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by Irreducible Nonlinear Characters of
Corresponding Salingaros Vee Groups
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Abstract. Clifford algebras C`2,0 and C`1,1 are isomorphic simple alge-
bras whose Salingaros vee groups belong to a class N1. The algebras
are isomorphic to the quotient algebra R[D8]/J of the group algebra of
the dihedral group D8 modulo an ideal J = (1 + τ) where τ is a cen-
tral involution in D8. Since all irreducible characters of D8, including
a single nonlinear character of degree 2, can be realized over R, spinor
representations of the Clifford algebras can be realized over R and so
C`2,0 ∼= C`1,1 ∼= R(2). Spinor modules in C`2,0 and C`1,1 are isomorphic
to irreducible RD8-submodules of dimension 2 of the regular module
RD8. As such, they are uniquely determined by the nonlinear character
of degree 2. These results are generalized to the vee groups in classes
N2k−1 and Ω2k−1 (1 ≤ k ≤ 4). It is proven that each irreducible charac-
ter of Gp,q in these classes can be realized over R. Consequently, every
nonlinear character of Gp,q uniquely determines a spinor module of C`p,q
which is faithful (resp. unfaithful) when Gp,q is in the class N2k−1 (resp.
Ω2k−1). This paper is a continuation of [1].
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1. Introduction

In a series of papers [11–13], Salingaros defined five families N2k−1, N2k,
Ω2k−1, Ω2k, Sk (k ≥ 1) of finite 2-groups contained in Clifford algebras C`p,q.
We refer to these groups as Salingaros vee groups and we denote them as Gp,q
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when Gp,q ⊂ C`p,q. Ab lamowicz et al. have shown in [1] that each Clifford
algebra C`p,q is an image of a group algebra R[Gp,q] and, as a consequence,
Clifford algebras C`p,q can be classified in terms of the Salingaros vee groups
into five isomorphism classes in accordance with the well-known Periodicity
of Eight [8].

The approach to Clifford algebras presented in [1] opened a possibility
of relating properties of C`p,q and properties of its algebraic substructures,
such as its spinor modules (minimal one-sided ideals), to the properties of the
group algebra R[Gp,q] and its regular RGp,q-module [6]. In particular, these
properties can be related to irreducible characters of the group Gp,q.

The main goal for this paper is to show how the nonlinear irreducible
character(s) of the vee groups in the class N2k−1 (resp. Ω2k−1) determine(s)
the spinor modules, and hence, spinor representations of simple (resp. semi-
simple) Clifford algebras C`p,q ∼= R(2l) (resp. C`p,q ∼= 2R(2l−1)) for p − q =
0, 2 (mod 8) (resp. p− q = 1 (mod 8)).

Recall that for k ≥ 1, each group in the family N2k−1 is an extra-special
central product1 (D8)◦k of k copies of the dihedral group D8 whereas each
group in the family Ω2k−1 is a central product (D8)◦k ◦ (C2 × C2) where ◦
denotes the central product and C2 denotes a cyclic group of order 2 [1,11–13].

The first step in accomplishing our goal is to show that each nonlinear
character χ of Gp,q can be realized over R. We do that by using the Frobenius-
Schur Count of Involutions to show that an indicator function ιχ = 1 for
every irreducible character of Gp,q in either class (Section 4). Then, for any
group Gp,q in N2k−1, we relate faithfulness of its single nonlinear character
to the simplicity of the corresponding Clifford algebra C`p,q and faithfulness
of its spinor representation. Since any group Gp,q in Ω2k−1 has two unfaithful
nonlinear irreducible characters, this explains why the corresponding Clifford
algebras C`p,q are semisimple and why their spinor representations are not
faithful (cf. [8, Sect. 17.6]).

The paper is organized as follows.

Section 2 recalls a known fact that all characters of D8 from the class N1

can be realized over R [6]. As a consequence, since R[D8]/J ∼= C`2,0 ∼= C`1,1
(cf. [1]), the spinor representation of these Clifford algebras is equivalent to
a faithful irreducible representation of D8 with a character of degree 2.

Section 3 illustrates in greater detail how the single nonlinear irreducible
character χ5 of D8 defines the spinor modules of C`2,0 ∼= C`1,1. First, the
regular module RD8 is decomposed into a direct sum of irreducible RD8-
submodules (c.f. [6, Maschke Theorem]) related to the irreducible characters
of D8. This is accomplished via the well-known formula (13). We discuss the
irreducible RD8-submodule of the subalgebra R[D8]θ2

∼= C`2,0 ∼= C`1,1 of the
group algebra R[D8] (θ2 is a central idempotent in R[D8]) whose character is
the nonlinear faithful character ofD8. We prove Thm. 2 saying that the spinor

1For all definitions and properties of extra-special p-groups, see [5, 7]. See also [1] and
references therein.
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modules of C`2,0 and C`1,1 are isomorphic to that irreducible submodule, and
so they are determined by χ5.

In Section 4 we generalize to Salingaros vee groups in classes N2k−1 and
Ω2k−1 for 1 ≤ k ≤ 4. We recall the definition and properties of the indicator
function and state the Frobenius-Schur Count of Involutions [6]. For each
group in the said classes we give the order structure of that group and prove
our first main result (Thm. 4) that each irreducible character of these groups
can be realized over R. This theorem gives a foundation to our second main
result (at least for 1 ≤ k ≤ 4) stated as Thm. 5 that when Gp,q is in the class
N2k−1 (resp. Ω2k−1), the spinor representation is faithful (resp. non faithful)
and it is determined by one of the nonlinear irreducible characters χ of the
group. We find a relation between the degree χ(1) of such character, the
Radon-Hurwitz number rq−p, and the signature (p, q). We sketch a proof of
that theorem and illustrate it on R[G2,1]/J ∼= C`2,1, which is a semi-simple
algebra in the class Ω1. Using the character table of G2,1, we show how two
distinct nonlinear non faithful irreducible characters of degree 2 determine,
in the end, a faithful yet reducible double spinor module for C`2,1.

In the end, we conjecture that our results extend to the vee groups in
all classes N2k−1 and Ω2k−1 for k ≥ 1, that is, to all Clifford algebras C`p,q
for p− q = 0, 1, 2 (mod 8).

2. Nonlinear character of D8 can be realized over R
We recall a few definitions and results from representation theory of finite
groups. Our main reference is [6].

Definition 1. An element g of a finite group G is said to be real if g is
conjugate to g−1. If g is real, then the conjugacy class gG is said to be real.
A character χ of G is real if χ(g) is real for all g ∈ G.

For example, the conjugacy class {1} of the identity element of G is
real, and the trivial character 1G of G is real.

Theorem 1. The number of real irreducible characters of G is equal to the
number of real conjugacy classes of G.

Corollary 1. The group G has a nontrivial real irreducible character if and
only if the order of G is even.

Definition 2. Let χ be a character of the group G. We say that χ can be
realized over R if there is a representation ρ : G→ GL(n,C) with character χ,
such that all the entries in each matrix gρ (g ∈ G) are real.

Every character χ which can be realized over R is a real character, but
the converse is false [6, Example 23.3(2)].

Let G = D8 = 〈a, b | a4 = b2 = 1, b−1ab = a−1〉. Thus,

D8 = {1, a2, a, a3, b, a2b, ab, a3b}, (1)
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Table 1. Character table for D8 in class N1

gi 1 a2 a b ab

|CG(gi)| 8 8 4 4 4

χ1 1 1 1 1 1

χ2 1 1 1 −1 −1

χ3 1 1 −1 1 −1

χ4 1 1 −1 −1 1

χ5 2 −2 0 0 0

the order structure of D8 is [1, 5, 2] with |a| = |a3| = 4 and the center
Z(G) = {1, a2}. A character table of G is given in Table 1 where gi is a
representative of the conjugacy class Ki and |CG(gi)| is the order of the
centralizer CG(gi) of gi in G for 1 ≤ i ≤ 5. Recall that the conjugacy classes
of D8 are as follows:

K1 = {1}, K2 = {a2}, K3 = {a, a3}, K4 = {b, a2b}, K5 = {ab, a3b} (2)

and |Ki| = [G : CG(gi)] = |G|/|CG(gi)|. Thus, every element of D8 is real and
so each conjugacy class is real as well. Each character of D8 can be realized
over R. In particular, the irreducible character of degree 2 can be realized
over R, since

aρ =

(
0 1
−1 0

)
, bρ =

(
−1 0

0 1

)
(3)

provides a representation ρ of G with character χ5 such that all the matrices
gρ (g ∈ G) have real entries.2

From Table 1 we gather that kerχ5 = {1}, that is, χ5 is faithful so the
representation ρ is faithful as well.

The following are two important consequences of the defining relations
on the generators a and b of D8:

1. The elements b and ab are of order 2 and (ab)b = a2(b(ab)).
2. The element a is of order 4 and ba = a3b = a2(ab).

Recall from [1] that Clifford algebras C`2,0 and C`1,1 are images of the
group algebra R[D8] where the surjective algebra maps from R[D8] onto each
Clifford algebra have kernel equal to J = (1 + a2). Thus,

R[D8]/J ∼= C`2,0 ∼= C`1,1. (4)

In view of the first consequence, the first isomorphism in (4) factors a sur-
jective R-algebra map

ψ1 : R[D8]→ C`2,0 : 1 7→ 1, b 7→ e1, ab 7→ e2 (5)

2We are using a notational convention from [6] where morphisms are written on the right.
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where e1, e2 provide an orthonormal basis in the Euclidean space R2, hence,

e1 and e2 anticommute and square to 1 in C`2,0. Notice that (ab)ρ =

(
0 1
1 0

)
and

(bρ)(bρ) = 1, (ab)ρ(ab)ρ = 1, (bab)ρ+ (abb)ρ = 0. (6)

Thus, the following matrices may be chosen to represent the 1-vector gener-
ators of C`2,0:

e1 7→
(
−1 0

0 1

)
, e2 7→

(
0 1
1 0

)
(7)

which we recognize as a spinorial (faithful) representation of C`2,0. 3

The second consequence allows us to recover a spinor representation of
C`1,1. We first define a surjective algebra map

ψ2 : R[D8]→ C`1,1 : 1 7→ 1, b 7→ e1, a 7→ e2 (8)

and find that the following matrices represent the 1-vector generators of C`1,1:

e1 7→
(
−1 0

0 1

)
, e2 7→

(
0 1
−1 0

)
. (9)

which we again recognize as a spinor representation of C`1,1.
4

We summarize our findings.

1. A single faithful irreducible real representation of D8 with character of
degree 2 provides the spinor representation of Clifford algebras C`2,0
and C`1,1. This explains why C`2,0 ∼= C`1,1 ∼= Mat(2,R).

2. Spinor representations of C`2,0 and C`1,1 are real because Salingaros vee
groups G2,0 and G1,1 belong to the same isomorphism class N1, that is,
D8
∼= G2,0

∼= G1,1, or, equivalently, because R[D8]/J ∼= C`2,0 ∼= C`1,1.
3. The representations (7) and (9) are faithful and equivalent. They are

also traceless because they are defined in terms of images of elements
b, ab, and a which belong to the conjugacy classes of D8 on which the
character χ5 is zero.

4. Since the maps (5) and (8) are defined modulo the nontrivial central
element a2, which maps into the nontrivial central element −1 in ei-
ther Clifford algebra, the spinor representations (7) and (9) are defined
modulo −I2 for a 2× 2 identity matrix I2.

5. The maps (5) and (8) are defined so that when considered as group
isomorphisms from D8 into G2,0 ⊂ C`∗2,0 and G1,1 ⊂ C`∗1,1, respectively,
the orders of the image and preimage are equal.

6. Since the only two elements inD8 of order 4, namely, a and a3, commute,
it is impossible to construct C`0,2 ∼= H as an image of R[D8]. In fact,
one must use the quaternion group Q8 instead of D8 so that R[Q8]/J ∼=
C`0,2 as shown in [1].5

3This representation is equivalent to the one shown in [2, 3, 8].
4This representation is equivalent to the one shown in [2–4].
5Recall that although the character table of Q8 is identical to Table 1, and so the character

χ5 of Q8 is real, χ5 cannot be realized over R [6, Example 23.18(3)]. This is the reason
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3. Nonlinear character of D8 in spinor modules of C`2,0 and
C`1,1

3.1. Algebra R[D8]θ2 as determined by the nonlinear character of D8

As in the previous section, we let G = D8 and τ = a2 ∈ Z(G). Let θ1 =
1
2 (1+τ) and θ2 = 1

2 (1−τ) in R[G]. Therefore, θ1 and θ2 are central mutually
annihilating idempotents adding up to 1 in R[G]. Hence,

R[G] = R[G]θ2 ⊕ R[G]θ1 = R[G]θ2 ⊕ J (10)

where J = R[G]θ1 = (1 + τ) as in Sect. 2. Thus, R[G]θ1 and R[G]θ2 are two
subalgebras of R[G] of dimension four each. Therefore, R[G]/J ∼= R[G]θ2 as
R-algebras and we have the following commutative diagram:

R[G] R[G]θ2

R[G]/J

Ψ

π
ϕ

,

u uθ2

u+ J

Ψ

π
ϕ

, (11)

where u+J = uθ2 + (uθ1 +J ). So, uv+J 1:1←→ uvθ2 for u, v ∈ R[G]. Thus,
rather than performing computations in the quotient algebra R[G]/J , it is
more convenient to compute in the isomorphic algebra R[G]θ2.

Let Ui be an irreducible RG-submodule of a regular module RG with
character χi, 1 ≤ i ≤ 5, shown in Table 1. Then,

RG = U1 ⊕ U2 ⊕ U3 ⊕ U4 ⊕ U5 ⊕ U ′5 (12)

where U ′5 is RD8-isomorphic to U5, and so χ5 is the character of U ′5. Suppose
that RG = W1 ⊕W2, where W1 and W2 are RG-submodules which have no
common composition factor6. Write 1 = e1 + e2 where e1 ∈W1 and e2 ∈W2.
Let χ be the character of W1. Then,

e1 =
1

|G|
∑
g∈G

χ(g−1)g, (13)

and similarly for e2. It can be easily shown that e1 and e2 are mutually
annihilating idempotents [6].

Let us now repeatedly apply these ideas to the regular module RG
whose complete decomposition into the irreducibles is shown in (12). This
way, we can compute four (primitive) idempotents e1, e2, e3, e4 using the
four irreducible characters χ1, χ2, χ3, χ4, and formula (13). Let W1 = U1 ⊕
U2 ⊕ U3 ⊕ U4 and W2 = U5 ⊕ U ′5. Then, W1 and W2 do not have a common

why G0,2 belongs to Salingaros class N2 and so C`0,2 does not have a real 2 × 2 spinor

representation.
6Let G be a finite group. If V is a CG-module and U is an irreducible CG-submodule,

then we say that U is a composition factor of V if V has a CG-submodule which is CG-
isomorphic to U . Two CG-modules V and W are said to have a common composition factor

if there is an irreducible CG-module which is a composition factor of V and W [6]. Since

all characters of D8 can be realized over R, we apply these definitions to the real regular
module RD8.
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composition factor and the character χ of W2 is 2χ5. Let e5 be an idempotent
defined by χ. Then,

e1 + e2 + e3 + e4 =
1

2
(1 + a2) = θ1, (14)

e5 =
1

8

∑
g∈G

2χ5(g−1)g =
1

2
(1− a2) = θ2, (15)

Thus,

J = (1 + a2) = (θ1) = R[G]θ1 = sp{e1, e2, e3, e4}, (16)

R[G]θ2 = {ue5 | u ∈ R[G]} = sp{q1, q2, q3, q4} (17)

where q1 = e5, q2 = ae5, q3 = be5, q4 = abe5. Furthermore,

R[G]θ2
∼= R[G]/J = sp{1 + J , a+ J , b+ J , ab+ J }. (18)

The following is a multiplication table for the basis elements of R[G]θ2 :

Table 2. Multiplication table in R[G]θ2
∼= C`1,1 ∼= C`2,0

q1 q2 q3 q4

q1 q1 q2 q3 q4

q2 q2 −q1 q4 −q3

q3 q3 −q4 q1 −q2

q4 q4 q3 q2 q1

Thus, q1 is the identity of the algebra R[G]θ2, and |q2| = 4, |q3| = |q4| = 2
in the multiplicative group (R[G]θ2)∗. As expected, the algebra R[G]θ2 is
R-isomorphic7 to C`2,0 and C`1,1. The isomorphisms may be defined on the
basis elements as

ϕ1 : R[G]θ2 → C`2,0 with q1 7→ 1, q2 7→ e12, q3 7→ e2, q4 7→ e1, (19)

ϕ2 : R[G]θ2 → C`1,1 with q1 7→ 1, q2 7→ e2, q3 7→ e12, q4 7→ e1, (20)

and then extended by linearity to any element in the domain. Notice that
when defining each map, care has to be taken to preserve the orders of the
group elements in (R[G]θ2)∗ and of their images in Salingaros groups G2,0

and G1,1, respectively.

3.2. Spinor modules of C`2,0 and C`1,1 as determined by the nonlinear char-
acter of D8

3.2.1. Spinor module of C`2,0. Recall that element f1 = 1
2 (1 +e1) is a primi-

tive idempotent in C`2,0 and so S1 defined as C`2,0f1 = sp{f1, e2f1} is a min-
imal left ideal which may serve as a two-dimensional spinor space of the alge-
bra. At the same time, S1 is a right K-module where K = f1C`2,0f1

∼= R. De-

fine f̃1 = ϕ−1
1 (f1) = 1

2 (q1 + q4) where ϕ1 is the isomorphism R[G]θ2 → C`2,0

7In fact, it is Z2-isomorphic to exactly one of C`2,0 and C`1,1 as shown in [1].
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defined in (19). Likewise, f2 = 1
2 (1 − e1) is a primitive idempotent in C`2,0

orthogonal to f1 and let f̃2 = ϕ−1(f2). Let S2 = C`2,0f2. Then, f̃1 and f̃2

are mutually annihilating primitive idempotents in R[G]θ2 so that

R[G]θ2 = R[G]θ2f̃1 ⊕ R[G]θ2f̃2 = R[G]f̃1 ⊕ R[G]f̃2

= sp{f̃1, q2f̃1} ⊕ sp{f̃2, q2f̃2}. (21)

since θ2 = f̃1 + f̃2, θ2f̃1 = f̃1, and θ2f̃2 = f̃2.

Proposition 1. Let G = D8, and, let S̃1 = sp{f̃1, q2f̃1} and S̃2 = sp{f̃2, q2f̃2}
be the left R[G]-modules defined above. When viewed as left RG-modules, each
module has character χ5 of G. Thus, they are isomorphic to the irreducible
RG-submodule U5 of the regular module RG.

Proof. We will only show that the character of S̃1 is χ5 by defining a (left)

representation ρ of G in S̃1, that is, ρ : G → GL(2,R) is group homomor-
phism. Then, we find that the generators of G are mapped as follows:

a 7→ A =

(
0 −1
1 0

)
, b 7→ B =

(
0 −1
−1 0

)
(22)

which gives:

Table 3. Representation ρ and its character χ

g 1 a2 a a3

gρ

(
1 0

0 1

) (
−1 0

0 −1

) (
0 −1

1 0

) (
0 1

−1 0

)
χ(g) 2 −2 0 0

g b a2b ab a3b

gρ

(
0 −1

−1 0

) (
0 1

1 0

) (
1 0

0 −1

) (
−1 0

0 1

)
χ(g) 0 0 0 0

It can be seen that kerχ = {1}, thus, ρ is a faithful representation of G since
A4 = B2 = I2, and B−1AB = A−1. Furthermore, χ = χ5.

In a similar way one can show that the character of S̃2 is χ5 as well. �

Under the isomorphism ϕ1 : R[D8]θ2 → C`2,0 from (19), we have q4 7→
e1 and q3 7→ e2. Thus, the generators e1 and e2 of C`2,0 are assigned the
following matrices through the representation ρ :

e1 7→ E1 = q4ρ =

(
1 0
0 −1

)
and e2 7→ E2 = q3ρ =

(
0 −1
−1 0

)
. (23)

Matrices E1 and E2 fulfill expected relations: E2
1 = E2

2 = I2 and E1E2 +
E2E1 = 0.
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Likewise, under the isomorphism ϕ2 : R[D8]θ2 → C`1,1 from (20), we
have q4 7→ e1 and q2 7→ e2. Thus, the generators e1 and e2 of C`1,1 are
assigned the following matrices by ρ :

e1 7→ E1 = q4ρ =

(
1 0
0 −1

)
and e2 7→ E2 = q2ρ =

(
0 −1
1 0

)
. (24)

This time, matrices E1 and E2 fulfill these relations: E2
1 = I2, E

2
2 = −I2 and

E1E2 + E2E1 = 0.

Theorem 2. The spinor modules in C`2,0 and C`1,1 represented as minimal
left ideals are isomorphic to an irreducible RG-submodule of R[D8]θ2, namely,

R[D8]f̃1. Thus, they are uniquely determined by the irreducible character χ5

of degree 2 of D8. In particular, 2 × 2 matrices representing generators e1

and e2 of C`2,0 and C`1,1 are traceless because they represent non-central
elements of D8 which belong to conjugacy classes on which the character χ5

is zero.

4. A generalization to classes N2k−1 and Ω2k−1

The goal for this section is to generalize previous results to Clifford algebras
C`p,q related to Salingaros classes N2k−1 and Ω2k−1 for p− q = 0, 2 (mod 8)
and p − q = 1 (mod 8), respectively [1]. We recall from [6] a definition of an
indicator function, its properties, and the so called Frobenius-Schur Count
of Involutions. We will use the latter to establish our main results for this
section.

Let V be a CG-module with character χ. Then, χ2 is the character of
the CG-module V ⊗V, and χ2 = χS+χA where χS (resp. χA) is the character
of the symmetric (resp. antisymmetric) part of V ⊗ V . Recall that

χS(g) =
1

2
(χ2(g) + χ(g2)) and χA(g) =

1

2
(χ2(g)− χ(g2)) (g ∈ G). (25)

Recall that 1G denotes the trivial character of G.

Definition 3. If χ is an irreducible character of a group G, then we define an
indicator ιχ by

ιχ =


0, if 1G is not a constituent of χS or χA,

1, if 1G is a constituent of χS,

−1 if 1G is a constituent of χA.

(26)

We call ι the indicator function on the set of irreducible characters of G.8

Note that ιχ 6= 0 if an only if χ is real. The following result [6] relates the
indicator function to the structure of G.

8An irreducible character ψ is a constituent of a character χ if 〈χ, ψ〉 6= 0, where 〈·, ·〉 is

an inner product on the characters of a group G defined as 〈χ, ψ〉 = 1
|G|

∑
g χ(g)ψ(g−1) =∑N

i=1
χ(gi)ψ(g−1

i )

|CG(gi)|
where the summation is over all conjugacy classes Ki with representa-

tives gi and |CG(gi)| denotes the order of the centralizer of gi in G.
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Theorem 3. For all x ∈ G,∑
χ

(ιχ)χ(x) = |{y ∈ G | y2 = x}|, (27)

where the sum is taken over all irreducible characters χ of G.

A proof of the following proposition can be found in [6].

Proposition 2 (The Frobenius-Schur Count of Involutions). For each irre-
ducible character χ of G, we have

ιχ =


0, if χ is not real,

1, if χ can be realized over R,

−1 if χ is real, but χ cannot be realized over R.
(28)

Moreover, ∑
χ

(ιχ)χ(1) = |{y ∈ G | y2 = 1}| = 1 + t, (29)

where t is equal to the number of involutions in G.

Example 1. It can be shown by directly computing χS and χA for each ir-
reducible character χ of D8 that 1D8

is a constituent of χS. Thus, ιχ = 1
for each χ, and so each irreducible character of D8 can be realized over R.
A faster way to find all values ιχ is to count the involutions: since D8 has
t = 5 involutions, ∑

χ

(ιχ)χ(1) = 6, (30)

which implies that ιχ = 1 for each character χ. This leads to Thm. 2 from
the previous section.

Example 2. A character table for the quaternion group

Q8 = 〈a, b | a4 = 1, a2 = b2, b−1ab = a−1〉 (31)

is the same as the character table for D8 given as Table 1. However, the order
structure of Q8 is [1, 1, 6] with the central element a2 being the only involution
in Q8. Direct computation or using the involution count, gives ιχi = 1 for
1 ≤ i ≤ 4 and ιχ5 = −1 since 1Q8

is a constituent of the antisymmetric part
of χ2

5. Hence, the character χ5 cannot be realized over the reals. This explains
why Clifford algebra C`0,2 ∼= H does not have a 2 × 2 real representation:
instead, it does have a 2× 2 complex representation [8, Sect. 5.6].

In Tables 4 and 5 we have collected information about representative
Salingaros vee groups Gp,q in classes N2k−1 and Ω2k−1 (1 ≤ k ≤ 4) for
p − q = 0, 2 (mod 8) and p − q = 1 (mod 8), respectively. From Sect. 2 we
recall that the corresponding Clifford algebras C`p,q are isomorphic to the
quotient algebras R[Gp,q]/J with groups in the N2k−1 (resp. Ω2k−1) class
yielding simple (resp. semisimple) algebras. These algebras have real spinor
representations since p − q = 0, 1, 2 (mod 8). Following [8, 9], our notation is
as follows:
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- R(2l) denotes the isomorphism class Mat(2l,R) while 2R(2l−1) denotes
the isomorphism class Mat(2l−1,R) ⊕Mat(2l−1,R) of C`p,q where l =
q − rq−p and ri is Radon-Hurwitz number,9

- C.O.S. and G.O.S. denote, respectively, the order structure of the group
center Z(Gp,q) and the group Gp,q itself,

- M = 2p+q is the number of linear characters of Gp,q when p+ q ≥ 2,
- N is the number of conjugacy classes in Gp,q equal to 1 + 2p+q, when
p+ q is even, and 2 + 2p+q, when p+ q is odd,

- since G′p,q = {±1}, every conjugacy class gGp,q contains exactly one
element when g ∈ Z(Gp,q), or, two elements when g 6∈ Z(Gp,q),

- since Z(Gp,q) ∼= C2 when p + q is even, and Z(Gp,q) ∼= C2 × C2 when
p+q is odd, groups in classes N2k−1 have two singleton conjugacy classes
while groups in classes Ω2k−1 have four singleton conjugacy classes, and
all other classes have two elements each of the same order two or four,

- L = N −M is the number of nonlinear characters of Gp,q,
- t is the number of involutions in Gp,q.

The order structure of each vee group has been computed directly with
CLIFFORD [2, 3]. We know that each class contains usually more than one
group Gp,q, which results in having different yet isomorphic Clifford algebras
C`p,q in each class. For example, when p + q = 2, we have G1,1

∼= G2,0 and
so C`1,1 ∼= C`2,0 ∼= R(2) or, when p + q = 7, we have G0,7

∼= G4,3 and so
C`0,7 ∼= C`4,3 ∼= 2R(8) in accordance with the Periodicity of Eight [8].

Table 4. Classes N2k−1 for 1 ≤ k ≤ 4 and p− q = 0, 2 (mod 8)

Class Group C`p,q Center C.O.S. G.O.S. L M N t

N1 G1,1 R(2) C2 [1, 1, 0] [1, 5, 2] 1 4 5 5

N3 G2,2 R(4) C2 [1, 1, 0] [1, 19, 12] 1 16 17 19

N5 G3,3 R(8) C2 [1, 1, 0] [1, 71, 56] 1 64 65 71

N7 G4,4 R(16) C2 [1, 1, 0] [1, 271, 240] 1 256 257 271

Table 5. Classes Ω2k−1 for 1 ≤ k ≤ 4 and p− q = 1 (mod 8)

Class Group C`p,q Center C.O.S. G.O.S. L M N t

Ω1 G2,1
2R(2) C2 × C2 [1, 3, 0] [1, 11, 4] 2 8 10 11

Ω3 G3,2
2R(4) C2 × C2 [1, 3, 0] [1, 39, 24] 2 32 34 39

Ω5 G4,3
2R(8) C2 × C2 [1, 3, 0] [1, 143, 112] 2 128 130 143

Ω7 G5,4
2R(16) C2 × C2 [1, 3, 0] [1, 543, 480] 2 512 514 543

Theorem 4. Each irreducible character of Gp,q in classes N2k−1 and Ω2k−1

for 1 ≤ k ≤ 4 can be realized over R.
9The Radon-Hurwitz number ri is defined by recursion as ri+8 = ri + 4 and these initial

values: r0 = 0, r1 = 1, r2 = r3 = 2, r4 = r5 = r6 = r7 = 3.
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Proof. The proof is based on the Frobenius-Schur Count of Involutions (29)
applied to each class group Gp,q listed in Tables 4 and 5, and showing that
for every irreducible character χ of Gp,q, its indicator function ιχ = 1. That
is, the sum

N∑
i=1

(ιχi)χi(1) = 1 + t (32)

is maximum in the sense that each coefficient ιχi of the character degree
χi(1) equals 1.

For the groups in classes N2k−1, we have only one faithful nonlinear
character χN which needs to be shown that it can be realized over R. The
remaining M characters χi for 1 ≤ i ≤ M (M = N − 1) are linear and real,
hence they can be realized over R. Furthermore, we have

|Gp,q| = 21+p+q = M +

N∑
i=M+1

m2
i (33)

where mi = dimV (i) is the dimension of an irreducible CG-submodule of the
regular module CG in a decomposition CG = ⊕imiV

(i).10

For the two groups in the class N1, we have already established this
result in Example 1. For the two groups G2,2

∼= G3,1 in N3, we have

M=16∑
i=1

(ιχi)χi(1) + (ιχ17)χ17(1) = 1 + t = 20, (34a)

21+p+q = 32 = 16 +m2
17 (34b)

which gives m17 = χ17(1) = 4 and ιχi = 1 for 1 ≤ i ≤ 17. For the three
groups G0,6

∼= G3,3
∼= G4,2 in the class N5, we find that m65 = χ65(1) = 8

and ιχi = 1 for 1 ≤ i ≤ 65. Finally, for the five groups G0,8
∼= G1,7

∼=
G4,4

∼= G5,3
∼= G8,0 we find that m257 = χ257(1) = 16 and again ιχi = 1 for

1 ≤ i ≤ 257.
For the single group G2,1 in the class Ω1, we have

M=8∑
i=1

(ιχi)χi(1) + (ιχ9)χ9(1) + (ιχ10)χ10(1) = 1 + t = 12, (35a)

21+p+q = 16 = 8 +m2
9 +m2

10 (35b)

which gives m9 = χ9(1) = m10 = χ10(1) = 2 and ιχi = 1 for 1 ≤ i ≤
10. Likewise, for the single group G3,2 in the class Ω3, we find that m33 =
χ33(1) = m34 = χ34(1) = 4 and ιχi = 1 for 1 ≤ i ≤ 34. For the two groups
G0,7

∼= G4,3 in the class Ω5, we have m129 = χ129(1) = m130 = χ130(1) = 8
and ιχi = 1 for 1 ≤ i ≤ 130. Finally, for the three groups G1,8

∼= G5,4
∼= G9,0

in the class Ω7, we deduce that m513 = χ513(1) = m514 = χ514(1) = 16 and
ιχi = 1 for 1 ≤ i ≤ 514. �

10In general, these modules are complex. In our case, these modules are real since all
irreducible characters can be realized over R.
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Theorem 5. Suppose we have Clifford algebra

C`p,q ∼=

{
R(2l), p− q = 0, 2 (mod 8),

2R(2l−1), p− q = 1 (mod 8),

for p+ q ≤ 9, where l = q − rq−p equals the number of factors in a primitive
idempotent f defining S = C`p,qf , a minimal spinor ideal. Let Gp,q be the
Salingaros vee group contained in C`∗p,q. Let 1 ≤ k ≤ 4. Then,

(i) Gp,q is in the class N2k−1 or Ω2k−1, and all irreducible characters of
Gp,q can be realized over R.

(ii) The degree of a nonlinear character χ of Gp,q equals the dimension of
the real spinor space S = C`p,qf . In particular,

χ(1) = dimR S =

{
2l, when p− q = 0, 2 (mod 8),

2l−1 when p− q = 1 (mod 8),
(36)

where l = q − rq−p and ri is the Radon-Hurwitz number. Thus,

q − rq−p = l =

{
log2 χ(1), when p− q = 0, 2 (mod 8),

1 + log2 χ(1) when p− q = 1 (mod 8).
(37)

(iii) Every nonlinear character of Gp,q uniquely determines a spinor module
of C`p,q. When Gp,q is in the class N2k−1 (resp. Ω2k−1), the spinor
representation is faithful (resp. non faithful).

Proof of (i) and (ii): See Thm. 4 and its proof.

Proof of (iii) (sketch): We know from Thm. 2 that spinor modules of C`1,1
and C`2,0 are uniquely determined by the nonlinear character of D8

∼= G1,1
∼=

G2,0 of degree 2. In general, we know from [1] that C`p,q ∼= R[Gp,q]/J .
Furthermore, any irreducible nonlinear character χ of Gp,q for p − q =
0, 1, 2 (mod8) can be realized over R by Thm. 4 so that χ(1) = dimR S
by (ii). Thus, the spinor module of C`p,q is determined by a primitive idem-
potent which is the image of a primitive idempotent determined by χ.

When Gp,q is in the class N2k−1, the unique nonlinear character is faith-
ful, hence, the spinor representation is faithful. For k = 1, see the character
table for D8 (Table 1) since D8 is in the class N1. For groups in the classes
N3, N5, and N7, we give abbreviated character tables (Tables 6, 7, and 8)
showing the only nonlinear character in each class.

Table 6. Nonlinear character of Gp,q in class N3

C 1a 2a 2b←→ 4f

|C| 1 1 2←→ 2

χ17 4 −4 0←→ 0
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Table 7. Nonlinear character of Gp,q in class N5

C 1a 2a 2b←→ 4ab

|C| 1 1 2←→ 2

χ65 8 −8 0←→ 0

Table 8. Nonlinear character of Gp,q in class N7

C 1a 2a 2b←→ 4dp

|C| 1 1 2←→ 2

χ257 16 −16 0←→ 0

When Gp,q is in the class Ω2k−1, there are two different nonlinear non
faithful characters, each of which determines a non faithful spinor represen-
tation of C`p,q. When k = 1, see Table 12 of G2,1 of class Ω1. For groups in
the classes Ω3, Ω5, and Ω7, see the abbreviated character tables (Tables 9,
10, and 11) displaying the only two nonlinear characters in each class.

Table 9. Nonlinear characters of Gp,q in class Ω3

C 1a 2a 2b 2c 2d←→ 4l

|C| 1 1 1 1 2←→ 2

χ33 4 −4 −4 4 0←→ 0

χ34 4 −4 4 −4 0←→ 0

Table 10. Nonlinear characters of Gp,q in class Ω5

C 1a 2a 2b 2c 2d←→ 4bd

|C| 1 1 1 1 2←→ 2

χ129 8 −8 8 −8 0←→ 0

χ130 8 8 8 −8 0←→ 0

Complete character tables for groups N2k−1 and Ω2k−1 for k = 2, 3, 4
were derived with Maple [10]. In Tables 6, 7, and 8, the first two conjugacy
classes C are central and are labeled by 1a and 2a whereas all remaining
classes are labeled by 2b ←→ 4f, 2b ←→ 4ab, and 2b ←→ 4dp, respectively.
Each label contains an integer, which gives the order of each element in the
class, whereas the letters give a consecutive number (in the base 26) of the
class with elements of that order. The number of elements in the class C is
given by |C|. It is easily seen that the single nonlinear character is faithful.
Similarly in Tables 9, 10, and 11, except that the first four conjugacy classes C
are central, and each group has two distinct nonlinear irreducible characters.
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Table 11. Nonlinear characters of Gp,q in class Ω7

C 1a 2a 2b 2c 2d←→ 4if

|C| 1 1 1 1 2←→ 2

χ513 16 −16 −16 16 0←→ 0

χ514 16 16 −16 16 0←→ 0

It is easily seen that these characters are non faithful. Finally, one can observe
that the degrees of the nonlinear characters of all these groups were correctly
computed in the proof of Thm. 4. �

We illustrate Thm. 5 on R[G2,1]/J ∼= C`2,1 for G2,1 in the class Ω1.

Example 3. Let

G = 〈τ, g1, g2, g3 | τ2 = g2
1 = g2

2 = 2, g4
3 = 1, τgi = giτ,

gigj = τgjgi, i, j = 1, 2, 3〉. (38)

Then, G ∼= G2,1, Z(G) = {1, τ, g1g2g3, τg1g2g3} ∼= C2 × C2, the group order
structure is [1, 11, 4], and G has ten conjugacy classes:

K1 = {1}, K2 = {τ}, K3 = {g1g2g3}, K4 = {τg1g2g3},
K5 = {g1, τg1}, K6 = {g2, τg2}, K7 = {g3, τg3},

K8 = {g1g2, τg1g2}, K9 = {g1g3, τg1g3}, K10 = {g2g3, τg3g3}. (39)

A character table of G is given in Table 12. Let θ1 = 1
2 (1 + τ) and θ2 =

Table 12. Character table for G2,1 in class Ω1

class K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

|CG(gi)| 16 16 16 16 8 8 8 8 8 8

χ1 1 1 1 1 1 1 1 1 1 1

χ2 1 1 −1 −1 1 1 −1 1 −1 −1

χ3 1 1 −1 −1 1 −1 1 −1 1 −1

χ4 1 1 1 1 1 −1 −1 −1 −1 1

χ5 1 1 −1 −1 −1 1 1 −1 −1 1

χ6 1 1 1 1 −1 1 −1 −1 1 −1

χ7 1 1 1 1 −1 −1 1 1 −1 −1

χ8 1 1 −1 −1 −1 −1 −1 1 1 1

χ9 2 −2 −2 2 0 0 0 0 0 0

χ10 2 −2 2 −2 0 0 0 0 0 0

1
2 (1 − τ) be two central orthogonal idempotents in the group algebra R[G]
adding to 1. All characters of G can be realized over R because the trivial
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character 1G = χ1 is a constituent of χS for each irreducible character χ
of G.

The regular RG-module RG is a direct sum of irreducible RG-submodules

RG =
(
⊕8
i=1Ui

)
⊕ U9 ⊕ U ′9 ⊕ U10 ⊕ U ′10 (40)

where the character of Ui is χi, when 1 ≤ i ≤ 8, the character of U9 ⊕ U ′9 is
2χ9, and the character of U10⊕U ′10 is 2χ10. Let W1 = ⊕8

i=1Ui, W2 = U9⊕U ′9,
and W3 = U10 ⊕ U ′10. Then, W1,W2,W3 do not have a common composition
factor and dimW1 = 8, dimW2 = dimW3 = 4. For each i (1 ≤ i ≤ 8), using
formula (13) we compute an idempotent ei. Let e9 and e10 be the idempotents
determined by the characters of W2 and W3, respectively. Then,

e1 + · · ·+ e8 =
1

2
(1 + τ) = θ1, (41)

e9 + e10 =
1

2
(1− τ) = θ2. (42)

It can be easily verified that the idempotents e1, . . . , e10 give an orthogonal
decomposition of the unity in R[G]. Thus,

J = (1 + τ) = (θ1) = R[G]θ1 = sp{e1, . . . , e8}, (43)

R[G]θ2 = sp{q1, q2, . . . , q8} (44)

where q1 = e9 + e10 and q2 = g1g2g3q1, q3 = g1q1, q4 = g2q1, q5 = g3q1, q6 =
g1g2q1, q7 = g1g3q1, q8 = g2g3q1. Therefore,

R[G]θ2
∼= R[G]/J ∼= C`2,1. (45)

Table 13 shows a multiplication table for the basis elements of R[G]θ2.

Table 13. Multiplication table in R[G]θ2
∼= C`2,1

q1 q2 q3 q4 q5 q6 q7 q8

q1 q1 q2 q3 q4 q5 q6 q7 q8

q2 q2 q1 q8 −q7 −q6 −q5 −q4 q3

q3 q3 q8 q1 q6 q7 q4 q5 q2

q4 q4 −q7 −q6 q1 q8 −q3 −q2 q5

q5 q5 −q6 −q7 −q8 −q1 q2 q3 q4

q6 q6 −q5 −q4 q3 q2 −q1 −q8 q7

q7 q7 −q4 −q5 −q2 −q3 q8 q1 q6

q8 q8 q3 q2 −q5 −q4 −q7 −q6 q1

Thus, q1 is the identity of R[G2,1]θ2, and |q3| = |q4| = 2 while |q5| = 4.
Furthermore, q3q4 = −q4q3, q3q5 = −q5q3, and q4q5 = −q5q4. Thus, we can
define the following R-algebra isomorphism on generators:

φ : R[G2,1]θ2 → C`2,1 with q1 7→ 1, q3 7→ e1, q4 7→ e2, q5 7→ e3 (46)

and then extend it by linearity to all elements in the domain. As expected,
Z(R[G2,1]θ2) = {q1, q2} and since q2

2 = q1, we can project out two simple
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subalgebras with a help of two central and orthogonal idempotents F1 = 1
2 (q1−

q2) and F2 = 1
2 (q1 + q2):

C`p,q ∼= R[G2,1]θ2 = R[G2,1]F1 ⊕ R[G2,1]F2 = R[G2,1]e9 ⊕ R[G2,1]e10 (47)

since F1 = e9 and F2 = e10. Thus, the two four-dimensional simple sub-
algebras of R[G2,1]θ2 are uniquely determined by the non-linear irreducible
(non-faithful) characters χ9 and χ10. It follows that

C`2,1J1
∼= R[G2,1]e9 = sp{q1e9, q3e9, q4e9, q5e9} ∼= R(2), (48)

C`2,1J2
∼= R[G2,1]e10 = sp{q2e10, q8e10, q4e10, q5e10} ∼= R(2). (49)

where J1, J2 are two central idempotents in C`2,1 defined as 1
2 (1− e123) and

1
2 (1 + e123), respectively.

In order to derive “spinorial” non-equivalent representations of the al-
gebra R[G2,1]θ2, we need to further decompose idempotents e9 and e10 –which
are related to reducible RG-submodules W2 and W3 of dimension four each–
into sums of primitive idempotents. Define

f1 =
1

2
(q1 + q3)e9 and f ′1 =

1

2
(q1 − q3)e9, (50)

f2 =
1

2
(q2 + q8)e10 and f ′2 =

1

2
(q2 − q8)e10, (51)

so e9 = f1 + f ′1, f
2
1 = f1, f

′2
1 = f ′1, f1f

′
1 = f ′1f1 = 0, and e10 = f2 + f ′2, f

2
2 =

f2, f
′2
2 = f ′2, f2f

′
2 = f ′2f2 = 0. Clearly, these four idempotents are primitive as

they correspond to four irreducible RG-submodules U9 and U ′9, and U10 and
U ′10, respectively, from (40). The two spinorial non faithful but inequivalent
representations of R[G2,1]θ2 can now be realized in say U9 and U10 with the
character χ9 and χ10, respectively. We define left ideals:

S1 = R[G2,1]θ2e9f1 = sp{f1, q4f1}, S2 = R[G2,1]θ2e10f2 = sp{f2, q4f2}. (52)

It can be verified that we obtain two (left) representations

ρ9 : R[G2,1]θ2 → End(S1), ρ10 : R[G2,1]θ2 → End(S2), (53)

namely,

ρ9 : q3 7→
(

1 0
0 −1

)
, q4 7→

(
0 1
1 0

)
, q5 7→

(
0 1
−1 0

)
, (54)

ρ10 : q3 7→
(

1 0
0 −1

)
, q4 7→

(
0 1
1 0

)
, q5 7→

(
0 −1
1 0

)
. (55)

The two representations ρ9 and ρ10 are obviously non-equivalent yet irre-
ducible as their characters χ9 and χ10 are irreducible and distinct. Further-
more, ρ9 and ρ10 are non faithful since their characters are non faithful:
kerχ9 = {1, τg1g2g3} and kerχ10 = {1, g1g2g3}. Thus, as is the case in semi-
simple Clifford algebras, a faithful representation of C`2,1 is realized in the
direct sum S1 ⊕ S2 referred to as a double spinor space [8].
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With Tables 6–11, more examples can be constructed to illustrate Thm. 5.
The actual knowledge of complete character tables is not needed since the
idempotents related to the linear characters span the ideal J , and only the
nonlinear characters shown in these tables give spinor representations of the
related Clifford algebras.

5. Conclusions

Our two main results stated as Thm. 4 and 5 have been proven for Salingaros
vee groups Gp,q in classes N2k−1 and Ω2k−1 for 1 ≤ k ≤ 4. We conjecture
that they extend to the vee groups in all classes N2k−1 and Ω2k−1 for k ≥ 1,
that is, to all Clifford algebras C`p,q for p− q = 0, 1, 2 (mod 8).

Our next step is to apply these ideas to the remaining three classes
of Clifford algebras C`p,q when p − q = 4, 6 (mod 8) (resp. p − q = 5 (mod
8), and p − q = 3, 7 (mod8)), which are related to the Salingaros classes
N2k (resp. Ω2k, and Sk). Since any group in the class N2k is of the form
(D8)◦(k−1) ◦ Q8, while any group in the class Ω2k is the central product
((D8)◦(k−1) ◦ Q8) ◦ (C2 × C2) [1], that is, each of them contains Q8 as a
normal subgroup, we expect to see that quaternionic and double-quaternionic
spinor representations emerge, as expected, when p−q = 4, 5, 6 ( mod 8). The
vee groups in the classes Sk are isomorphic to (D8)◦k ◦ C4

∼= (D8)◦(k−1) ◦
Q8 ◦ C4 and we expect that their nonlinear characters yield complex spinor
representations. Thus, in all classes we expect to relate the spinor modules of
Clifford algebras to the irreducible nonlinear characters of their corresponding
vee groups.
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