Understanding Academic Language in edTPA:

Supporting Learning and Language Development

Academic language (AL) is the oral and written language used for academic purposes. AL is the "language of the discipline" used to engage students in learning and includes the means by which students develop and express content understandings.

When completing their edTPA, candidates must consider the AL (i.e., language demands) present throughout the learning segment in order to support student learning and language development. The language demands in Elementary Mathematics include function, vocabulary, discourse, and syntax.

As stated in the edTPA handbook:

- Candidates identify a key language function and one essential learning task within their learning segment lesson plans that allows students to practice the function (Planning Task 1, Prompts 4a/b).
- Candidates are then asked to identify vocabulary and one additional language demand related to the language function and learning task (Planning Task 1, Prompt 4c).
- Finally, candidates must identify and describe the instructional and/or language supports they have planned to address the language demands (Planning Task 1, Prompt 4d). Language supports are scaffolds, representations, and instructional strategies that teachers intentionally provide to help learners understand and use the language they need to learn within disciplines.

It is important to realize that not all learning tasks focus on both discourse and syntax. As candidates decide which additional language demands (i.e., syntax and/or discourse) are relevant to their identified function, they should examine the language understandings and use that are most relevant to the learning task they have chosen. Then, teacher candidates should plan to provide appropriate and targeted language supports for students to learn and practice the language demands within the chosen learning task.

This AL handout provides definitions and a few examples of language demands and supports to help teacher candidates and educator preparation programs understand edTPA Rubrics 4 and 14. See the edTPA Elementary Mathematics Assessment Handbook glossary and the Understanding Rubric Level Progressions for Elementary Mathematics for additional examples of language demands.

Another valuable resource is the website of Understanding Language, the center that recently merged with SCALE. This website has a number of papers on academic language for all students, archived webinars (listed under "Events"), and periodic MOOC offerings. The most relevant resources for teacher candidates are the teaching resources in English/language arts (with an example based on history/social science texts) and mathematics, with materials forthcoming in science. These teaching resources are explained and annotated to illustrate how to combine academic language development and content pedagogy for all students, including English learners.

SCRLE

Stanford Center for Assessment, Learning, \& Equity
AL_ELM_v01
Copyright © 2018 Board of Trustees of the Leland Stanford Junior University. All rights reserved. The edTPA trademarks are owned by The Board of Trustees of the Leland Stanford Junior University. Use of the edTPA trademarks is permitted only pursuant to the terms of a written license agreement. This document was authored by the Stanford Center for Assessment, Learning and Equity (SCALE) with design assistance from Evaluation Systems.

Language Demands

I. Functions

Definition	Examples (bolded and underlined within learning objectives)
- Purposes for which language is used	Learning Objectives: - Content and language focus of learning tasks often represented by the active verbs within the learning outcomes
- Students will be able to compare the lengths of various objects in the classroom. - Students will be able to explain they used to solve a problem.	
- Students will be able to describe the specific	
attributes of a parallelogram.	

II. Vocabulary—Includes words, phrases, and symbols used within disciplines

Definition	Examples
Words and phrases with subject-specific meanings that differ from meanings used in everyday life	table, ruler, square, face, chord, digit, even, times, set
General academic vocabulary used across disciplines	compare, analyze, evaluate, describe, sequence, classify
Subject-specific words and/or symbols defined for use in the discipline	exponent, numerator, denominator, equilateral, divisor, least common multiple, \div, \geq, \times (symbols)

III. Discourse

Definition	Examples
- How members of the discipline talk, write, and	- Making and supporting a conjecture
participate in knowledge construction, using the	- Constructing a definition based on comparing
structures of written and oral language	examples and non-examples of polygons
- Discipline-specific discourse has distinctive	- Interpreting graphic representations (e.g., graphs,
features or ways of structuring oral or written	diagrams)
language (text structures) or representing	
knowledge visually.	

IV. Syntax

Definition	Examples
- The rules for organizing words or symbols	Mathematical sentences (using words or symbols) together into phrases, clauses, sentences, or visual representations.
- One of the main functions of syntax is to organize language in order to convey meaning.	- $6 \geq 4$ (Six is greater than or equal to four.) - There are 5 times as many apples as oranges. Long or elaborate noun phrases - Write an inequality that, when solved, will give the amount of sales Mandy needs to cover her planned expenses. Conditional sentences - If 50% of a number is 25, what is 75% of the number?

Example of Planned Language Supports

To help programs and candidates begin to develop their understanding of language supports, start by examining a key standard or learning objective.

The chart below identifies sample language demands with related examples of supports based on one selected learning objective in mathematics.

Example learning objective: Students will interpret a word problem to find the part or whole prior to setting up and solving the problem.

Identified Language Demands	Planned Language Supports
Interpret (Function)	Model interpreting a problem
Part, whole (Vocabulary)	Review vocabulary and word chart and discuss meanings in the context of the word problems modeled
Word problem (Syntax)	Break down sentences within word problems with the whole class to identify essential information and paths to solution

