5876  

           (5.366) 

Separating the real and imaginary parts 

dsreqsreesre
a
dsrebsre vvsvsvsvs +−=++ 5876       (5.367) 

dsimqsimesim
a
dsimbsim vvsvsvsvs +−=++ 5876       (5.368) 

From Equation (5.341), 

( ) ( ) ( ) ( ) ysimysreqsimqsreesimesre
a
dsim

a
dsrebsimbsre jvvjvvsjvvsjvvsjvvs +++−=+++++ 9121110  

           (5.369) 

Separating the real and imaginary parts 

ysreqsreesre
a
dsrebsre vvsvsvsvs +−=++ 9121110       (5.370) 

ysimqsimesim
a
dsimbsim vvsvsvsvs +−=++ 9121110       (5.371) 

These Equations can be written in matrix form as 

444 bxA =           (5.372) 

4
1

44 bAx −=           (5.373) 

where 4b  and 4x  are, respectively, given by Equations (5.374) and (5.375), with 

( )esre
a
dsrebsre vdvcvbb 1112411 ++−= σ  

( )esim
a
dsimbsim vdvcvbb 1112421 ++−= σ  
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esre
a
dsrebsre vsvsvsb 8764131 ++=  

esim
a
dsimbsim vsvsvsb 8764141 ++=  

esre
a
dsrebsre vsvsvsb 1211104151 ++=  

esim
a
dsimbsim vsvsvsb 1211104161 ++=  

 

Let 

( ) 2221 σslsso rLLrL −=   211
mrs

me

LLL
L

L
−

=
ω

  222
mrs

r

LLL
L

L
−

=  

lsL
L 1

33 =  
ls

s

L
rL =44   

r

mr

L
LrL =55   

r

r

L
r

L =66  

The matrix 4A  is given by Equation (5.376). 
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[ ]Tdrimdrreqrimqrre bbbbvvvvbbb 41614151414141314214114 000000 −−−−=     (5.374) 

[ ]Tdrimdrreqrimqrreysimysredsimdsreqsimqsreysimysredsimdsreqsimqsre iiiiiivvvvvvx λλλλ=4    (5.375) 
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                 (5.376) 
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5.5.3 Results and Discussion for Two Non-adjacent Open Phase Fault 

 

The validity of the models presented in section 5.5 - 5.5.2 has been investigated 

through the computer simulation of the full-order model of the machine with stator 

phases ‘a’ and ‘c’ open-circuited. The steady-state model is used to calculate the state 

variables and then the results are compared. 

Figure 5.30 through Figure 5.33 present the simulation of the free acceleration 

starting process of the machine. The phase voltage is applied to the remaining three 

phases (b, d, and e) and Equations (5.321) and (5.314) are used to determine stator phase 

‘a’ and ‘c’ voltages, respectively. Figure 5.30(a) and (b) show the rotor speed and 

electromagnetic torque, respectively, showing the characteristics similar to those of the 

healthy induction machine. In Figure 5.31(a) the stator phase ‘a’ and ‘c’ currents are zero 

as expected. The stator phase voltages are shown in Figure 5.32 with the starting 

transients of the open phases ‘a’ and ‘c’ as they develops the voltages are clearly 

displayed in Figure 5.32(a) and (b), respectively. 

When the rotor speed is in steady state, the load torque is changed from 0 to 11 Nm 

to show the effect of the speed harmonics. The dynamic responses of the machine to load 

changes are shown in Figure 5.33(a) and (b) for the rotor speed and electromagnetic 

torque, respectively. In Figure 5.34 through Figure 5.37, the waveforms of the variables 

are shown after the speed has reached steady-state average value. It is evident from 

Figure 5.34(a) and (b) that the speed and torque consist of the harmonics at twice the 

frequency of the supply voltages as predicted by the harmonic balance technique model. 

The unbalance caused by the two open phases fault is clearly indicated in the stator phase 
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load currents, Figure 5.35. Figure 5.36 (a) and (b) show that when the machine is loaded, 

the open phase ‘a’ and ‘c’ voltages are affected as they are reduced. This is due to the 

fact that the voltage waveforms are induced by the other phases and the rotor circuits. 

Figure 5.38(a) and Figure 5.38 (b) show the peak values of the rotor speed and 

torque pulsations, respectively as a function of the rotor speed. In Figure 5.34 (a) the 

average rotor speed is approximately 359.95 rad/sec, the peak value of the speed 

oscillations is about 0.15 rad/sec. In Figure 5.34(b) the average torque is 11 Nm and the 

peak of the torque oscillations is about 5 Nm. These speed and torque values are fairly 

comparable to those in Figure 5.38(a) and Figure 5.38(b), respectively. 

Figure 5.40 presents the torque-speed characteristics at both normal and two open-

phase faulted conditions. First the normal operation of the machine is computer simulated 

and the steady-state torque curve is superimposed on the simulated curve. Then the same 

procedure is followed for the open phase faulted condition. Under this operation, the 

torque envelope is obtained by adding the peak of the pulsation torque to, and subtracting 

it from the average value obtained from the harmonic balance technique. Comparing the 

results of the dynamic computer simulation and the steady state calculations for both 

cases, the harmonic balance technique gives average and peak values of the torque that 

compare fairly with simulation results. 

The stator input and reactive powers at steady state are shown in figure 5.41(a) and 

Figure 5.41(b), respectively. The speed and torque oscillations are also shown in figure 

5.42 (a) and Figure 5.42(b), respectively. The results of which compare well with those 

presented in Figure 5.34(a) and Figure 5.34(b), respectively, as well as Figure 5.38(a) and 

Figure 5.38(b), respectively. 



 284

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

50

100

150

200

250

300

350

400

ω
r  [

 ra
d/

se
c 

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-30

-20

-10

0

10

20

30

40

50

Time [ sec ]

T e  [
 N

m
 ]

(a)

(b)

 

Figure 5.30 Starting transients (a) rotor speed and (b) electromagnetic torque 
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Figure 5.31 Starting transients Stator phase currents (a) phase ‘a’ (b) phase ‘b’ (c) phase 

‘c’ (d) phase ‘d’ (e) phase ‘e’ 
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Figure 5.32 Starting transients stator phase voltages (a) phase ‘a’ (b) phase ‘b’ (c) phase 

‘c’ (d) phase ‘d’ (e) phase ‘e’ 
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Figure 5.33 Simulation Dynamics of (a) rotor speed and (b) electromagnetic torque due to 

a load torque change of  11 Nm  applied at 4 seconds. 
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Figure 5.34 Simulation Steady-state (a) rotor speed and (b) electromagnetic torque at a 

load torque of 11 Nm. 
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Figure 5.35 Simulation Steady-state stator phase currents at a load torque of 11 Nm. 
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Figure 5.36 Simulation Steady-state stator phase voltages at a load torque of 11 Nm (a) 

phase ‘a’ (b) phase ‘b’ (c) phase ‘c’ (d) phase ‘d’ (e) phase ‘e’ 
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Figure 5.37 Stator phases ‘a’ and ‘c’ open Simulation Steady-state stator phase voltages 

at a load torque of 11 Nm showing the unbalance 
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Figure 5.38 Phases ‘a’ and ‘c’ open circuited Steady-state calculation results (a) Peak 

value of the speed harmonic component and (b) Peak value of the torque pulsation 
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Figure 5.39 Various torque components of the five-phase induction machine under 

unbalanced stator phases ‘a’ and ‘c’ open circuited based on computer simulation and 

steady-state calculations. 
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Figure 5.40 Various torque components of the five-phase induction machine under 

balanced and a stator phases ‘a’ and ‘c’ open based on computer simulation and steady-

state calculations. 
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Figure 5.41 Simulation Steady-state stator input five-phase power (a) Real power and (b) 

Reactive power at a load torque of 11 Nm. 
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Figure 5.42 Simulation Steady-state (a) rotor speed oscillations and (b) electromagnetic 

torque oscillations at a load torque of 11 Nm. 
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5.6 Conclusion 

 

This Chapter has presented a steady state and dynamic model of the open phase 

faults for a five phase induction motor for one phase, two adjacent phases as well as two 

non-adjacent phases. Circuit based models have been developed which can help to 

predict not only the starting transients and steady-state performance and pulsating 

components but also the dynamics such as the small-signal stability of the faulted 

machine. This is made possible by the application of the harmonic balance technique on 

the full-order differential Equation model of the faulted machine in stationary reference 

frame. The resulting Equations are also used in determining the stability of the five-phase 

induction motor under open-phase faults. Simulation results and steady state results have 

been presented, in which it has been possible to calculate the speed harmonic components 

as well as the torque pulsations. Small signal analysis has been performed to predict the 

stability of the faulted machine. At low rotor speeds, the machine exhibits instability due 

to the rotor flux linkage. If the speed harmonics are neglected, the resulting model is 

stable at relatively high speed operating conditions. 

The analysis presented in this work has shown that with one or two phases missing, 

the five-phase machine is able to start and generate a high percentage of rated torque as 

demonstrated in the presented results. The analytical methodologies presented in this 

work have great promise in the study of the transient, steady state and dynamic responses 

of various faults of multi-phase electric machinery. 
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CHAPTER 6 

ROTOR FLUX VECTOR CONTROL OF A FIVE PHASE INDUCTION 

MACHINE 

 

6.1 1 Introduction 

 

Induction machines are widely used in the industrial drive system as a means of 

converting electric power to mechanical power. The do offer a high performance as well 

as independent control on torque and flux linkages, which is similar to that of the DC 

machine. It is also possible to drive the induction machines above their rated speed 

through flux weakening [6.1, 6.2]. The vector control is referred for controlling both 

amplitude and phase of the AC excitation. Vector control of the voltages and currents 

results in the control of the spatial orientation of the electromagnetic fields in the 

machine, which leads to field orientation. The control schemes available for induction 

motor drives are the scalar control, direct torque control, adaptive control and vector 

(field) oriented control. 

The rotor flux oriented control is usually employed although it is possible to 

implement stator flux oriented control and magnetizing (air gap) flux oriented control 

[6.3]. Both the stator and rotor flux linkages are necessary for vector control scheme. 

The field-oriented control of induction machine systems can be categorized in two 

groups. One, as direct field oriented control with flux sensors for determining the flux 

magnitudes and phase angle. The second classification is indirect field oriented control in 



 299

which the magnitude and space angle are obtained from the stator currents and rotor 

speed. The space angle is the sum of the rotor angle (obtained from the rotor peed) and 

the calculated slip (obtained from the reference values). 

In this Chapter, the Equations for the vector control of a five-phase induction 

machine are derived using both the fundamental and harmonic components of the state 

and machine variables and parameters. Control Simulation results using the fundamental 

model are presented. 

 

6.2 Vector Control of an Induction machine 

 

The induction machine Equations transformed to the qd reference frame for the 

fundamental components are presented as follows 

111111 dseqsqssqs pirv λωλ ++=         (6.1) 

11111 qsedsdssds pirv λωλ −+=         (6.2) 

( ) '
111

'
1

'
1

'
1

'
1 drreqrqrrqr pirv λωωλ −++=        (6.3) 

( ) '
111

'
1

'
1

'
1

'
1 qrredrdrrdr pirv λωωλ −−+=        (6.4) 

For the third harmonic components, the voltage Equations are given by 

33333 3 dseqsqssqs pirv λωλ ++=        (6.5) 

33333 3 qsedsdssds pirv λωλ −+=        (6.6) 
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3
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'
3 3 qrredrdrrdr pirv λωωλ −−+=       (6.8) 
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The torque Equation of an induction machine in terms of rotor flux linkages and 

stator currents is given as 
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For the third harmonic components, the torque Equation is given by 
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The fundamental components of the stator and rotor qd flux linkages are obtained as 

shown by the following Equations (6.11) to (6.18) 

'
11111 qrmqssqs iLiL +=λ          (6.11) 

'
11111 drmdssds iLiL +=λ          (6.12) 

'
1

'
111

'
1 qrrqsmqr iLiL +=λ          (6.13) 

'
1

'
111

'
1 drrdsmdr iLiL +=λ          (6.14) 

For the third harmonic components, the flux linkages are given by 

'
33333 qrmqssqs iLiL +=λ          (6.15) 

'
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'
333

'
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where 

p  is the differential operator 

1qsv  is the fundamental component of the q-axis stator voltage. 

1dsv  is the fundamental component of the d-axis stator voltage. 
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1qsi  is the fundamental component of the q-axis stator current. 

1dsi  is the fundamental component of the d-axis stator current. 

1qsλ  is the fundamental component of the q-axis stator flux linkage. 

1dsλ  is the fundamental component of the d-axis stator flux linkage. 

'
1qrv  is the fundamental component of the q-axis rotor voltage. 

'
1drv  is the fundamental component of the d-axis rotor voltage. 

'
1qri  is the fundamental component of the q-axis rotor current. 

'
1dri  is the fundamental component of the d-axis rotor current. 

'
1qrλ  is the fundamental component of the q-axis rotor flux linkage 

'
1drλ  is the fundamental component of the d-axis rotor flux linkage 

3qsv  is the third harmonic component of the q-axis stator voltage. 

3dsv  is the third harmonic component of the d-axis stator voltage. 

3qsi  is the third harmonic component of the q-axis stator current. 

3dsi  is the third harmonic component of the d-axis stator current. 

3qsλ  is the third harmonic component of the q-axis stator flux linkage. 

3dsλ  is the third harmonic component of the d-axis stator flux linkage. 

'
3qrv  is the third harmonic component of the q-axis rotor voltage. 

'
3drv  is the third harmonic component of the d-axis rotor voltage. 

'
3qri  is the third harmonic component of the q-axis rotor current. 

'
3dri  is the third harmonic component of the d-axis rotor current. 
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'
3qrλ  is the third harmonic component of the q-axis rotor flux linkage. 

'
3drλ  is the third harmonic component of the d-axis rotor flux linkage. 

1eT  is the fundamental component of the electromagnetic torque. 

3eT  is the third harmonic of the electromagnetic torque. 

1eω  is the fundamental component frequency of the reference frame of transformation. 

3eω  is the third harmonic component frequency of the reference frame of transformation 

m  is the number of stator phases. 

P  is the number of stator poles. 

Now, the stator currents and rotor flux linkages are chosen as state variables, the 

stator flux linkages and rotor currents can be expressed in terms of state variables by 

eliminating the stator flux linkages and rotor currents. 

From Equations (6.13) and (6.17), respectively, the q-axis fundamental and third 

harmonic rotor currents can be obtained as Equations (6.19) and (6.20) 
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Similarly, Equations (6.14) and (6.18), respectively give the d-axis fundamental and 

third harmonic rotor currents as presented in Equation (6.21) and (6.22) 
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Substituting for '
1qri  and '

1dri  from Equations (6.19) and (6.21) into Equations (6.11) 

and (6.12), respectively, the following expressions for the fundamental components of q-

axis and d-axis stator flux linkages are obtained 
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Substituting for '
3qri  and '

3dri  from Equations (6.20) and (6.22) into Equations (6.15) 

and (6.16), respectively, the following expressions for the third harmonic components of 

q-axis and d-axis stator flux linkages are obtained 
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Substituting for the qd stator flux linkages from Equations (6.23) and (6.24) into 

Equations (6.1) and (6.2) gives the following results for the fundamental component 

stator voltage Equations 
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Similarly, Substituting for the qd stator flux linkages from Equations (6.25) and 

(6.26) into Equations (6.5) and (6.6), the following results for the third harmonic 

component stator voltage Equations are obtained 
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Equations (6.27) and (6.28) can be re-written as 

'
1'

1

1
1

'
1'

1

1
11111111 dr

r

m
eqr

r

m
dseqssqsqs L

L
p

L
L

iLirvpiL λωλω σσ −−−−=     (6.31) 
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1
11111111 qr

r

m
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r

m
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L
p

L
L

iLirvpiL λωλω σσ +−+−=     (6.32) 

Equations (6.29) and (6.30) can be re-written as 

'
3'

3

3
3

'
3'

3

3
3333333 33 dr

r

m
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r

m
dseqssqsqs L

L
p

L
L

iLirvpiL λωλω σσ −−−−=    (6.33) 
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r

m
edr

r

m
qsedssdsds L

L
p

L
L

iLirvpiL λωλω σσ +−+−=    (6.34) 

for a squirrel cage induction machine 

0'
1 =qrv  and 0'

1 =drv  
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0'
3 =qrv  and 0'

3 =drv  

Therefore Equation (6.3) becomes 

( ) ( ) '
11

'
111

'
1

1

'
10 drreqrqsmqr
r

r piL
L
r

λωωλλ −++−=  

( ) '
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1
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1
1

'
1'

1 drreqs
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r
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L
Lr

L
rp λωωλλ −−+−=      (6.35) 

Equation (6.4) becomes 

( ) ( ) '
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'
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'
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1

'
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r piL
L
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1
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1
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L
Lr

L
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Equation (6.7) becomes 
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'
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'
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r piL
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L
r
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Equation (6.8) becomes 

( ) ( ) '
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'
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'
3

3

'
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r piL
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L
r
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Substituting Equations (6.35) and (6.36) into Equations (6.31) and (6.32), 

respectively results into 
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Substituting Equations (6.37) and (6.38) into Equations (6.33) and (6.34), 

respectively results into 
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where 

'
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2
1
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r

m
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L
LL −=σ  and 2'

1

2
1

'
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r
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s L
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rr +=σ , '
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m
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33
r
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s L
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rr +=σ  

Aligning the rotor flux linkage with the d-axis of the synchronous reference frame, 

the q-axis rotor flux linkage and its derivative are zero. Thus 

0'
1 =qrλ           (6.43) 

0'
1 =qrpλ           (6.44) 
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'
1

'
1 drr λλ =           (6.45) 

where '
1rλ  is the fundamental component of the rotor flux linkage. 

0'
3 =qrλ           (6.46) 

0'
3 =qrpλ           (6.47) 

'
3

'
3 drr λλ =           (6.48) 

where '
3rλ  is the harmonic component of the rotor flux linkage. 

Substituting Equations (6.43) - (6.48) into Equations (6.9) - (6.10), and (6.35) – 

(6.42), results into 

For the fundamental components 

1
'

1
1

1
1 4 qsdr
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m
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For the third harmonic components 
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Equation (6.50) yields the expression of the fundamental component of the slip 

frequency required for rotor field orientation control given by 

( ) '
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1

1
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1
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dr
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L
Lr

λ
ωω =−         (6.59) 

Equation (6.55) yields the expression of the third harmonic component of the slip 

frequency required for rotor field orientation control given by 
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λ
ωω =−         (6.60) 

The input-output linearization method is used to design the control scheme of the m-

phase induction machine as follows [6.1] 

Equations (6.51) - (6.53) can be re-arranged and written as 
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m
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L
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Equations (6.56) - (6.58) can be re-arranged and written as 
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Now, the rotor electrical speed, rω , is given by 

Ler TTp
P
J

−=ω2          (6.67) 

where 

eT  is the total electromagnetic torque due to the two torque components, i.e. 

31 eee TTT +=  

J  is the ,moment of inertia and LT  is the load torque. 

Substituting Equations (6.49) and (6.54) into Equation (6.67), the following is obtained 
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    (6.68) 

where 

1qsσ  is the output of the q-axis fundamental component of current controller 

1dsσ  is the output of the d-axis fundamental component of current controller 

1drσ  is the output of the rotor fundamental component of flux linkage controller 

ωσ  is the output of the speed controller 
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3qsσ  is the output of the q-axis third harmonic component of current controller 

3dsσ  is the output of the d-axis third harmonic component of current controller 

3drσ  is the output of the rotor third harmonic component of flux linkage controller 

The controller outputs are related to the reference and actual quantities as follows 

For the fundamental components 

( )1
*

111 qsqsqsqs iiK −=σ          (6.69) 

( )1
*

111 dsdsdsds iiK −=σ          (6.70) 

( )'
1

'*
111 drdrdrdr K λλσ −=         (6.71) 

for the rotor speed 

( )rrK ωωσ ωω −= *          (6.72) 

For the third harmonic components 

( )3
*

333 qsqsqsqs iiK −=σ          (6.73) 

( )3
*

333 dsdsdsds iiK −=σ          (6.74) 

( )'
3

'*
333 drdrdrdr K λλσ −=         (6.75) 

where 

1qsK , 1dsK , 1drK  and ωK  are the transfer functions of the controller for q-axis 

fundamental component of current, d-axis fundamental component of current, 

fundamental component of rotor flux linkage and rotor speed, respectively. 

3qsK , 3dsK , and 3drK  are the transfer functions of the controller for q-axis third 

harmonic component of current, d-axis third harmonic component of current, and third 

harmonic component of rotor flux linkage, respectively. 
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From Equations (6.61) and (6.62), the fundamental components of the qd reference 

stator voltages are given by 

'
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From Equations (6.64) and (6.65), the third harmonic components of the qd 

reference stator voltages are given by 
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From Equation (6.63) the fundamental component of the reference d-axis stator 

current is given by 

1
1
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1
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r
ds Lr

L
i σ=          (6.80) 

From Equation (6.66) the third harmonic component of the reference d-axis stator 

current is given by 

3
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3
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r
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L
i σ=          (6.81) 

Now if the two slips are equal, then the relationship between the two torque 

producing currents 1qsi  and 3qsi  is given as 

( ) ( )rere ωωωω −=− 13         (6.82) 
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From Equations (6.68) and (6.84), the reference q-axis current is given by 
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where 

*
1qsv  is the fundamental component of the q-axis reference stator voltage. 

*
1dsv  is the fundamental component of the d-axis reference stator voltage. 

*
3qsv  is the third harmonic component of the q-axis reference stator voltage. 

*
3dsv  is the third harmonic component of the d-axis reference stator voltage. 

*
1dsi  is the fundamental component of the d-axis reference stator current. 

*
3dsi  is the third harmonic component of the d-axis reference stator current. 

*
qsi  is the q-axis reference stator current. 

 

6.3 Controller Design 

 

As it has been derived in Equations (6.61) – (6.63) and (6.68), there are four 

controllers a controller for flux control, two controllers for the q- and d-axis currents and 

a controller for the rotor speed. The pole placement method called the Butterworth 

method is used in the design of controllers, in which the parameters are selected to locate 

the eigen-values of the transfer function uniformly in the left half of the s-plane, on a 
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circle of radius oω , with its center at the origin. The poles are evenly distributed around 

the circle [3.5]. 

The design steps using the Butterworth method are firstly, the transfer function of 

the controller is obtained; then the denominator of the transfer function is compared with 

the Butterworth polynomial by equaling the coefficient of each term. Since the 

Butterworth polynomial is expressed only in term of oω  , if the value of oω  is selected, 

all the controller parameters can be obtained. 

The value of oω  determines the dynamic response of the controller. It should be 

noticed that in a control system with multiple controllers, the values of oω  for different 

controllers must be properly designed. 

 

6.4 PI Controller Design Based on Fundamental Components 

 

The four controllers discussed in the previous section are designed. Only the 

fundamental components are considered at this stage. In this section, the subscripts ‘1’ 

and ‘3’ for the respective fundamental and third harmonic components will be dropped. 

Therefore, all variables and parameters in the Equations presented in this section are for 

the fundamental quantities. 

The transfer function for a PI (proportional integral) controller is expressed as 

p
K

KK ix
pxx +=          (6.85) 

The Butterworth second order polynomial is give as shown in Equation (6.45). This 

characteristic Equation will be used to compare the characteristics Equation for different 
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controller transfer functions in order to determine the appropriate value of oω  to tune the 

respective controllers 

02 22 =++ oo pp ωω         (6.86) 

 

6.4.1 Stator Q-axis Current and D-axis Controller Design 

 

The transfer functions for a PI q-axis current controller is expressed as in Equations  
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The characteristic Equation of the transfer function in Equation (6.88) is 
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Comparing Equation (6.89) with Equation (6.86), the following is obtained 
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Similarly, the stator d-axis current controller is given by 
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The characteristic Equation is 
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Therefore, 

σσω rLK odpd −= 2          (6.94) 

σω LK odid
2=           (6.95) 

 

6.4.2 Flux Controller Design 

 

The transfer function for a PI flux controller is expressed as 

p
K
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The characteristic Equation is 
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Comparing Equation (6.98) with Equation (6.86), the following is obtained 
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6.4.3 Speed Controller Design 

 

The speed controller is designed as follows 
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The characteristic Equation is 

02 =++ ωω ip KpKp          (6.103) 

Comparing Equation (6.103) with Equation (6.86), the following is obtained 

ωω ωopK 2=           (6.104) 

2
ωω ωoiK =           (6.105) 

 

Figure 6.1 shows the controller block diagram for the five-phase induction motor 

drive. The Equations shown in Figure 6.1 are explained as follows 

The q-axis stator reference voltage, *
qsv , is given by 
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The d-axis stator reference voltage, *
dsv , is given by 
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The d-axis stator reference current, *
dsi , is given by 
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The slip speed is, slω , is given by 
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The stator flux linkages are estimated as follows 
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Then the rotor flux linkages are obtained as 
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The stator voltage frequency is given by the slip speed and the rotor speed as 

slre ωωω +=           (6.113) 
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This frequency is used to transform the stationary quantities to the synchronously rotating 

reference frame. 

*
qsM  and *

dsM  are q-axis and d-axis modulation indices. 

dcv  is the inverter dc supply. 

The block diagram of Figure 6.1 consists of two cascaded control loops. The outer 

control loop regulates the rotor speed and the rotor flux linkage independently. The 

output of the rotor speed and the flux linkage controllers form the reference signals, *
qsi  

and *
dsi , for the inner loop q-axis and d-axis stator currents controllers, respectively. The 

inner current control loop regulates independently the q-axis and d-axis stator current 

components, qsi  and dsi . The instantaneous five-phase stator currents are sampled and 

transformed to q-d components qsi  and dsi  in the synchronous reference frame. These 

actual d-q current signals are then compared with their reference signals to generate the 

error signals, which are passed through two PI controllers to form the output signals qsσ  

and dsσ . These two voltage signals are compensated by the corresponding cross coupling 

terms to form the q-d voltage signals *
qsv  and *

dsv . They are then used by the PWM 

module to generate the IGBT (Insulated Gate Bipolar Transistor) gate control signals to 

drive the IGBT converter. 
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Figure 6.1 Control Block Diagram for the five-phase induction motor drive 
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6.5 Controller Simulation Results 

 

The rotor reference d-axis flux is chosen to be 0.275 Wb. This will produce the d-

axis current using the flux controller output. From the speed controller output and the d-

axis rotor flux, the reference q-axis current required to produce the desired torque is 

obtained. 

Figure 6.2 shows the controller simulation for the five phase induction machine. 

Figure 6.2(a) shows the q-axis stator actual current and the reference current. Figure 

6.2(b) shows the d-axis stator actual current and the reference current. Figure 6.2(c) 

shows the d-axis rotor actual current and the reference current. Figure 6.2(d) shows the 

actual rotor speed. Figure 6.2(e) shows the reference rotor speed. The reference speed is 

varied linearly from 0 to 450 rad/sec for 1.5 sec and then made constant at 40 rad/sec for 

1.5 sec. At 3 sec it is varied linearly from 450 rad/sec to 0 rad/sec for 1.5 sec, then made 

constant at 0 rad/sec until the simulation time is for 4.5 sec. At this point it varies linearly 

until -250 rad/sec for the next for 1.5 sec and it stay constant for 1.5 sec before increasing 

linearly following the same procedure. It can be seen from the graphs of Figure 6.1 that 

the actual values are able to track the reference values. 

Figure 6.3 shows the stator q-axis and d-axis flux linkages as the response due to 

change in reference speed. Shown also are the q-axis and d-axis rotor flux, the slip speed 

and the stator frequency. It can be noted that the controller is effective in the sense that 

the variables are giving the values as expected.  

Figure 6.4 shows the stator q-axis voltage, stator d-axis voltage, electromagnetic 

torque, rotor q-axis current and rotor d-axis current. The q-axis voltage increases from 
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zero to the maximum value where it has to remain constant as it has already reached its 

maximum limit. The stator reference and actual phase currents are shown in Figure 6.5. 

These currents are obtained by performing the inverse transformation fro the qd variables 

to the abcde variables by using proper reference frame of transformation. 
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Figure 6.2 Controller simulation (a) Stator q-axis current (b) Stator d-axis current (c) 

Rotor d-axis flux (d) Actual rotor speed (e) Reference rotor speed 
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Figure 6.3 (a) stator q-axis flux linkage (b) stator d-axis flux linkage (c) rotor q-axis flux 

linkage (d) rotor d-axis flux linkage (e) slip speed and (f) stator frequency. 
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Figure 6.4 Controller simulation (a) stator q-axis voltage (b) stator d-axis voltage (c) 

Electromagnetic torque (d) rotor q-axis current (e) rotor d-axis current 
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Figure 6.5 Stator reference and actual phase currents (a) stator phase ‘a’ current (b) stator 

phase ‘b’ current (c) stator phase ‘c’ current (d) stator phase ‘d’ current (e) stator phase 

‘e’ current. (Magenta – actual phase currents, Blue - reference phase currents). 
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6.6 Conclusion 

 

The vector control of the five-phase induction machine has been presented. Four 

controllers have been realized and different expressions for obtaining the controller 

parameters have been derived. Simulation results have been presented. A careful 

examination of the presented results show that the controller is working and it is possible 

to get the actual values of the stator and rotor variables. 

The rotor reference d-axis flux was chosen to be 0.275 Wb, whereas the speed was 

ramped from 0 to 450 rad/sec for the rising part, then kept constant at 450 rad./sec, before 

it was ramped to 0 rad/sec for the falling part. The speed was then allowed to become 

negative after it was kept at 0 rad/sec for some time. Figure 6.4 (c) reveals the torque 

produced according to the commanded speed. The actual rotor speed in Figure 6.2 (d) 

tracked the reference rotor speed of figure 6.2 (e) effectively.  
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CHAPTER 7 

CONVERTER RECONFIGURATION FOR IMPROVED EXTENDED SPEED 

RANGE OF MULTIPHASE INDUCTION MOTOR DRIVES 

 

7.1 Introduction 

 

One of the advantages of a multiphase machine apart from its tolerance is that it can 

be used in high speed applications. In general, the maximum speed of the machine is 

limited by the inverter voltage and current limits. High speed operation can be made 

possible by either employing an inverter with higher voltage or by reducing the counter 

emf value of the machine using field weakening techniques. Other techniques employed 

to achieve significant wider speed ranges include reducing the per phase equivalent 

impedance of the machine, pole amplitude and phase modulation by changing the number 

of poles. These techniques require additional semiconductor devices in the converter as 

well as special machine designs. An m-phase machine (where 3>m ) can be connected 

in 
2

1+m  different ways. With these available alternatives, the speed range of an m-phase 

machine can be significantly increased. As the connection pattern changes from one to 

the other, the impedance of the machine seen by the inverter varies making it possible to 

achieve higher speeds before the converter rating voltage is reached. In such connection 

transitions different torque-speed characteristics are realized. 

In this Chapter, the approach in reconfiguring the inverter in order to achieve wider 

speed range of operation for the multiphase induction machines is presented. 
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7.2 Multiphase Stator Winding Machine Connections 

 

For an odd number of phases, the stator winding of a multiphase machine can be 

connected in 
2

1+m  different ways. The first two are the normal star connection and delta 

connection. The normal delta connection in this case is called the conventional delta. The 

remaining configurations are the alternate delta connections which are obtained buy 

changing the phase sequences. 

In order to achieve the alternate connections, the machine windings are supposed to 

be connected in delta across the inverter legs. In this section, the peaks of the voltages 

across the phase windings of the five and seven five machines are calculated as examples. 

Since the machine is supplied through an inverter, it is easiest to implement the 

connection changeover from one delta configuration to the other by changing the 

modulation signals sent to the base drives of the inverter legs. 

 

7.2.1 Five Phase Stator Winding Machine Connections 

 

With the five-phase machine, there are three possible connections one star and two 

alternate delta connections. 

Figure 7.1 (a) shows the schematic representation of a five phase stator winding 

connected in star configuration. Figures 7.1 (b) and (c) show the delta connections of the 

five phase stator winding of the induction machine in the conventional and alternate 

configurations, respectively. It is obvious that the difference between the configuration of 
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Figure 7.1 (b) and that of Figure 7.1 (c) is the phase sequence orientation, which will 

eventually result in different magnitudes of the peak voltages across the machine phase 

windings. The phase sequence for the delta connection of the five-phase machine are 

abcde and acebd. 

a

b

cd

e
esv

dsv

csv

bsv

asv

a

b

cd

e

a

b

cd

e

abv

bcv

cdv

dev

eav

acv

bdv cev

dav

ebv

 

Figure 7.1 Different stator winding connections for a five-phase stator winding (a) star 

(b) normal (conventional) delta, abcde and (c) alternate delta, acebd. 

(a) 

(b) 

(c) 
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7.2.2 Seven Phase Stator Winding Machine Connections 

 

For the seven phase stator winding, there are four possible connections one star and 

three alternate delta connections, i.e. 4
2

17
=

+  different connections. Whereas the star 

and normal delta connections have the same abcdefg phase sequence, the three alternate 

delta connections are obtained by changing the phase sequences alternately. The four 

connections for a seven phase stator winding are shown in Figures 7.2, 7.3, 7.4 and 7.5 

for the star, conventional delta, alternate delta I, and alternate delta II, respectively. 

 

Figure 7.2 Seven phase stator winding in star connection. 
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For the seven phase machine there are abcdefg, acegbdf, and adgcfbe phase sequences for 

the three alternate delta connections as shown in Figures 7.3, 7.4 and 7.5, respectively. 

vab

vbc

vcd

vde

vef

vfg

vga

a

b

c

d
e

f

g

 

Figure 7.3 Seven phase stator winding in conventional delta (abcdefg) connection. 

The peak of the phase voltage across each phase winding in Figure 7.3 is mV8678.0  
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f

 

Figure 7.4 Seven phase stator winding in alternate delta (acegbdf) connection I. 

The peak of the phase voltage across each phase winding in Figure 7.4 is mV5637.1  
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Figure 7.5 Seven phase stator winding in alternate delta (adgcfbe) connection II. 

The peak of the phase voltage across each phase winding in Figure 7.5 is mV9499.1  
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7.3 Converter Reconfiguration 

 

If the m-phase machine is supplied through an m-leg inverter, the voltages across 

the machine phases change based on the winding connections. If the machine is star 

connected, then each phase voltage is equal to the inverter leg output voltage. For the 

other connections, each phase voltage is equal to the voltage difference between the two 

inverter legs to which the phase winding is connected. For the five-phase machine, the 

magnitude of the voltage across each phase winding will be mV1756.1  and mV902.1  for 

abcde and acebd,, respectively. Similarly for the seven–phase machine, the amplitudes of 

the voltages across each phase winding will be mV8678.0 , mV5637.1  and mV9499.1  for 

abcdefg, acegbdf, and adgcfbe,, respectively. 

In general, for the alternate delta connections, the voltages across each phase 

winding are obtained as 

( )ijmijij tVV φω −= cos  

where ( ) ( )22 sinsincoscos jijimmij VV φφφφ −+−=  

mV  is the peak of the inverter-leg output voltage. 

( )
m

kji
πφφ 21, −= , mk ,,2,1 L=  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
= −

ji

ji
ij φφ

φφ
φ

coscos
sinsin

tan 1 , ji ≠ , 

edcbaji ,,,,, =  for m = 5, gfedcbaji ,,,,,,, =  for m = 7 

The configurations with lower voltages are suitable for higher torque, lower speed 

range operation while those with higher voltages will give lower torques, high speed 
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range operating points. Assume the phase angles of the inverter voltages shown in Figure 

1(c) are 0,
5

2π , 
5

4π , 
5

6π  and 
5

8π  for legs a, b, c, d, and e, respectively; the magnitude of 

the machine winding phase voltage is mV1756.1 , which is equivalent to the configuration 

of Figure 1(a). If these angles are multiplied by a factor of 3, the magnitude of the voltage 

across each machine phase will be mV902.1  which is equal to the magnitude of machine 

phase voltage for the acebd delta configuration of Figure 7.1(b). This connection can be 

realized through the phase angles of the modulation signals. 

In general, given the modulation signals for the five legs of the star connection of 

the machine windings of the induction machine, the respective factors ( )ik  with which 

the phase angles are multiplied by to obtain the ith delta configuration are given by 

( )2,,3,1 −= moddki L , where ( )oddm  is the number of phases and 
2

1,,3,2,1 −
=

mi L . 

Thus by changing the phase angles of the modulation signals, as illustrated in Table 7.1 

for a five-phase machine, an automatic changeover between the delta winding 

configurations without adding any mechanical or semiconductor switches are realized. 

Figure 7.6 shows the phase windings of a five phase induction machine connected 

across the outputs of the voltage source five phase voltage source inverter in a 

conventional delta connection. Figure 7.7 shows the phase windings of a five phase 

induction machine connected across the outputs of the voltage source five phase voltage 

source inverter in an alternate delta connection. 

Switching over from the connection in Figure 7.6 to that of Figure 7.7 would require 

physical switching between the windings. Instead of using a physical switch, the 

proposed approach requires one to change the modulation angle of the modulating signals 
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for the respective legs and by so doing, the voltages across the windings in Figure 7.6 

will be as if the windings are connected as shown in Figure 7.7. 

 

Table 7.1 Modulation signals for star connection and changeover from delta connection I 

to delta connection II 

Phase Star connection 

(abcde-n) 

Delta connection I 

(abcde) 

Delta connection II 

(acebd) 

a ( )δω +tM cos  ( )δω +tM cos  ( )δω 3cos +tM  

b 
⎟
⎠
⎞

⎜
⎝
⎛ +− δπω

5
2cos tM  ⎟

⎠
⎞

⎜
⎝
⎛ +− δπω

5
2cos tM  ⎟

⎠
⎞

⎜
⎝
⎛ +− δπω 3

5
6cos tM  

c 
⎟
⎠
⎞

⎜
⎝
⎛ +− δπω

5
4cos tM  ⎟

⎠
⎞

⎜
⎝
⎛ +− δπω

5
4cos tM  ⎟

⎠
⎞

⎜
⎝
⎛ +− δπω 3

5
12cos tM  

d 
⎟
⎠
⎞

⎜
⎝
⎛ +− δπω

5
6cos tM  ⎟

⎠
⎞

⎜
⎝
⎛ +− δπω

5
6cos tM  ⎟

⎠
⎞

⎜
⎝
⎛ +− δπω 3

5
18cos tM  

e 
⎟
⎠
⎞

⎜
⎝
⎛ +− δπω

5
8cos tM  ⎟

⎠
⎞

⎜
⎝
⎛ +− δπω

5
8cos tM  ⎟

⎠
⎞

⎜
⎝
⎛ +− δπω 3

5
24cos tM

 

where M  is the magnitude of the modulation index and δ  is the phase angle. 
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Figure 7.6 Five-leg inverter feeding a five-phase induction machine in abcde delta 

connection. 
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Figure 7.7 Five-leg inverter feeding a five-phase induction machine in acebd delta 

connection. 
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7.4 Rotor Reference Frame Vector Control 

 

The induction machine equations represented in the qd synchronous reference frame 

are given by [7.1] 

The stator voltage Equations are 

qsdsdssds

dsqsqssqs

pirv

pirv

ωλλ

ωλλ

−+=

++=
        (7.1) 

The rotor voltage Equations are 

( )
( ) '''''

'''''

qrrdrdrrdr

drrqrqrrqr

pirv

pirv

λωωλ

λωωλ

−−+=

−++=
       (7.2) 

The stator flux linkages are given by 

drmdssds

qrmqssqs

iLiL

iLiL

+=

+=

λ

λ
         (7.3) 

The rotor flux linkages are given by  

'''

'''

drrdsmdr

qrrqsmqr

iLiL

iLiL

+=

+=

λ

λ
         (7.4) 

The electromagnetic torque is given by 

( )dsqrqsdr
r

m
e ii

L
mPL

T ''

4
λλ −=         (7.5a) 

The rotor speed is  

( )Ler TT
P
Jp −=

2ω          (7.5b) 

For rotor field oriented control [7.2] 0' =qrλ  and 0' =qrpλ . Therefore from (7.4) and 

(7.5) 
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qs
r

m
qr i

L
L

i −='           (7.6) 

qsdr
r

m
e i

L
mPL

T '

4
λ=          (7.7) 

At steady state the derivative of the peaks are zero. Therefore, since 0'' == drqr vv , then 

from (7.2) 

0' =dri            (7.8) 

Substituting (7.6) and (7.8) into (7.3) results into 

qsqs iLσλ =           (7.9a) 

dssds iL=λ           (7.9b) 

where '

2

r

m
s L

L
LL −=σ  

Substituting (7.8) into (7.4), the following d-axis rotor flux Equation is obtained 

dsmdr iL='λ           (7.10) 

Substituting (7.9) into (7.1) at steady state, 

qsdssds

dssqssqs

iLirv

iLirv

σω

ω

−=

+=
         (7.11) 

Substituting (7.6) and (7.10) into (7.2), the slip speed is obtained as 

dsr

qsr
sl iL

ir
'

'

=ω           (7.12) 

where rsl ωωω −=  
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7.4.1 Constant Torque Region 

 

In this region, while the rotor flux producing current is kept constant, the speed 

increases from zero to base speed, as shown in Figure 7.9 during which the q- and d-axis 

currents are constant. The rated stator current is drawn under this condition. Under this 

condition, the phase machine winding voltage also increases from zero to the maximum 

allowable rated value. The torque is constant as depicted in Figure 7.10. 

The constraints on the inverter voltage and currents are [7.2-7.5] 

222
sdsqs Vvv ≤+           (7.13a) 

222
sdsqs Iivi ≤+           (7.13b) 

sV  and sI  are the peak values of the inverter maximum allowable voltage and current. If 

the stator resistance drop is neglected, then the transition stator frequency from constant 

torque region to field weakening region I (when the machine phase voltage and current 

are rated values concurrently) is 
( )222221

rateddssrateddss

s

iILiL

V

−− −+
=

σ

ω   (7.14) 

where rateddsi −  is the stator d-axis rated current at rated flux. 

 

7.4.2 Field Weakening Region I 

 

The stator qd voltages and currents are given by the equality constraint version of 

Equations (7.13) which still hold true in the field weakening region I. For this region of 



 342

operation, the speed increases beyond base speed and the q- and d-axis stator currents 

vary with rotor speed. They are given in (7.15) 

2222

2222

σωω
ω

LL
VILi

s

sss
qs −

−
=          (7.15a) 

2222

2222

σ

σ

ωω
ω

LL
ILV

i
s

ss
ds −

−
=          (7.15b) 

The rotor speed increases until the voltage is no longer able to supply the rated 

current. Thus the current constraint in (7.13) does not hold any more, Figure 7.9. This is 

the point at transition from field weakening region I to field weakening region II which is 

discussed in the next subsection. That is, the phase voltage corresponds to the rated phase 

voltage but the phase current drawn by the motor is less than the rated phase current. 

 

7.4.3 Field Weakening Region II 

 

In field weakening region II, the current constraint no longer holds true. In this case 

there is not enough phase voltage from the source to supply the rated phase current. 

Therefore by using the torque optimization approach, the optimum q- and d-axis stator 

currents and slip speed can be obtained as 

0=
qs

e

di
dT

          (7.16) 

σω L
Vi

opt

s
optqs 2

=−          (7.17a) 

sopt

s
optds L

Vi
ω2

=−          (7.17b) 
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The optimum value of slip speed is given by 

σ

ω
LL
Lr

r

sr
optslip '

'

=−          (18) 

where optω  is the transition frequency between field weakening regions I and II given by 

2

22
σ

σ

ω LL
ILL

V s

ss

s
opt

+
=         (7.19) 

As the frequency increases beyond optω  the stator currents decrease as 

σωL
Vi s

qs 2
=           (7.20a) 

s

s
ds L

Vi
ω2

=           (7.20b) 

 

7.4.4 Current Controller design 

 

Two controllers are required. The q-axis current controller and d-axis current 

controller. Using Equations (7.4) the rotor currents can be eliminated as follows 

( )qsmqr
r

qr iL
L

i −= '
'

' 1 λ          (7.21) 

( )dsmdr
r

dr iL
L

i −= '
'

' 1 λ          (7.22) 

Substituting Equations (7.21) and (7.22) into Equations (7.3), stator flux linkages 

are given by 

'
''

2

qr
r

m
qs

r

m
sqs L

L
i

L
L

L λλ +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=         (7.23) 
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'
''

2

dr
r

m
ds

r

m
sds L

L
i

L
L

L λλ +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=         (7.24) 

Substituting for the qd stator flux linkages from Equations (7.23) and (7.24) into 

Equations (7.1) gives the following results for the stator voltage Equations 

'
'

'
' dr

r

m
eqr

r

m
dseqsqssqs L

L
p

L
L

iLpiLirv λωλω σσ ++++=      (7.25) 

'
'

'
' qr

r

m
edr

r

m
qsedsdssds L

L
p

L
L

iLpiLirv λωλω σσ −+−+=      (7.26) 

Equations (7.25) and (7.26 can be re-written as 

'
'

'
' dr

r

m
eqr

r

m
dseqssqsqs L

L
p

L
L

iLirvpiL λωλω σσ −−−−=      (7.27) 

'
'

'
' qr

r

m
edr

r

m
qsedssdsds L

L
p

L
L

iLirvpiL λωλω σσ +−+−=      (7.28) 

For a squirrel cage induction machine, the rotor voltages are zero, i.e. 0'
1 =qrv  and 

0'
1 =drv . 

Therefore Equation (7.2) becomes 

For the q-axis rotor voltage Equation 

( ) ( ) '''
'

0 drreqrqsmqr
r

r piL
L
r

λωωλλ −++−=  

( ) '
'

'
'

'
drreqs

r

mr
qr

r

r
qr i

L
Lr

L
rp λωωλλ −−+−=       (7.29) 

For the d-axis rotor voltage Equation 

( ) ( ) '''
'

0 drreqrqsmqr
r

r piL
L
r

λωωλλ −++−=  
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( ) ( ) '''
'

0 qrredrdsmdr
r

r piL
L
r

λωωλλ −−+−=  

( ) '
'

'
'

'
qrreds

r

mr
dr

r

r
dr i

L
Lr

L
rp λωωλλ −++−=       (7.30) 

Substituting Equations (7.29) and (7.30) into Equations (7.25) and (7.26), 

respectively results into 

'
'

'
2'

'

dr
r

m
rdseqr

r

mr
qsqsqs L

L
iL

L
Lr

irvpiL λωωλ σσσ −−+−=     (7.31) 

'
'

'
2'

'

qr
r

m
rqsedr

r

mr
dsdsds L

L
iL

L
Lr

irvpiL λωωλ σσσ +++−=     (7.32) 

where 

'

2

r

m
s L

L
LL −=σ  and 2'

2'

r

mr
s L

Lr
rr +=σ . 

Aligning the rotor flux linkage with the d-axis of the synchronous reference frame, 

the q-axis rotor flux linkage and its derivative are zero. Thus 

0' =qrλ           (7.33) 

0' =qrpλ           (7.34) 

''
drr λλ =           (7.35) 

where '
rλ  is the rotor flux linkage. 

Substituting Equations (7.33) - (7.35) into Equations (7.5a) and (7.29) – (7.32), 

results into 

qsdr
r

m
e i

L
LmPT '

4
λ=          (7.36) 
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( ) '
'

0 drreqs
r

mr i
L
Lr

λωω −−=         (7.37) 

ds
r

mr
dr

r

r
dr i

L
Lr

L
rp

'
'

'
' +−= λλ         (7.38) 

'
' dr
r

m
rdseqsqsqs L

L
iLirvpiL λωω σσσ −−−=       (7.39) 

qsedr
r

mr
dsdsds iL

L
Lr

irvpiL σσσ ωλ ++−= '
2'

'

      (7.40) 

Equation (7.37) yields the expression of the fundamental component of the slip 

frequency required for rotor field orientation control given by 

( ) ''

'

dr

qsmr
re

i
L
Lr

r
λ

ωω =−          (7.41) 

The input-output linearization method is used to design the control scheme of the 5-

phase induction machine as follows [6.1] 

Equations (7.39) and (7.40) can be re-arranged and written as 

qsdr
r

m
rdseqsqsqs L

L
iLvirpiL σλωω σσσ =−−=+ '

'      (7.42) 

dsdr
r

mr
qsedsdsds L

Lr
iLvirpiL σλω σσσ =++=+ '

2'

'

     (7.43) 

where 

qsσ  is the output of the q-axis current controller 

dsσ  is the output of the d-axis current controller 

The controller outputs are related to the reference and actual quantities as follows 

For the fundamental components 
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( )qsqsqsqs iiK −= *σ          (7.44) 

( )dsdsdsds iiK −= *σ          (7.45) 

where 

qsK  is the transfer function of the controller for the q-axis stator current. 

dsK  is the transfer function of the controller for the d-axis stator current, 

From Equations (7.42) and (7.43), the fundamental components of the qd reference 

stator voltages are given by 

'
'

*
dr

r

m
rdseqsqs L

L
iLv λωωσ σ ++=        (7.46) 

'
2'

1
'

*
dr

r

mr
qsedsds L

Lr
iLv λωσ σ −−=        (7.47) 

where 

*
qsv  is the q-axis reference stator voltage. 

*
dsv  is the d-axis reference stator voltage. 

*
dsi  is the d-axis reference stator current. 

*
qsi  is the q-axis reference stator current. 

The reference rotor flux linkage beyond the base speed is given by 

orrrrdr aaaaa ++++= ωωωωλ 1
2

2
3

3
4

4
*       (7.48) 

where 

Wbao 8940.0=  

13
1 sec107325.1 −−−= radWbxa  

226
2 sec105065.1 −−= radWbxa  
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3310
3 sec1005025.6 −−−= radWbxa  

4414
4 sec101.9 −−= radWbxa  

The reference voltages are given by 

dr
r

m
rdseqsqs L

L
iLv λωωσ σ

*** ++=        (7.49) 

dr
r

m
rqsedsds L

L
riLv λωσ σ 2

'** −−=        (7.50) 

The reference currents are given by 

m

dr
dr L

i
*

* λ
=           (7.51) 

qsedsv λω−=           (7.52) 

( )'
qrmqsseds iLiLv +−= ω         (7.53) 

''
qrrqsmqr iLiL +=λ          (7.54) 

0' =qrλ           (7.55) 

qs
r

m
qr i

L
L

i −='           (7.56) 

qs
r

m
seds i

L
L

Lv ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

2

ω         (7.57) 

This gives the stator current as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=

r

m
se

ds
qs

L
L

L

v
i

2

*
*

ω
         (7.58) 

If the actual q-axis stator current is greater than the rated q-axis current, then the 

reference current is given by 
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*2*
dssqs iIi −=          (7.59) 

When the actual voltage exceeds the rated voltage, then the following Equations will 

generate the reference voltages 

dseqsv λω=*           (7.60) 

However, the d-axis rotor current, '
dri  is zero, i.e. 0' =dri  

dssdrmdssds iLiLiL =+= 'λ         (7.61) 

dsmdrrdsmdr iLiLiL =+= 'λ         (7.62) 

m

dr
ds L

i
λ

=           (7.63) 

Therefore, 

dr
m

s
ds L

L
λλ =           (7.64) 

**
dr

m

s
eqs L

L
v λω=          (7.65) 

The reference speed is ramped at a slope of secsec//300rad . 

Figure 7.8 shows the block diagram for extended speed range operation of a five phase 

induction motor drive. 
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Figure 7.8 Control Block Diagram for extended speed range operation of the five-phase induction motor drive 
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7.5 Steady-State Results 

 

Steady-state results for the five-phase induction machine in different stator winding 

configurations are presented in this section. Figure 7.9 and Figure 7.10 show the steady-

state results for different stator winding connections. It can be seen that the base speeds 

depend on the type of winding connection. Also with connections that have higher 

magnitudes of the phase winding voltage, result in lower torque values but with an 

extended speed range. 

Assuming the voltage across the machine phase winding during star configuration is 

1 per unit (p.u.), then when the winding is connected in conventional delta (Figure 

7.1(a)), the peak voltage across the machine phase winding is 1.1765 p.u, whereas for the 

alternate delta connection (Figure 7.1(b)) the peak voltage across the machine’s phase 

winding is 1.902 p.u. In Figure 7.10, it has been clearly shown that for the delta 

connection with a phase peak voltage of 1.902 p.u., the torque in the high speed range is 

higher than that for the other delta and star connections. Thus in high speed applications, 

relatively high torque can be obtained by changing the voltages across the machine 

winding as it has been presented in section 7.2. 

In Figure 7.10, when the machine winding is star connected, higher torque is 

obtained during the constant torque operation region until the speed is 1 p.u., at a point 

which field weakening region I starts. At a rotor speed of about 2 p.u., the torque due to 

the conventional delta connection is higher than those of the other two connections, and 

therefore the converter has to switch from star connection to delta connection until at 

appoint when the torque produced due to the alternate delta connection is greater than the 
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other two connections. Thus at a rotor speed of about 2.4 p.u. the changeover from 

conventional delta to alternate delta will take place. 
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Figure 7.9 Stator peak, q-axis and d-axis currents as functions of rotor speed for the three 

different connections of the five-phase induction motor. 
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Figure 7.10 Torque as a function of rotor speed for the three different connections of the 

five-phase induction motor. 
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7.6 Control Simulation Results 

 

Figure 7.11 shows the simulation results for rotor field oriented control of a five-

phase induction machine for varying speed commands in which the actual rotor speed 

closely follows the command rotor speed. The reference d-axis rotor flux linkage is 

0.4574 Wb. Figure 7.12 shows the electromagnetic torque and both the actual and 

reference rotor speed. Figure 7.12 also shows the simulation results for the field 

weakening control. It can be observed that before base speed (i.e. 1 p.u.), the torque is 

approximately constant and as the speed increases, the torque and the flux are gradually 

reduced. 

At about 2 p.u. speed, the machine winding connection is changed from star to delta 

configuration until the speed is about 2.4 p.u. when changeover from conventional delta 

to alternate delta occurs. It is important to note that during field weakening operation, the 

reference d-axis rotor flux linkage is given by Equation (7.48). 
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Figure 7.11 Simulation for the speed controlled five-phase machine, (a) actual and 

reference q-axis stator currents (b) actual and reference d-axis stator currents (c) actual 

and reference d-axis rotor flux linkages (d) actual and reference rotor speed and (e) 

electromagnetic torque. 
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Figure 7.12 Simulation for the speed field weakening control of a five-phase machine, (a) 

actual and reference q-axis stator currents (b) actual and reference d-axis stator currents 

(c) actual and reference d-axis rotor flux linkages (d) electromagnetic torque and (e) 

reference rotor speed. 
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7.7 Conclusion 

 

In this Chapter, the approach to reconfigure the inverter in order to achieve wider 

speed range of operation for the multiphase machines has been presented. The multiphase 

machines offer extended range speeds of operations when connected in different delta 

schemes across the inverter output phases. By changing the phase angles of the 

modulation signals, changeover connection from one delta configuration to the other is 

achieved. The higher the voltage across the machine phase winding, the higher the speed 

range and lower the operating torque point. Steady state and simulation results for the 

rotor flux oriented control have been presented and clearly show that it is possible to 

operate at higher speeds with a relatively high torque when other connections of the stator 

windings of the multiphase machine are explored. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

 

8.1 Introduction 

 

A complex stationary reference frame transformation has been analyzed. It can be used to 

transform variables of the multiphase system into complex quantities and thus 

eliminating the time variation. This eases the process of computation and its also 

simplifies the expressions. Three kinds of transformed variables have been discusses. The 

forward rotating complex variable, the backward rotating complex variable which are 

conjugate  o s the forward rotating ones and the zero sequence components. The zero 

sequence component is a real quantity. Therefore for any system with odd number of 

phases, there are 
2

1−m  forward rotting complex vectors and 
2

1−m  backward rotating 

vectors. Whereas for the  case when the number of phases are even, there exist two zero 

sequence component. The second one occurring at 
2
m . Using the complex reference 

frame, expressions for determining the real and reactive power have bee derived. These 

Equations are such that one can compute the power by using the actual machine variables 

(current and voltage). The reference frame of transformation used in this Thesis obeys 

power invariance. Therefore, one can obtain the actual values of the real and reactive 

powers by using the transformed variables without any need of using a multiplying 

factor. The obtained expressions are good for calculating the power of the multiphase 
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systems and can be applied in any mode of operation, healthy as well as fault operations, 

as long as the natural variables are known. 

A five-phase induction machine has been modeled. The winding function method is 

used to calculate the self and mutual inductances in the stator windings and the rotor 

circuits, with constant air gap in which the space harmonics of the stator windings and 

rotor circuits are accounted for. A n x n complex variable reference frame transformation 

is carried out to simplify computation of the currents, voltages and torque equations. 

Computer simulation results of the no-load starting transient have been shown with the 

response of the machine for a change in the load torque. This approach has made it 

possible to calculate the rotor bar currents. 

A five-phase carrier based PWM (Pulse Width Modulation) induction motor drive 

has been presented. The induction machine windings have been connected in alternate 

ways to increase the torque produced by the machine. A third harmonic voltage 

component has been injected to detect the ability of a five phase machine to contribute a 

third harmonic torque component to the fundamental torque component. 

The dynamics of a five phase induction motor under open phase faults has been 

considered. Using stationary reference frame and harmonic balance technique, circuit 

based models have been used to analyze the open phase, two adjacent phases and two 

non-adjacent phase faults. 

A voltage source converter has been reconfigured for the purpose of operating the 

induction motor at high speeds.. It investigates the possibilities of operating a multi-phase 

induction motor drive in field weakening region under optimum torque production. 

Computer simulation results for the current controllers have shown to agree with those 
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found in several literature. The advantage of this approach is that torque can be optimized 

during field weakening regions I and II by employing proper means of changing over 

from one winding connection to the other, for the available delta configurations. For the 

five phase induction machine considered in this work, there are two different delta 

connections, conventional delta (with the peak voltage across the machine phase winding 

of 1.1756 p.u.) and the alternate delta (with the peak voltage across the machine phase 

winding of 1.902 p.u.). 

 

8.2 Suggestions for Future Work 

 

Extension of the investigation of five phase induction machines and multiphase 

systems still has many areas to be accounted for. One of the areas of research is how to 

control the machine under open phase faults, as well as short-circuited turns. The 

modeling of the machine using the winding function approach can lead to a controller 

design, which could command the required current to reduce the high phase currents that 

occur because of faults. 

The modulation strategy using space vector approach is currently attracting attention 

from researchers especially on how to utilize the dc link voltage fully in all sectors for 

multiphase machine control. 
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